University of Texas at Austin
Parallel Algorithms for Data Analysis and Simulation Group

Parallel Algorithms for Data Analysis and Simulation Group

Working on High Performance Computing and fundamental Numerical Analysis Algorithms for problems in science, engineering, and medicine.

SIGNIFICANCE
The solutions to grand challenge problems in science and engineering require unprecedented computing power. Near future supercomputing platforms will rely on millions of possibly heterogeneous cores to deliver multi-petaflop performance. The design and deployment of algorithms that scale well on such platforms will be critical for exploiting the new architectures effectively. Nevertheless, few existing codes can scale to such large numbers of processors.

MISSION
The mission of the Parallel Algorithms for Data Analysis and Simulation (PADAS) group is to integrate applied mathematics and computer science to design and deploy algorithms for grand challenge problems that scale to leadership computing platforms. The group is working on fundamental numerical and high performance computing algorithms for integral equations, partial differential equations, scientific machine learning, inverse problems, model reduction, and linear and nonlinear solvers.

APPLICATIONS
Ongoing projects include applications tumor growth modeling, direct numerical simulation of particulate flows, medical image analysis, additive manufacturing, plasma physics, and remote sensing.

Website

https://padas.oden.utexas.edu

Directors

George Biros
George Biros
Imaging Computational Mechanics High-Performance Computing

Faculty and Research Staff

Lizy Kurian John, PE
Lizy Kurian John, PE
Machine Learning Computer Architecture

Postdocs

Students

Staff

News in brief

Three New Cancer Projects Receive Funding in Joint Collaboration Between Oden Institute, MD Anderson and TACC

News

Dec. 4, 2025

Three New Cancer Projects Receive Funding in Joint Collaboration Between Oden Institute, MD Anderson and TACC

The selected projects apply imaging, computational modeling, and digital twin technologies to improve prediction, treatment planning, and early detection across prostate, head and neck, and liver cancers.

Read more

Helping Researchers See Alzheimer’s Before It Starts - Profile Zheyu Wen

Profile

Oct. 22, 2025

Helping Researchers See Alzheimer’s Before It Starts - Profile Zheyu Wen

Oden Institute CSEM Ph.D student is working towards earlier diagnoses of diseases like Alzheimer’s by identifying patterns in brain imaging. 

Read more

The Peter O’Donnell Jr. Postdoctoral Research Fellows: 2025-2026

News

Sept. 3, 2025

The Peter O’Donnell Jr. Postdoctoral Research Fellows: 2025-2026

Meet the new cohort of Peter O’Donnell, Jr. Postdoctoral Research Fellows!

Read more