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Sparsity-aware sampling: motivating example

Problem: N = 100, 000 soldiers should be screened for syphilis.
Syphilis is rare (only about s = 10 expected out of 100, 000).
Doing a blood test is expensive. Do we need to take N blood tests?

Idea: Pool blood together. Test a combined blood sample to
check if at least one soldier has syphilis.

Only only need take s logN � N blood tests to identify infected
soldiers. (“compressed” measurements).

Implemented by the U.S. Government during WWII
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Compressive sensing

Main idea: Many natural signals / images of interest are sparse in
some sense.

We say x is s-sparse if ‖x‖0 = #{j : |xj | > 0} ≤ s.

Theory: from only m ≈ s log(N) incoherent linear measurements,
can recover sparse signal as e.g. vector of minimal `1-norm
satisfying y = Φx



Examples of sparsity:

Natural images:

Smooth function interpolation

Low-rank matrices:



Incoherent sampling

y = Ax

Let (Φ,Ψ) is a pair of orthonormal bases of RN .

1. Φ = (φj) is used for sensing: A ∈ Rm×N is a subset of m rows
of Φ

2. Ψ = (ψk) is used to sparsely represent x: x = Ψ∗b, and b is
assumed sparse

Definition
The coherence between Φ and Ψ is

µ(Φ,Ψ) =
√
N max

1≤k,j≤N
| < φj , ψk > |

If µ(Φ,Ψ) = C a constant, then Φ and Ψ are called incoherent.
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Incoherent sampling

Example:

I Ψ = Identity. Signal is sparse in canonical/Kronecker basis

I Φ is discrete Fourier basis, φj =
(

1√
N
e i2πjk/N

)N−1

k=0

I The Kronecker and Fourier bases are incoherent:

µ(Φ,Ψ) :=
√
N max

j ,k
| < φj , ψk > | = 1.



Why does `1 minimization work?
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Reconstructing sparse signals

`1-minimization

x# = arg min
z∈RN

N∑
j=1

|zj | such that Az = Ax.

or, if x is sparse with respect to basis Ψ,

x# = arg min
z∈RN

N∑
j=1

|(Ψ∗z)j | such that Az = Ax.



Theorem (Sparse recovery via incoherent sampling1)

Let (Φ,Ψ) be a pair of incoherent orthonormal bases of RN .

Select m (possibly not distinct) rows of Φ i.i.d. uniformly to form
A : RN → Rm, where

m . Cs log(N).

With exceedingly high probability, the following holds: for all
x ∈ RN such that Ψ∗x is s-sparse,

x = arg min
z∈RN

N∑
j=1

|(Ψ∗z)j | such that Az = Ax.

Such reconstruction is also stable to sparsity defects and robust to
noise.

1Candès, Romberg, Tao ’06, Rudelson Vershynin ’08, ...



Theory is largely restricted to: incoherent measurement/sparsity
bases, finite-dimensional spaces, and sparsity in orthonormal
representations; not sufficient for key examples

Current research directions:

1. Importance sampling for compressive sensing applications

2. Adaptive sampling strategies

3. Extend theory from sparsity in orthonormal bases to sparsity
in redundant dictionaries

4. Extend theory from finite-dimensional spaces to
infinite-dimensional spaces



Compressive imaging

In MRI, one cannot observe the N = n× n pixel image directly; can
only take samples from 2D (or 3D) discrete Fourier transform F .

So we can acquire a number m� N linear measurements of the
form

yk1,k2 = (Fx)k1,k2 =
1

n

∑
j1,j2

xj1,j2e
2πi(k1j1+k2j2)/n,−n/2+1 ≤ k1, k2,≤ n/2

Smaller m means faster MRI scan! How to subsample in frequency
domain?



In the MRI setting ... random sampling fails

Reconstructions of an image from m = .1N frequency
measurements using total variation minimization.

Pixel space / Frequency space
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Reconstruction from uniformly subsampled frequencies



In the MRI setting ... random sampling fails

Image

Natural images are sparsely represented in
2D wavelet bases Ψ

Possible sensing measurements are Fourier
measurements Φ

This is because wavelet and Fourier bases are not incoherent



Importance sampling
Image domain / Fourier domain
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(b) Uniform random
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(c) Radial line sampling
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(d) Variable-density

Used in MRI: radial-line sampling. New: “importance sampling”: take random
samples according to an inverse-square distance variable density: Draw
frequency (k1, k2) with probability ∝ 1

k2
1 +k2

2
.

With variable density sampling, can extend compressed sensing results and
prove that m & s log(N) 2D DFT measurements suffice for recovering images
with s-sparse wavelet expansions.



Examples of sparsity:

Natural images:
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High-dimensional function interpolation
Given a function f : D → C on a d-dimensional domain D,
reconstruct or interpolate f from sample values f (t1), . . . , f (tm).
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Assume the form f (t) =
∑

j∈Γ xjψj(t) where x has assumed
structure:

1. Sparsity: ‖x‖0 := {` : x` 6= 0} ≤ s

2. Smoothness: coefficient decay
∑

j j
r |xj | <∞.

Smoothness assumption not strong enough to overcome curse of
dimensionality: need m ≈ ( 1

ε )d/r sample values for accuracy ε.

Our work: combine smoothness + sparsity for weighted
`1-coefficient function spaces. m ≈ ( 1

ε )s log3(s) samples sufficient
to reconstruct such a function, independent of dimension d
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Low-rank matrix completion / approximation

Previous results: a rank-r incoherent n × n matrix M may be
completed (via convex optimization) from m ≈ nr log2(n)
uniformly sampled entries

Our results: An arbitrary rank-r matrix M may be completed (via
convex optimization) from m ≈ nr log(n) entries, sampled
according to a specific non-uniform distribution adapted to the
matrix leverage scores.

Also: extensions to only approximately low-rank matrices,
two-stage adaptive sampling



Summary

Compressed sensing and related optimization problems often
assume incoherence between the sensing and sparsity bases to
derive sparse recovery guarantees.

Incoherence is restrictive and not achievable in many problems of
practical interest.

With small local coherence from one basis to another, one may
derive sampling strategies and sparse recovery results for a wide
range of new sensing problems (imaging, matrix completion, ...)

Also: weighted sparsity, measurement error, adaptive sampling ...


