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Motivation

Understand physical phenomena
Observations of phenomena

Mathematical model of phenomena (includes some parameters that
characterise behaviour)

Numerical model approximating mathematical model
Find parameters in a situation of interest

Use the parameters to do something cool
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Understanding errors

Reality

Mathematical model

Numerical model

Validation

Verification
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Setup

Model (usually a PDE): G(u, ) where u is the initial condition and 6 are
model paramaters.

u: perhaps an initial condition

0: perhaps some interesting model parameters (diffusion, convection
speed, permeability field, material properties)

Observations:

Yik = u(xj, t) + ik, Mjk S N(0,0%)
~ y=G)+n, n~N(©0,0*)
Want:
P(0]y) o< P(y|0)P(0)
Why?
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Do we need Bayes' theorem?

Is Bayes' theorem really necessary? We could minimise

1 1
J(0) = @HQ(G) —yl*+ ﬁHQH2

to get
0" = argming J(0)
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Do we need Bayes' theorem?

BUT THIS IS Ok TOO

WANT THIS
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Do we need Bayes' theorem?

ESTIMATE THIS

CAN ESTIMATE THIS TOO
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Do we need Bayes’ theorem?

Bayesian methods involve estimating uncertainty (as well as mean).
They're equivalent.

Deterministic optimisation:

1

_ 1 2 2
J0) = 55 16(0) ¥+ 535101
[ —
misfit regularisation

Bayesian framework:

1 1
exp(~J(0)) = 0 ( ~5116(6) ~ 17 ) ex0 (5551017
likelihood prior
= B(yI0)E(0)
< B(dly)
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Method for solving Bayesian inverse problems

Kalman filtering/smoothing methods
e Kalman filter (Kalman)
e Ensemble Kalman filter (Evensen)

Variational methods

e 3D VAR (Lorenc)
e 4D VAR (Courtier, Talagrand, Lawless)

Particle methods

o Particle filter (Doucet)

Sampling methods
e Markov chain Monte Carlo (Metropolis, Hastings)

This list is not exhaustive. The body of work is prodigious.
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QUESO

Nutshell: QUESQ gives samples from P(0|y) (called MCMC)

Library for Quantifying Uncertainty in Estimation, Simulation and
Optimisation

Born in 2008 as part of PECOS PSAAP programme

Provides robust and scalable sampling algorithms for UQ in
computational models

Open source

C++

MPI for communication

Parallel chains, each chain can house several processes
Dependencies are MPI, Boost and GSL. Other optional features exist

https://github.com/libqueso/queso
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https://github.com/libqueso/queso

What does MCMC look like?
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What does MCMC look like?

E(fly) ~ § Zszl 0y
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How to do MCMC? Sampling P(0|y)

e |dea: Construct {6}7°, cleverly such that {6x}72, Wi P(0y)

1. Let 6; be the ‘current’ state in the sequence and construct a
proposal, z
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How to do MCMC? Sampling P(0|y)

e Idea: Construct {0x}7°, cleverly such that {6;}¢°, Wi P(0y)
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How to do MCMC? Sampling P(0|y)

e Idea: Construct {0x}7°, cleverly such that {6;}¢°, Wi P(0y)

1. Let 0; be the ‘current’ state in the sequence. Make a draw & ~ P(6)
and construct a proposal, z

z=(1- /)20, + B¢, some B € (0,1)

2. Define (-) := 5 1G(-) — y|I?
3. Compute o0j,z) = 1 A exp(P(0;) — ¢(2))
4. Let
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How to do MCMC? Sampling P(0|y)

e Idea: Construct {0x}7°, cleverly such that {6;}¢°, Wi P(0y)

1. Let 0; be the ‘current’ state in the sequence. Make a draw & ~ P(6)
and construct a proposal, z

z=(1-F%)26;+ B¢, some B € (0,1)
2. Define ®(-) := 5%, |G(-) — yI’

3. Compute o0j,z) = 1 A exp(P(0;) — ¢(2))

4. Let
0.1 — 0  with probability a(6;, z)
17016, with probability 1 — (6}, 2)

e Take 67 to be a draw from P(6)
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Why use QUESO?

Other solutions are available, e.g. R, PyMC, emcee, MICA, Stan.

QUESO solves the same problem, but:
e Has been designed to be used with large forward problems
e Has been used successfully with 5000+ cores
o Leverages parallel MCMC algorithms

e Supports for finite and infinite dimensional problems

[ Statistical Application ]

[ QUESO ] [ Forward Code ]
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Why use QUESO?

[Nodel][Node2] [Node3][Node4] [Node5][Node6]

o)) () ) () o]
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Example 1: convection-diffusion

We are given a convection-diffusion model

s, x€]0,1],

(uc)x — (vex)x

c(0) = ¢(1)

Functions of x are: u, ¢ and s.

|
e

Constants are: v (viscosity).
The unkown is ¢, typically concentration.
The underlying convection velocity is u.

The forward problem: Given v and s, find c.
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Example 1: convection-diffusion

We are also given observations

e { (uc)y — (ve)x x € [0,1],

c(0) =c¢(1) =0.

y; = clx) + i 1~ N(0,07),
~y=G)+n, n~N(0d.

The observations are of ¢. We wish to learn about wu.

observations {

We will use Bayes's theorem:

P(uly) oc P(y|u)P(u)

True u =1 — cos(27x)
True s = 27(1 — cos(27x)) cos(2mx) + 27 sin?(27x) + 4m2v sin(27x)
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Example 1: convection-diffusion

How do we know we are solving the right PDE (G) to begin with?

10°

107°
H? error
10°%H — — order 1
| — — order2 f[----- . . ! . . .
1010 | [ R S
ol >3 25 o7 29 oll 713 715

Number of grid points

Note: Use the MASA [1] library to verify your forward problem.

[1] Malaya et al., MASA: a library for verification using manufactured and analytical solutions, Engineering with Computers (2012)
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Example 1: convection-diffusion

Recap Bayes's theorem,

P(uly) oc P(y[u)P(u).

Remember, we don’'t know u but have observations and model:

y:g(u)+773 nNN(0702I)'
We also need a prior on u
P(u) = N(0,(—A)™).

Aim is to get information from the posterior.
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Example 1: convection-diffusion
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Example 1: convection-diffusion

|_ ks S oy — (<))l 2
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Example 1: convection-diffusion

Suppose we got the source term wrong:

s = 27(1 — cos(27x)) cos(27x) + 27 sin®(27x) 4 4w2v sin(27x)
§ = 4r%vsin(27x)

500 T T T

400 : : :
300
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~100
—200
~300
—400
0

.0 0.2 0.4 0.6 0.8 1.0
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Variance in u

x107*

Example 1: convection-diffusion
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Example 1: convection-diffusion

o
dx

Without model error
——  With model error
——  Truth

) 200 400 600 800 1000
Hundreds of iterations (k)
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Example 2: Teleseismic earthquake model

G computes teleseismic earthquake wave phases P and SH

0 are rupture constraint parameters
6 = (slip magnitude, slip direction, start time, rise time) € R*
Posterior P(f]y) is a density on a four dimensional space

Observations y are of the produced waveform, with noise

Vi = Gi(0) + e, i X N(0,02)
~ y=060)+n, n~N(0,0%)

Prior P(6) is a uniform distribution on R* (improper)
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Example 2: Kikuchi and Kanamori model
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Summary

Regularised optimisation < Bayesian inversion
e . Bayesian inversion is not scary
Uncertainty quantification is crucial; prediction
Wealth of methods; pick your poison
e My go-to is MCMC, but a different method may suit you better
Predictive validation
e The role of experiments and their effect on prediction
e There is a framework for this (Moser, Oliver, Terejanu, Simmons)

I'll be at SIAM CSE
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Questions?
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