
Bayesian parameter estimation in predictive
engineering

Damon McDougall

Institute for Computational Engineering and Sciences, UT Austin

14th August 2014

1/27



Motivation

Understand physical phenomena

Observations of phenomena

Mathematical model of phenomena (includes some parameters that
characterise behaviour)

Numerical model approximating mathematical model

Find parameters in a situation of interest

Use the parameters to do something cool
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Understanding errors

Reality

Mathematical model

Numerical model

errors

errors

Validation

Verification
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Setup

Model (usually a PDE): G(u, θ) where u is the initial condition and θ are
model paramaters.

u: perhaps an initial condition

θ: perhaps some interesting model parameters (diffusion, convection
speed, permeability field, material properties)

Observations:

yj,k = u(xj , tk ) + ηj,k , ηj,k
i.i.d∼ N (0, σ2)

; y = G(θ) + η, η ∼ N (0, σ2I )

Want:
P(θ|y) ∝ P(y |θ)P(θ)

Why?
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Do we need Bayes’ theorem?

Is Bayes’ theorem really necessary? We could minimise

J(θ) =
1

2σ2
‖G(θ)− y‖2 +

1

2λ2
‖θ‖2

to get
θ∗ = argminθ J(θ)
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Do we need Bayes’ theorem?

Bayesian methods involve estimating uncertainty (as well as mean).
They’re equivalent.

Deterministic optimisation:

J(θ) =
1

2σ2
‖G(θ)− y‖2

︸ ︷︷ ︸
misfit

+
1

2λ2
‖θ‖2

︸ ︷︷ ︸
regularisation

Bayesian framework:

exp(−J(θ)) = exp

(
− 1

2σ2
‖G(θ)− y‖2

)

︸ ︷︷ ︸
likelihood

exp

(
− 1

2λ2
‖θ‖2

)

︸ ︷︷ ︸
prior

= P(y |θ)P(θ)

∝ P(θ|y)
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Method for solving Bayesian inverse problems

• Kalman filtering/smoothing methods

• Kalman filter (Kalman)

• Ensemble Kalman filter (Evensen)

• Variational methods

• 3D VAR (Lorenc)

• 4D VAR (Courtier, Talagrand, Lawless)

• Particle methods

• Particle filter (Doucet)

• Sampling methods

• Markov chain Monte Carlo (Metropolis, Hastings)

This list is not exhaustive. The body of work is prodigious.
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QUESO

Nutshell: QUESO gives samples from P(θ|y) (called MCMC)

• Library for Quantifying Uncertainty in Estimation, Simulation and
Optimisation

• Born in 2008 as part of PECOS PSAAP programme

• Provides robust and scalable sampling algorithms for UQ in
computational models

• Open source

• C++

• MPI for communication

• Parallel chains, each chain can house several processes

• Dependencies are MPI, Boost and GSL. Other optional features exist

• https://github.com/libqueso/queso
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What does MCMC look like?
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What does MCMC look like?

E(θ|y) ≈ 1
N

∑N
k=1 θk
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How to do MCMC? Sampling P(θ|y)

• Idea: Construct {θk}∞k=1 cleverly such that {θk}∞k=1
i.i.d∼ P(θ|y)

1. Let θj be the ‘current’ state in the sequence and construct a
proposal, z

z = (1− β2)
1
2 θj + βξ, some β ∈ (0, 1)

2. Define Φ(·) := 1
2σ2 ‖G(·)− y‖2

3. Compute α(θj , z) = 1 ∧ exp(Φ(θj )− Φ(z))

4. Let

θj+1 =

{
θ with probability α(θj , z)

θj with probability 1− α(θj , z)

• Take θ1 to be a draw from P(θ)
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Why use QUESO?

Other solutions are available, e.g. R, PyMC, emcee, MICA, Stan.

QUESO solves the same problem, but:

• Has been designed to be used with large forward problems

• Has been used successfully with 5000+ cores

• Leverages parallel MCMC algorithms

• Supports for finite and infinite dimensional problems

Statistical Application

QUESO Forward Code
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Why use QUESO?

Chain 1 Chain 2 Chain 3

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

MCMC MCMC MCMC
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Example 1: convection-diffusion

We are given a convection-diffusion model

(uc)x − (νcx )x = s, x ∈ [0, 1],

c(0) = c(1) = 0.

Functions of x are: u, c and s.

Constants are: ν (viscosity).

The unkown is c , typically concentration.

The underlying convection velocity is u.

The forward problem: Given u and s, find c .
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Example 1: convection-diffusion

We are also given observations

model

{
(uc)x − (νcx )x = s, x ∈ [0, 1],

c(0) = c(1) = 0.

observations

{
yj = c(xj ) + ηj , ηj

i.i.d∼ N (0, σ2),

; y = G(u) + η, η ∼ N (0, σ2I ).

The observations are of c . We wish to learn about u.

We will use Bayes’s theorem:

P(u|y) ∝ P(y |u)P(u)

True u = 1− cos(2πx)
True s = 2π(1− cos(2πx)) cos(2πx) + 2π sin2(2πx) + 4π2ν sin(2πx)
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Example 1: convection-diffusion

How do we know we are solving the right PDE (G) to begin with?

21 23 25 27 29 211 213 215

Number of grid points

10−10

10−8

10−6

10−4

10−2

100

L2 error

H1 error

order 1

order 2

Note: Use the MASA [1] library to verify your forward problem.
[1] Malaya et al., MASA: a library for verification using manufactured and analytical solutions, Engineering with Computers (2012)

17/27



Example 1: convection-diffusion

Recap Bayes’s theorem,

P(u|y) ∝ P(y |u)P(u).

Remember, we don’t know u but have observations and model:

y = G(u) + η, η ∼ N (0, σ2I ).

We also need a prior on u

P(u) = N (0, (−∆)−α).

Aim is to get information from the posterior.
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Example 1: convection-diffusion

0 200 400 600 800 1000

Hundreds of iterations (k)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

‖uk‖L2

‖ 1
k

∑k
i=0 ui‖L2

19/27



Example 1: convection-diffusion

0 200 400 600 800 1000

Hundreds of iterations (k)

0.00

0.05

0.10

0.15

0.20

‖ 1
k−1

∑k
i=0(ui − 〈ui 〉k)2‖L2
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Example 1: convection-diffusion

Suppose we got the source term wrong:

s = 2π(1− cos(2πx)) cos(2πx) + 2π sin2(2πx) + 4π2ν sin(2πx)

ŝ = 4π2ν sin(2πx)

0.0 0.2 0.4 0.6 0.8 1.0
−400

−300

−200

−100

0

100

200

300

400

500
s

ŝ
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Example 1: convection-diffusion

0.0 0.2 0.4 0.6 0.8 1.0

PDE Domain

0.0

0.6

1.2

1.8

2.4

3.0

V
ar

ia
n

ce
in
u

×10−4

Without model error

With model error
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Example 1: convection-diffusion

0 200 400 600 800 1000

Hundreds of iterations (k)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

d
c
k

d
x

∣ ∣ ∣ x=
1

×10−3 + 6.282

Without model error

With model error

Truth

23/27



Example 2: Teleseismic earthquake model

G computes teleseismic earthquake wave phases P and SH

θ are rupture constraint parameters

θ = (slip magnitude, slip direction, start time, rise time) ∈ R4

Posterior P(θ|y) is a density on a four dimensional space

Observations y are of the produced waveform, with noise

yk = Gk (θ) + ηk , ηk
i.i.d∼ N (0, σ2)

; y = G(θ) + η, η ∼ N (0, σ2I )

Prior P(θ) is a uniform distribution on R4 (improper)
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Example 2: Kikuchi and Kanamori model

5.0 5.5 6.0 6.5 7.0 7.5

Slip

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Truth

Uncertainty

Mean

−96 −94 −92 −90 −88 −86 −84

Rake

0.00

0.05

0.10

0.15

0.20

0.25

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Rise time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Start time

0

1

2

3

4

5
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Summary

• Regularised optimisation ⇔ Bayesian inversion

• ∴ Bayesian inversion is not scary

• Uncertainty quantification is crucial; prediction

• Wealth of methods; pick your poison

• My go-to is MCMC, but a different method may suit you better

• Predictive validation

• The role of experiments and their effect on prediction

• There is a framework for this (Moser, Oliver, Terejanu, Simmons)

• I’ll be at SIAM CSE
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Questions?
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