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From data to decisions under uncertainty
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From data to decisions under uncertainty
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From data to decisions under uncertainty
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Example: Groundwater contaminant remediation
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Source: Reed Maxwell, CSM
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Example: Groundwater contaminant remediation

@ Inverse problem

o Infer (uncertain) soil permeability from (uncertain) measurements of pressure
head at wells and from a (uncertain) model of subsurface flow and transport

Prediction (or forward) problem

o Predict (uncertain) evolution of contaminant concentration at municipal wells
from (uncertain) permeability and (uncertain) subsurface flow/transport model

Optimal experimental design problem

o Where should new observation wells be placed so that permeability is inferred
with the least uncertainty?

Optimal design problem

o Where should new remediation wells be placed so that (uncertain)
contaminant concentrations at municipal wells are minimized?

Optimal control problem

o What should the rates of extraction/injection at remediation wells be so that
(uncertain) contaminant concentrations at municipal wells are minimized?
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Applications of inverse problems in CCGO

@ Antarctic ice sheet flow (+ ocean dynamics)
e Joint with Patrick Heimbach, Tom Hughes, Tobin Isaac (Georgia Tech),
Tom O’Leary-Roseberry, Noemi Petra (UC-Merced), Georg Stadler (NYU),
Umberto Villa, Alice Zhu
@ Global and regional seismic inversion, joint seismic—EM inversion, inverse scattering
e Joint with Hossein Aghakhani, Nick Alger, Tan Bui, Ben Crestel, David Keyes
(KAUST), George Turkiyyah (KAUST), Georg Stadler (NYU), Umberto Villa
Global mantle convection
o Joint with Mike Gurnis (Caltech), Johann Rudi, Georg Stadler (NYU)
Poroelastic subsurface flow inversion and management of induced seismicity
e Joint with Amal Alghamdi, Marc Hesse, Georg Stadler (NYU), Umberto Villa,
Karen Willcox (MIT)
@ Turbulent combustion: inference and control
e Joint with George Biros, Peng Chen, Matthias Heinkenschloss (Rice),
Myoungkyu Lee, Bob Moser, Todd Oliver, Chris Simmons, David Sondak,
Andrew Stuart (Caltech), Umberto Villa, Karen Willcox (MIT)
@ Reservoir inversion
e Joint with George Biros, Tan Bui, Clint Dawson, Sam Estes, John Lee,
Umberto Villa
@ Soft tissue biomechanical inversion
o Joshua Chen, Michael Sacks, Umberto Villa
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Forward and inverse global mantle convection modeling

logloviscosity) Pas) 4
24.0

velocity (cm/yr)
.0
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Scalable solver (2015 Gordon Bell Prize)

HMG hierarchy
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Bayesian inversion for basal friction field in Antarctica

InSAR-based ice surface velocity observations Inferred mean of basal friction field

2, 16.6 '-10
q 1
b
0.1
¥ 005"
Reconstructed ice surface velocity field (based on Inferred uncertainty in basal friction field (standard
inferred mean of basal friction field) deviation of Gaussianized posterior of log basal friction)
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Bayesian global seismic inversion

sample
no. 1 from

posterior
distribution

pointwise
prior
variance

pointwise
posterior
variance

Parallel adaptive DG wave propagation Prior and posterior seismic velocity marginals

Parallel octree AMR was finalist for 2010 Bell Prize
Bayesian Inversion was finalist for 2012 Gordon Bell Prize
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Bayesian poroelastic inversion

Use observations (InSAR, GPS) of surface deformation induced by CO2 or wastewater
injection, in addition to well pressure measurements, to infer subsurface permeability and
elastic properties. Forward predict and then ultimately optimize injection processes to avoid
induced seismicity.

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty Mar 24, 2017 10 /



Joint seismic-electromagnetic inversion

Employ seismic (left) and electromagnetic (right) observations for joint reconstruction of
subsurface properties, producing better characterization of petrophysical properties of
reservoir than either one alone.
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Optimal control of systems governed by PDEs with

uncertain parameter fields

PDE-constrained control objective: Control of injection wells in porous

q= q(u(z’ m), Z) medium flow (SPElO permeability data)

where u depends on z and m through:

Alu,m) = f(2)

@ ¢: control objective
o A: forward PDE operator

@ w: state variable

@ m: uncertain parameter field
o

z: control function

Problem: given uncertainty model for m, find z that “optimizes” q(u(z,m), z)

/ 41
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Optimization under uncertainty (OUU)

@ J7: parameter space, infinite-dimensional separable Hilbert space
@ ¢(z,m): control objective functional

m € J: uncertain model parameter field, z: control function
o Optimization under uncertainty (OUU):

min q(z,m)
z
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Optimization under uncertainty (OUU)

@ J7: parameter space, infinite-dimensional separable Hilbert space
@ ¢(z,m): control objective functional
m € J: uncertain model parameter field, z: control function

® Risk-neutral optimization under uncertainty (OUU):
min E,,{q(z,m)}

E,{a(z,m)} = /ﬁ o(z,m) u(dm)
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Optimization under uncertainty (OUU)

@ J7: parameter space, infinite-dimensional separable Hilbert space
@ ¢(z,m): control objective functional
m € J: uncertain model parameter field, z: control function

o Risk-averse (Mean-Var) optimization under uncertainty (OUU):
mzin E,n{q(z,m)} + Bvar,{q(z,m)}
Efa(om)} = [ atem) utdm)

var,, {q(z,m)} = E.{q(z,m)?} — Ep.{q(z,m)}?
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Optimization under uncertainty (OUU)

@ J7: parameter space, infinite-dimensional separable Hilbert space
@ ¢(z,m): control objective functional
m € J: uncertain model parameter field, z: control function

Risk-averse (Mean-Var) optimization under uncertainty (OUU):
mzin E,n{q(z,m)} + Bvar,{q(z,m)}
Efa(om)} = [ atem) utdm)

var,, {q(z,m)} = E.{q(z,m)?} — Ep.{q(z,m)}?

Main challenges:

o Integration over infinite/high-dimensional parameter space
e Evaluation of ¢ requires PDE solves
e Standard Monte Carlo approach (Sample Average Approximation) is
prohibitive
o Numerous (nmc) samples required, each requires PDE solve
o Resulting PDE-constrained optimization problem has nnc PDE constraints
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Some existing approaches for PDE-constrained OUU

Methods based on stochastic collocation, sparse/adaptive sampling, POD, ...

@ Schulz & Schillings, Problem formulations and treatment of uncertainties in aerodynamic design, AIAA J, 2009.

@ Borzi & von Winckel, Multigrid methods and sp; id coll i i for parabolic optimal control problems with random coefficients,
SISC, 2009.

@ Bora, Schillings, & von Winckel, On the treatment of distributed uncertainties in PDE-constrained optimization, GAMM-Mitt. 2010.

@ Borzi & von Winckel, A POD framework to determine robust controls in PDE optimization, Computing and Visualization in Science, 2011.

o Gunzburger & Ming, Optimal control of stochastic flow over a backward-facing step using reduced-order modeling, SISC 2011.

@ Hou, Lee, & Manouzi, Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEs, J Math Anal
Appl, 2011.

o Gunzburger, Lee, & Lee, Error estimates of stochastic optimal Neumann boundary control problems, SINUM, 2011.

@ Rosseel & Wells, Optimal control with stochastic PDE constraints and uncertain controls, CMAME, 2012.

@ Tiesler, Kirby, Xiu, & Preusser, Stochastic collocation for optimal control problems with stochastic PDE constraints, SICON, 2012.

@ Kouri, Heinkenschloss, Ridzal, & Van Bloemen Waanders, A trust-region algorithm with adaptive stochastic collocation for PDE optimization
under uncertainty, SISC, 2013.

@ Chen, Quarteroni, & Rozza, Stochastic optimal Robin boundary control prob of advection-domii i elliptic ions, SINUM, 2013.

@ Kunoth & Schwab, Analytic regularity and gPC approximation for control problems constrained by linear parametric elliptic and parabolic PDEs,
SICON, 2013.

@ Kouri, A multilevel stochastic collocation algorithm for optimization of PDEs with uncertain coefficients, JUQ, 2014.

@ Chen& Quarteroni, Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraint, JUQ, 2014.

@ Ng & Willcox, Multifidelity approaches for optimization under uncertainty, IJNME, 2014.

@ Kouri, Heinkenschloss, Ridzal, & van Bloemen Waanders, Inexact objective function evaluations in a trust-region algorithm for PDE-constrained
optimization under uncertainty, SISC, 2014.

@ Chen, Quarteroni, & Rozza, Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes
equations, Num. Math. 2015.

@ Ng & Willcox, Monte Carlo information-reuse approach to aircraft conceptual design optimization under uncertainty, ) Aircraft, 2015.
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Example: Control of injection wells in porous medium

q = target pressure at production wells

o state PDE: single phase flow in a porous medium
~V - ("Vu) = Zzlfz

with Dirichlet lateral & Neumann top/bottom BCs
uncertain parameter: log permeability field m
control variables: z;, mass source at injection wells; f;, mollified Dirac deltas

control objective: ¢(z,m) := 1| Qu(z, m) q: target pressure

dimensions: ng = nm = 3242, nc = 20, nq = 12
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Porous medium with random permeability field

@ Distribution law of m:
pw=N(m,C) (Gaussian measure on Hilbert space )
@ Take covariance operator as square of inverse of Poisson-like operator:
C=(—kA+al)™? ka>0

e C is positive, self-adjoint, of trace-class; y well-defined on % (Stuart '10)

° g o correlation length; the larger «, the smaller the variance

o SERET e aec wpes DS

=

= »
s & e ke “
ey f:i* “j_:# ,; ‘4 C*’

Random draws for k =2 x 1072, a =4
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OUU with linearized parameter-to-objective map

@ Mean-var risk-averse optimal control problem (including cost of controls):
min €, {g(z,m)} + Bvarn {a(z,m)} +7 2|
o Linear approximation to parameter-to-objective map about m:
qin(z,m) = q(z,m) + (gm(z,m), m — 1m)

da(z. -
® gn(z,:) = % is the gradient with respect to m

@ The moments of the linearized objective:
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Mean-var risk-averse optimal control problem with

linearized parameter-to-objective map

State-and-adjoint-PDE constrained optimization problem (quartic in z):

tmig 7(2) 1= 51Qu =l + 5 (g (), Clom () + 7 21

with g, (m) =e™Vu - Vp, where
Nc
—V - (e"Vu) = Z zi fi state equation
i=1

—V-(e™Vp) = —Q"(Qu—q) adjoint equation

Lagrangian of the risk-averse optimal control problem with g;,:

B

* * 1 — m m
Z(z,u.p.u"p") = 51| Qu—alf + (" Vu- Vp,Cle™ Vu- Val) + 7 |2I)

+ (e"Vu, Vu') — ZC zi(fi,u™)

i=1

+(e™Vp, Vp*) +(Q"(Qu —q),p")
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Gradient computation for risk averse optimal control

@ “State problem” for risk-averse optimal control problem with g,:

<emVu, Vi) = Z zi( fi, W)
=1
(e™Vp,Vp) = —(Q"(Qu — q),p)
for all test functions p and @

@ “Adjoint problem” for risk-averse optimal control problem with gjj,:

(e™Vp*,Vp) = —B(e™Vu- Vp,Cle™Vu- Vp])
(e™Vu*, Vi) = —(Q"(Qu — q), @) — B{e™ Vi Vp,Cle"Vu- Vp]) — (Q"Op", &)
for all test functions p and @
0
o Gradient: 87j =7z; — (fj,u"), j=1,...,nc

J
@ Cost of objective = 2 PDE solves; cost of gradient = 2 PDE solves

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty Mar 24, 2017
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Risk-averse optimal control with linearized objective

0.04 o(z",)
_ehn(zn")
— Oquaa(2°.)
_ 0.03 |
£
1
1 2
= 0.02 A
2
0.01 i
o ) .
220 0 20 40 60 80 100 120 140
initial (suboptimal) control z° distrib. of exact & approx objectives at 20
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Risk-averse optimal control

2 0

opt

optimal control z " based on gjiy

Omar Ghattas (ICES, UT Austin)

with linearized objective

o=,
— Onn(2",)

— Oquaa(2°.)

distribution

—20 0 20 40 60 80 100 120 140

distrib. of exact & approx objectives at 20

oz,
— Oun(z', )

— Oquaa(#2,)

distribution

. _— opt
distrib. of exact & approx objectives at =
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Quadratic approximation to parameter-to-objective map

Quadratic approximation to the parameter-to-control-objective map:

dquad (2, m) = q(2, M) + {gm (2, M), m — M) + %(’Hm(z,m)(m —m),m — m)

@ ¢gp,: gradient of parameter-to-objective map

@ H,,: Hessian of parameter-to-objective map

Observations:

@ Quadratic approximation does not lead to a Gaussian control objective

@ However, can derive analytic formulas for the moments of gquaq in the
infinite-dimensional Hilbert space setting

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty Mar 24, 2017
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Analytic expressions for mean and variance with gquad

@ Mean:

En{duna(z, )} = a(z, ) St (2, )]

@ Variance:
var, {qquad (2, )} = (gm (%, m),C[gm(z,m)])+%tr[7:[m(z, m)?]

where H,, = C1/2H,,C/? is the covariance-preconditioned Hessian

@ Risk averse optimal control objective with gquad:
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Randomized trace estimator

@ Randomized trace estimation:

N 1 Totr N 1 Ttr
tr(Hm) ~ ni Z <Hm§ja §J> = ni Z <Hij7 CJ>
tr =1 tr j=1
_ 1 Thir
tr(?—[?n) ~ n* Z <Hm<jac[Hij]>
tr =1

where &; are Gaussian random fields and ¢(; = C'/2¢;
@ In computations, we use draws ¢; ~ N (0,C) =: v

@ Straightforward to show:
| 0. rtde) = (). [ (€M) wl) = ()
P H

@ Finite dimensional algorithm: H. Avron and S. Toledo, Randomized
algorithms for estimating the trace of an implicit symmetric positive
semi-definite matrix, Journal of the ACM, 2011.
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Risk-averse optimal control with quadraticized objective

r

with

where

1 12
min o || Qu — gll;+

Thr

1
2nt

rj:I

gm(m) =e™Vu - Vp

D G+

~

Ntr

{<gm(m), C[gm(m)]H%Z ||Cl/277jH2}
tri ]

o™

nj =e"((Vu-Vp+Vvu; - Vp+Vu-Vp,;) je{l,... ny}

Hm(j

= Zf\;1 zzfz
=-Q"(Qu-—7q)
=V —(¢e™Vu)
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Risk-averse optimal control with quadraticized objective

r

o _12
ggg%lIQu allz+

Ntr

1 & “
o > <Cj»77j>+F

r ]:1

o™

with

gm(m) =e™

Vu-Vp

nj =e"((Vu-Vp+Vvu; - Vp+Vu-Vp,;) je{l,... ny}

where

Horn G

)
)

—V - (e™Vv;) =V - —((;e™Vu)
)

{<gm(m), C[gm(m)]H%Z ||Cl/277jH2}
tri ]

~
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Risk-averse optimal control with quadraticized objective

.1 _n2 1w - ﬁ - - | o 2‘
min o || Qu CI|2+2ntrj§_:1<<Ja77j>+§{(gm(m),C[gm(rn)]>+%tr; ez,
with

Im (ﬁl) =e"Vu - Vp
nj = e™(GVu-Vp+Vv; - Vp+Vu-Vp;) je{l,...,ny}
Hm
where
—V - (¢"Vu) = Zi\i1 zifi
-V (eﬁle) = 0" (Qu— )
)
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Risk-averse optimal control with quadraticized objective

r

with

1 12
min o || Qu — gll;+

Thr

1
2nt

rj:I

D G+

~

Ntr

{<gm(m), C[gm(m)]H%Z ||Cl/277jH2}
tri ]

o™

-
L

where

Im (ﬁb) =e"Vu - Vp

nj =e"((Vu-Vp+Vvu; - Vp+Vu-Vp,;) je{l,... ny}

HmCj
—V (") = XL, wifi
~V-(e"Vp) = —Q*(Qu —q)
—V - (e™Vv;) =V - —((;e™Vu)
)
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Risk-averse optimal control with quadraticized objective

1
min o || Qu —

with

C]Hz

7 2+2ntr§:<<j,m>+

1 Thr

o™

Jj=1

9m (m) =e"Vu - Vp

n;

where

e™(¢Vu-Vp+Vv; - Vp+ Vu - Vp])

Hm

je{l,...,

—V - (€"Vu) = L, #fi

—V - (e™Vp) = —Q*(Qu - q)
=V (em"Vv;) =V - —((;e"Vu)
—V - (e™Vp;) = —Q*Qu; + V - ({;e™Vp)

Ntr

ntr}

~

{<gm(m), C[gm(m)]H%Z ||Cl/277jH2}
tri ]
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Lagrangian for risk-averse optimal control with gquad

g(z»uvn{vj}?;lv{pj}?;17U*7p*v{U; ?glv{pj o )

1 12
=5 1Qu—dll;
Ttr

Z(c], (&Vu - Vp+ Vv, - Vp + Vu - Vp;)])

+ é(emVu - Vp,Cle™Vu - Vp])

4ntr ZHCl/z (G Vu-Vp+ Vo, - Vp+ Vu - VPJ)]Hz

+ {(e"Vu, Vu') — Zizl zi{fi,u*)
+(e™Vp, Vp") +(Q"(Qu — ), p")

Ntr

+ Z [(evaj, Vi) + (™ Vu, Vv]*->]
j=1

Mtr

+3 [@ﬁvm, Vi) +(Q"Qu;,0;) + (¢e™Vp, Vo; >]
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Adjoint & gradient for risk-averse optimal control w/qquad

Adjoint problem for gqua4 approximation

— V- (e"Vp}) = b jefl . )
— V- (€™VuY) + Q" QpF = b je{l,...,ny}
_V_(emvp ZV <J mij)
J=1
— V- (e"Vu*) + Q*Qp* — Z V- (¢e™VV}) = by
j=1

Gradient for gquad approximation

0L .
8Zj <f]’ >7 .]_17"'7”6

Cost of objective = 2 + 2ny, PDE solves; cost of gradient = 2 + 2n,, PDE solves
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Risk-averse optimal control with quadraticized objective

0.04 o(z",)
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Risk-averse optimal control with quadraticized objective

o=,
— Onn(2",)

— Oquaa(2°.)

0.04

distribution

—20 0 20 40 60 80 100 120 140

distrib. of exact & approx objectives at 20

i O(=ihuar)

= Oquad (Zguat» )

distribution

t

optimal control z:ﬁ;d based on qquaq distrib. of exact & approx objectives at z:':ad
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Effect of number of trace estimator vectors on distribution

of control objective evaluated at optimal controls

/: T
¥ - N =2H
Iy \
) === g = 20
u W . — 40
= 04 ) Ny = |
S y \ — ny = 60
< 3 \
b
2 | “\
" B \
A7 ) R
Z 02l | B -
SN
0 = =
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value of control objective

@ Optimal controls z;’zzd computed for each value of trace estimator using quadratic
approximation of control objective, gquad

@ Each curve based on 10,000 samples of distribution of q(zZEZd, m)
(control objective evaluated at optimal control)
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Comparison of distribution of control objective for optimal

controls based on linearized and quadraticized objective

0.6

=
ot
@
-]
b=l
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=~
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V) w = ot
T T
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sample variance |

=

(=}

T
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value of control objective

Comparison of the distributions of q(2{7",m) with g(z° quad, m)
B=1,~v=10"° and ny = 40 trace estimation vectors

KDE results are based on 10,000 samples

Inserts show Monte Carlo sample convergence for mean and variance
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Optimal control of stochastic turbulent combustion

@ Turbulent non-premixed Hydrogen-Air slot-jet flame, with
co-flow
@ Sources of uncertainty

e Inputs: inlet flow conditions
o Model parameters: turbulence models, chemical kinetics
e Model inadequacy: chemical kinetics, flamelet model,
turbulent transport
@ Quantities of interest

o Heat released over a specified distance
o Net rate of NO, production
@ Design Problem

o Objective: Maximize heat release with constraint on NO,,
production

e Control: Inlet profiles and optionally volumetric heat sink
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UQ challenges

@ Forward solves are relatively expensive
o Naive sampling methods are cost prohibitive
@ Model inadequacies are significant, complex, and deeply
embedded in physical model
o Requires physics-based approaches to inadequacy
o Leads to high/infinite dimensional stochastic models
o Multiple Qols, some related to rare events

o Tail probabilities challenging to compute
o Realistic risk measures often result in non-smooth
objective functions

@ These features are common in multiscale and
multiphysics problems across scientific disciplines

@ They combine to make UQ for inference, prediction, and
optimization extremely challenging
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Extensions (Peng Chen, Umberto Villa)

@ Optimal control of turbulent jet governed by a turbulence model with
embedded stochastic inadequacy model

@ Randomized SVD to compute trace of IEI, combined with eigenvalue
sensitivities to computing gradient

@ Monte Carlo corrections to quadratic approximation: Use of Taylor
approximation as a control variate
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Dirichlet boundary control for turbulent jet flow: problem

Control is horizontal velocity profile at inlet boundary I'y
Objective is to maximize jet width at T’y

Constraint on inlet momentum: fFI (u-n)’ds = M;

Random input is an inadequacy field for turbulent viscosity (5151 dimensions)

o

0.

W e .

Left: sketch of the physical domain of the turbulence jet flow, with inlet boundary T';, outlet
boundary I, top and bottom wall I'yy, the center axis I'¢, and the cross-section I'g. The

computational domain D is the top part of the physical domain. Right: two random samples
drawn from the Gaussian measure A'(0,C) with C = (—a1 A + a2l) ™2 where oy = ag = 0.5.
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Dirichlet boundary control for turbulent jet flow: model

—V - (v +y0) (Vu+Vu')) + (u-V)u+ Vp =0,

V-u=0,
lu-e
—V'((V—k(7—1—67’7)1/t70)vfy)-|-u.vfy_igvl_'—llﬂz()7

op(u) - 7=0, u-n+yxwz=0,
op(u) mn=0, u-17=0,
on(u)-7=0, u-n=0,

Y =% =0,

on(y)-m=0,

on(u) = (v +y10) (Vu + VuT) ‘n
or() =W+ +e™)rno)Vy - n

Vo = OV (1 + aW)V/2 with M = / [etgns||2ds
I'r

v = 0.5 — 0.5 tanh (5 (303_0331> (xg —1— 0.51:1))

in D,
in D,

in D,

on Iy,
on 'o UT'w,
onI'c,
on 'y UTw,
on'oUTl¢.
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Dirichlet boundary control for turbulent jet flow: results

o
[
o~

o
o

o
o~

o
[
o

e asasRRRRR AR Ranns! | xanasRRRRDRRRE
oo
o
L)

0.00

The velocity field of the turbulent jet flow extracted from the DNS data (top) and
obtained from the optimal control with quadratic approximation with variance reduction

(bottom).
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Computing the trace of H via randomized SVD

@ Large number of randomized trace vectors

might be required to compute tr(H) Randomized SVD (double pass algorithm)

@ Randomized SVD estimates trace at cost @ Generate i.i.d. Gaussian matrix R € R™*” with

of 2r products of H with random vectors r = numerical rank of H (r < n)
(r is numerical rank of H) Q FomY = HR

@ Resulting cost is 27 incremental © Compute Q = orthonormal basis for Y
forward/adjoint solves and 4r Poisson @ Define B e R™%" := QTHQ
solves (Steps 2 and 4) @ Decompose B = ZAZT

@ Covariance operator IS compact and e Low-rank approximation: H ~ VAVT, where
Hessian is often low-rank (Qol is sensitive VERT :=QZ
to limited number of modes) so @ Trace estimation: tr(H) ~ tr(B)

composition is low-rank

@ Thus r < n, independent of parameter dimension n, and with high probability

[tr(H) —tr(B)| < > |Ni(H)|
r<i<n
@ Quadratic-based approximations of E[g] and var[q] require 4r linearized forward solves
(small multiple of nonlinear forward solve, for highly nonlinear forward problems)
@ Computing gradient of tr(H) wrt controls via eigenvalue sensitivity
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Control of turbulent jet: Computing tr(H) via randomized

SVD vs. randomized trace estimator

10° 10°
P
L] ".
[ ~
10" » —, 1090, “vt o
L oy ) e N —————,
L . Yos L oy
PN ", gl g
10° *’f’;‘ﬁ ¢ 107 %
Y SR8 xx
10© a 10© X xXxxX%
e, o o1,
MY Y
. .
10 ¢ ¢ error < 10 ¢ ¢ error, “'xﬁ:ixx .
XX errory fad XX errory 5%
8 -8
1075 20 40 60 80 100 1075 20 20 60 80 100
N N

The decay of the generalized eigenvalues (A and A_) of H and the randomized trace
estimator error (error;) and the randomized SVD error (errorz) with the number terms

N. Left: at the initial control. Right: at the optimal control.
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Computation of the derivative of TA(7'~lrm) wrt control z

@ Recall the trace estimation
N
Hpn) = ZAj(“rlm ) and T(H2)) Z)\Q m)

o Eigenvalue sensitivity equation: find (A}, ¢’) s.t. V¢ € M,
<¢7/H;n(m0)'(/)3> <¢ Hm(mo)?/} > = ’”'C l"./,\r\’\ + )‘j<¢7cilz/).;>

where ’ represents the derivative w.r.t. z

@ Setting ¢ = 1;, and noting (¢/;.C '4»;) = 1 as well as symmetry of H,,(m)
and C~!, we obtain the expression for the eigenvalue sensitivity in terms of
the Hessian derivative,

= <¢ja H;n(m0)¢]>,

which allows us to compute the gradient of tr(7:[m) at any optimization
iteration at a cost of N + p pairs of linearized forward/adjoint PDE solves
o Similarly, the gradient of tr(#2) can be computed with

(A3) = 2X5X; = 2(y, Hon (mo) ¥5) (15, Hp, (o) 15).

where we have used the fact X\; = (¢, Hon (mo) 15).
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Taylor approximation as a variance reduction

@ Statistics computed by Taylor approximations may be biased
@ Use Monte Carlo quadrature to correct Taylor approximation, e.g.,

Y
-~

MC estimator

E[Q] = E[Qlin} + E[Q - Qlin] ~ Q(m0> +

Y

Similar MC correction for quadratic approximation Qquad
@ Mean squared error (MSE) of MC estimate of E[Q] and E[Y]

MSE(Q) = %Var[Q] vs. MSE(Y) =< %Var[Y]

@ A much smaller number of MC samples is required for E[Y] as

Var]Y] < Var[Q)]

provided Qi is a good approximation of (i.e., highly correlated to) @

o see Multifidelity Monte Carlo work of Karen Willcox et al.
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Turbulent jet model with embedded inadequacy

Estimation of E[q] using Monte Carlo and variance reduction Monte Carlo where
Elgin] = q(m)= 1.04854; E[qquaa] = q(m) + 3tr[Hm]| ~ 1.04825.

~

q Elgin] + Yin | E[dquad] + Yquad

Elq] 1.04800 1.04817 1.04818
MSE | 1.3168E-06 | 5.1655E-08 1.1868E-08
N 100 100 100
Sample variance and number N of MC samples to obtain an accuracy 7 = 10~*

q }/Iin quuad

variance | 1.3168E-04 5.1655E-06 1.1868E-06
N 13168 516 119

Variance reduction with low-rank-Hessian-based quadratic approximation of
parameter-to-Qol map leads to 100X reduction in # of Monte Carlo samples for
5151-dimensional uncertain inputs.
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Conclusions

@ Scalable computational framework based on Taylor approximation and
variance reduction for PDE-constrained optimal mean-var control

o Cost of objective/gradient evaluation measured in PDE solves is independent
of parameter dimension when covariance preconditioned Hessian is a compact
operator

@ Randomized SVD is more efficient than randomized trace estimator; gradient
computed via eigenvalue sensitivity at no additional cost in PDE solves

@ Taylor approximation used as control variate leads to 100X reduction in MC
samples and unbiased estimate
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