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Financial Mathematics

An interdisciplinary field on the crossroads of stochastic processes,
stochastic analysis, optimization, partial differential equations, finance,

financial economics, decision analysis, statistics and econometrics

It studies derivative securities and investments,
and the management of financial risks

Started in the 1970s with the pricing of derivative securities



Derivative securities

Derivatives are financial contracts offering payoffs written
on underlying (primary) assets

Their role is to eliminate, reduce or mitigate risk



Major breakthrough

Black-Scholes-Merton 1973

• The price of a derivative is the value of a portfolio that reproduces
the derivative’s payoff
• The components of this replicating portfolio yield the hedging

strategies

This idea together with Itô’s stochastic calculus started the field of
Financial Mathematics

• Black, F. and M. Scholes (1973): The pricing of options and
corporate liabilities, JPE
• Itô, K. (1944): Stochastic integral, Proc. Imp. Acad. Tokyo

Döblin, W. (1940; 2000): Sur l’équation de Kolmogoroff, CRAS,
Paris, 331



Louis Bachelier (1870-1946)
Father of Financial Mathematics

Thesis: Théorie de la Spéculation
Advisor: Henri Poincaré





Louis Bachelier (1870-1946)
Father of Financial Mathematics

Thesis: Théorie de la Spéculation
Advisor: Henri Poincaré

Bachelier model (1900)

Wt a standard Brownian motion and µ, σ constants
increment evolves as

St+δ − St = µδ + σ (Wt+δ −Wt)

Bachelier’s work was neglected for decades
It was not recognized until Paul Samuelson introduced it to Economics



Samuelson model (1965)

log-normal stock prices

dSs = µSsds + σSsdWs

widely used in finance practice

European call

T0 t
initiation exercise

(ST −K )+Ct



Replication (Black-Scholes-Merton)

• Market: stock S and a bond B (dBs = rBsds)

• Find a pair of stochastic processes (αs, βs) , t ≤ s ≤ T , such that a.s.
at T ,

αT ST + βT BT = (ST −K )+

• The derivative price process Cs, t ≤ s ≤ T , is then given by

Cs = αsSs + βsBs

• Price at initiation: Ct = αtSt + βtBt

• Hedging strategies: (αs, βs) , t ≤ s ≤ T



• Replication using self-financing strategies

Cs = Ct +
∫ s

t
αudSu +

∫ s

t
βudBu

• Postulate a price representation Cs = h (Ss, s) for a smooth function h(x, t)

• Itô’s calculus
Cs = h (St , t)

+
∫ s

t

(
ht (Su , u) + µSuhx (Su , u) + 1

2σ
2S2

uhxx (Su , u)
)

du

+
∫ s

t
σSuhx (Su , u) dW P

u



Black and Scholes pde

The function h (x, t) solves

rh = ht + 1
2σ

2x2hxx + rxhx

with h (0, t) = 0 and h (x,T ) = (x −K )+

European call price process

Cs = h (Ss, s)

Hedging strategies

(αs, βs) =
(

hx (Ss, s) , h (Ss, s)− hx (Ss, s) Ss
Bs

)



A universal pricing theory
for general price processes (semimartingales)



Arbitrage-free pricing of derivative securities
Harrison, Kreps, Pliska (1979,1981)

Arbitrage

A market admits arbitrage in [t,T ] if the outcome XT of self-financing
strategies satisfies Xt = 0, and

P (XT ≥ 0) = 1 and P (XT > 0) > 0

In arbitrage-free markets, derivative prices are given by

Ct = EQ

( Bτ
Bt

Cτ

∣∣∣∣Ft

)
Q ∼ P under which (discounted) assets are martingales

Model-independent pricing theory

P → Q → EQ ( ·| Ft)

Linear pricing rule and change of measure



Mathematics and derivative securities

• Martingale theory and stochastic integration
Derivative prices are martingales under Q
Hedging strategies are the integrands (martingale representation)

• Malliavin calculus for sensitivities (”greeks”)

• Markovian models - (multi-dim) linear partial differential equations
Early exercise claims - optimal stopping, free-boundary problems
Exotics - linear pde with singular boundary conditions

• Credit derivatives - copulas, jump processes

• Bond pricing, interest rate derivatives, yield curve: linear stochastic
PDE



Some problems of current interest

• Stochastic volatility

• Correlation, causality

• Systemic risk

• Counterparty risk

• Liquidity risk, funding risk

• Commodities and Energy

• Calibration

• Market data analysis
...



The other side of Finance: Investments



Derivative securities and investments

While in derivatives the aim is to eliminate the risk, the goal in
investments is to profit from it

• Derivatives industry uses highly quantitative methods

• Academic research and finance practice have been working together,
especially in the 80s and 90s

• Traditional investment industry is not yet very quantitative

• A unified ”optimal investment” theory does not exist to date

• Ad hoc methods are predominantly used

Disconnection between academic research and investment practice
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Academic research in investments



Modeling investor’s behavior
Utility theory

• Created by Daniel Bernoulli (1738) responding to his cousin,
Nicholas Bernoulli (1713) who proposed the famous St. Petersburg
paradox, a game of ”unreasonable” infinite value based on expected
returns of outcomes

• D. Bernoulli suggested that utility or satisfaction has diminishing
marginal returns, alluding to the utility being concave (see, also,
Gabriel Cramer (1728))

• Oskar Morgenstern and John von Neumann (1944) published the
highly influential work “Theory of games and economic behavior”.
The major conceptual result is that the behavior of a rational agent
coincides with the behavior of an agent who values uncertain payoffs
using expected utility



Utility function and its marginal

x

U ′(x)

0 x

U (x)

0

Inada conditions: lim
x→0

U ′(x) =∞ and lim
x→∞U ′(x) = 0

Asymptotic elasticity: lim
x→∞

xU ′(x)
U (x) < 1



Stochastic optimization
and optimal portfolio construction



Merton’s portfolio selection continuous-time model

• start at t ≥ 0 with endowment x,
market (Ω,F , (Ft) ,P) , price processes

• follow investment strategies, πs ∈ Fs, t < s ≤ T

• map their outcome Xπ
T → EP (U (Xπ

T )| Ft ,Xπ
t = x)

• maximize terminal expected utility (value function)

V (x, t) = sup
π

EP (U (Xπ
T )| Ft ,Xπ

t = x)

R. Merton (1969): Lifetime portfolio selection under uncertainty: the
continuous-time case, RES



Stochastic optimization approaches
 

  

Markovian models Non-Markovian models

Dynamic Programming Principle Duality approach
Bellman (1950) Bismut (1973)



Markovian models

Stock price: dSt = Stµ (Yt , t) dt + Stσ (Yt , t) dWt

Stochastic factors: dYt = b (Yt , t) dt + a (Yt , t) dW̃t ; correlation ρ

Controlled diffusion (wealth): dXπ
s = πsµ (Yt , t) dt + πsσ (Ys, s) dWs, Xt = x

Dynamic Programming Principle (DPP)

V (Xπ
s ,Ys, s) = sup

π
EP
(
V
(
Xπ

s′ ,Ys′ , s′
)∣∣Fs

)

Hamilton-Jacobi-Bellman equation

Vt + max
π∈R

(1
2π

2σ2 (y, t) Vxx + π (µ (y, t) Vx + σ (y, t) a (y, t) Vxy)
)

+1
2a2 (y, t) Vyy + b (y, t) Vy = 0,

with V (x, y,T ) = U (x)



Optimal portfolios (feedback controls)

π∗ (x, y, t) = − µ (y, t)
σ2 (y, t)

Vx
Vxx
− ρa (y, t)

σ (y, t)
Vxy
Vyy

π∗s = π∗ (X∗s ,Ys, s) and dX∗s = π∗sµ (Yt , t) dt + π∗sσ (Ys, s) dWs

Difficulties

• set of controls non-compact, state-constraints
• degeneracies, lack of smoothness, validity of verification theorem
• value function as viscosity solution of HJB, smooth cases for special

examples

• existence, smoothness and monotonicity properties of π∗ (x, y, t)
• probabilistic properties of optimal processes π∗s ,X∗s and their ratio

Karatzas, Shreve, Touzi, Bouchard, Pham, Z.,...



Duality approach
in optimal portfolio construction



Dual optimization problem - utility convex conjugate

Ũ (y) = max
x>0

(U (x)− xy)

• Introduced in stochastic optimization by Bismut (1973)

• Introduced in optimal portfolio construction by Bismut (1975) and
Foldes (1978)

• Further results by Karatzas et al (1987) and Cox and Huang (1989)

• Xu (1990) shows that the HJB linearizes for complete markets

• Kramkov and Schachermayer (1999) establish general results for
semimartingale models



Semimartingale stock price models

H : predictable processes integrable wrt the semimartingale S

X (x) =
{

X : Xt = x +
∫ t

0 Hs · dSs, t ∈ [0,T ] , H ∈ H
}

Y = {Y ≥ 0,Y0 = 1, XY semimartingale for all X ∈ X}

Y (y) = yY, y > 0

Asymptotic elasticity condition: lim sup
x→∞

(xU ′ (x)
U (x)

)
< 1

Primal problem Dual problem

u (x) = sup
X∈X (x)

EP (U (XT )) ũ (y) = inf
Y∈Y(y)

EP
(
Ũ (YT )

)



Duality results for semimartingale stock price models

If u (x) <∞ , for some x, and ũ (y) <∞ for all y > 0, then:

• ũ (y) = sup
x>0

(u (x)− xy)

• ũ (y) = inf
Q∈Me(S)

EP

(
Ũ
(

y dQ
dP

))
, y > 0, with Me(S) the set of

martingale measures Q ∼ P

• if Q∗ optimal, the terminal optimal wealth (primal problem) X x,∗
T

is given by
U ′
(
X x,∗

T
)

= u′ (x) dQ∗
dP

Kramkov and Schachermayer, Karatzas, Cvitanic, Zitkovic, Sirbu, ...



Some extensions



Coupled stochastic optimization problems
Systems of HJB equations

Delegated portfolio management

investor fees, capital−−−−−−−−−−−−→ manager

manager risk, return−−−−−−−−−−−→ investor

V i (x, t) = sup
Ai

EP
(

U i
(
XT , I m

t≤s≤T
)∣∣∣Ft ,Xt = x

)
V m (y, t) = sup

Am
EP
(

U m
(
YT , I i

t≤s≤T
)∣∣∣Gt ,Yt = y

)
I m and I i : inputs from the manager (performance, risk taken)

and the investor (investment targets)

Benchmarking and asset specialization among competing fund managers

V 1 (x, t) = sup
A1

EP1 (U1 (XT ,Y ∗T )| Ft ,Xt = x)

V 2 (y, t) = sup
A2

EP2 (U2 (YT ,X∗T )| Gt ,Yt = y)



Proportional transaction costs

• N stocks, one riskless bond

• Pay proportionally αi for selling and βi for buying the i th stock
Xs : bond holding, Ys =

(
Y 1

s , ...,Y N
s
)

: stock holdings, t ≤ s ≤ T ,

dXs = rXsds + ΣN
i=1α

idM i
s − ΣN

i=1β
idLi

s

dY i
s = µiY i

s ds + σiY i
s dW i

s + dLi
s − dM i

s

Variational inequalities with gradient constraints

min
(
−Vt − L(y1,...yN )V − rxVx ,−a1Vx + Vy1 , β

1Vx −Vy1 ,

...
− aN Vx + VyN , β

N Vx −VyN

)
= 0,

with V (x, y1, ...yN ,T ) = U
(
x + ΣN

i=1α
iyi1{yi≥0} + ΣN

i=1β
iyi1{yi≤0}

)



Liquidation of financial positions and price impact

big investor : delegates liquidation to ”major agent”

major agent : liquidates in the presence of many small agents
small agents: noise traders and high-frequency traders

Optimal liquidation is an interplay between speed and volume

Too fast −→ price impact
Too slow −→ unfavorable price fluctuations

Mean-field games

• Aggregate impact from noise traders
• Aggregate impact from high-frequency traders



Model uncertainty
and optimal portfolio construction



Knightian uncertainty (model ambiguity)
Frank Knight (1921)

The historical measure P might not be a priori known

• Gilboa and Schmeidler (1989) built an axiomatic approach for
preferences towards both risk and model ambiguity. They proposed
the robust utility form

Xπ
T → inf

Q∈Q
EQ (U (Xπ

T )) ,

where U is a classical utility function and Q a family of subjective
probability measures

Standard criticism: the above criterion allows for very limited , if at all,
differentiation of models with respect to their plausibility



Knightian uncertainty

• Maccheroni, Marinacci and Rustichini (2006) extended the above
approach to

Xπ
T → inf

Q∈Q
(EQ (U (Xπ

T )) + γ (Q))

where the functional γ (Q) serves as a penalization weight to each
Q-market model

Entropic penalty and entropic robust utility

γ (Q) = H (Q|P) with H (Q|P) =
∫ dQ

dP ln
(dQ

dP

)
dP

inf
Q∈Q

(EQ (U (Xπ
T )) + γ (Q)) = ln EP

(
e−U(XT )

)

Hansen, Talay, Schied, Föllmer, Frittelli, Weber ...



Maxmin stochastic optimization problem

Stock dynamics: St =
(
S1

t , ...,Sd
t
)
, t ∈ [0,T ] , semimartingales

Wealth dynamics: Xα
t = x +

∫ t
0 αs · dSs, Xα

t ≥ 0, t ≥ 0

Objective:
v (x) = sup

X∈X (x)
inf

Q∈Q
(EQ (U (XT )) + γ (Q)) ,

where Q = {Q � P| γ (Q) <∞}

Duality approach

u (y) = inf
Y∈YQ(y)

inf
Q∈Q

(
EQ

(
Ũ (YT )

)
+ γ (Q)

)
where Ũ (y) = sup

x>0
(U (x)− xy)



Investment practice



Portfolio selection criteria

Single-period criteria

• Mean-variance ↔ maximize the mean return for fixed variance

• Black-Litterman ↔ allows for subjective views of the investor

Long-term criterion

• Kelly criterion ↔ maximize the long-term growth

While using these criteria allows for tractable solutions, they have
major deficiencies and limitations which do not capture important
features like the evolution of both the market and the investor’s

targets



Mean–variance optimization



Harry Markowitz (1952)

Performance of portfolio returns ↔ mean, variance

• Single period: 0,T
• Allocation weights at t = 0: a = (a1, · · · , an); ∑n

i=1 ai = 1
• Asset returns: RT =

(
R1

T , · · · ,Rn
T
)

• Return on allocation: Ra
T = ∑n

i=1 aiRi
T

Mean–variance optimization

For a fixed acceptable variance
v maximize the mean,

max
a:
∑

i ai=1
Var(Ra

T)≤v

EP (Ra
T ) or

For a fixed desired mean m
minimize the variance,

min
a:
∑

i ai=1
EP(Ra

T)≥m

Var (Ra
T )



Efficient frontier
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Despite its popularity and wide use,
MV has major deficiencies !

• Model error and unstable solutions

• Time–inconsistency of optimal portfolios

• Dynamic extensions not available to date



Model error and unstable solutions

• Quality and availability of market data not always good
• Estimation error very high
• Optimal allocation highly sensitive to this error
• Historical returns frequently used, not “forward–looking”
• Optimal portfolios are frequently “extreme”, unnatural, high

short–selling
• Asset managers are familiar with only certain asset classes and sectors

(“familiarity versus diversification” issue)

Some of these issues can be partially addressed by the
Black–Litterman criterion which adjusts the equilibrium asset
returns by the manager’s individual views on “familiar” assets

(classes or sectors)



Time–inconsistency of MV problem

At time t = 0

0
a*,0

0

T
a*,0

T

2T

v0→2T

At time t = T

0 T
a*,T

T

2T

vT→2T = v0→2T

6= a*,0
T

Game theoretic approach (Björk et al. (2014))



Dynamic (rolling investment times) MV optimization

v0→T

0
vT→2T

T
v2T→3T

2T 3T

• This problem is not the same as setting, at t = 0, the “three–period”
variance target v0→3T

• Is there a discrete process v0→2T , vT→2T , · · · , vnT→(n+1)T , · · ·
modelling the targeted conditional variance (from one period to the
next) that will generate time–consistent portfolios?
• What is the continuous–time limit of this construction?
• Can it be addressed by mapping the MV problem to the

time–consistent expected utility problem? No! because the expected
utility approach produces a solution “backwards in time”!



Can the theoretically foundational approach of
expected utility meet the investment practice?



MV and expected utility

Practice Theory

Criteria

Risk–return tradeoff practical but still
does not capture much

Utility is an elusive concept
Difficult to quantify, especially for
longer horizons

Evolution

time–inconsistent time consistent (semigroup property)

sequential ad hoc implementation backward construction (DPP)

captures info up to now, limited and
ad hoc

requires forecasting of asset returns,
major difficulties

single–period inflexible investment horizon

Similar limitations and discrepancies arise between expected utility, and the
Black-Litterman and Kelly criteria. Practical features of these industry criteria do

not fit in the expected utility framework, which however has major deficiencies



Such issues and considerations prompted the development of the
forward investment performance approach (Musiela and Z., 2002- )



Market environment

• (Ω,F , (Ft),P) ; W = (W 1, . . . ,W d)

• Traded securities{
dS i

t = S i
t
(
µi

tdt + σi
t · dWt

)
, S i

0 > 0, 1 ≤ i ≤ k
dBt = rtBtdt , B0 = 1

µt , rt ∈ R, σi
t ∈ Rd bounded and Ft-measurable stochastic processes

• Wealth process dXπ
t = σtπt · (λtdt + dWt)

• Postulate existence of an Ft-measurable stochastic process λt ∈ Rd

satisfying
µt − rt 11 = σT

t λt

• No assumptions on market completeness



Forward investment performance process

optimality across trading times
Optimality across times

U (x, t) ∈ Ft

0
| |

U (x, s) ∈ Fs U (x, t) ∈ Ft

|
0
| |

U (x, s) = sup
A

E(U (Xπ
t , t)|Fs, Xs = x)

• What is the meaning of this process?

• Does such a process aways exist?

• Is it unique?

• Axiomatic construction?

8

U (x, s) = supA EP(U (Xπ
t , t)|Fs,Xπ

s = x)

• Does such a process aways exist?
• Is it unique?
• Axiomatic construction?
• How does it relate to criteria in investment practice?



Forward investment performance process

U (x, t) is an Ft-adapted process, t ≥ 0

• The mapping x → U (x, t) is strictly increasing and strictly concave

• For each self-financing strategy π and the associated (discounted)
wealth Xπ

t

EP(U (Xπ
t , t) | Fs) ≤ U (Xπ

s , s), 0 ≤ s ≤ t

• There exists a self-financing strategy π∗ and associated (discounted)
wealth Xπ∗

t such that

EP(U (Xπ∗
t , t) | Fs) = U (Xπ∗

s , s), 0 ≤ s ≤ t



The forward performance SPDE



The forward performance SPDE (MZ 2007)

Let U (x, t) be an Ft−measurable process such that the mapping
x → U (x, t) is strictly increasing and concave. Let also U (x, t) be the
solution of the stochastic partial differential equation

dU (x, t) = 1
2

∣∣σσ+A (U (x, t)λ+ a)
∣∣2

A2U (x, t) dt + a(x, t) · dWt

where a = a (x, t) is an Ft−adapted process, and A = ∂
∂x . Then U (x, t)

is a forward performance process.

Once the volatility is chosen the drift is fully specified if we know (σ, λ)



The volatility of the investment performance process

This is the novel element in the new approach

• The volatility models how the current shape of the performance
process is going to diffuse in the next trading period

• The volatility is up to the investor to choose, in contrast to the
classical approach in which it is uniquely determined via the backward
construction of the value function process

• In general, a(x, t) = F(x, t,U ,Ux ,Uxx) may depend on t, x,U , its
spatial derivatives etc.

• When the volatility is not state-dependent, we are in the zero
volatility case

Specifying the appropriate class of volatility processes is a central
problem in the forward performance approach

Musiela and Z., Nadtochiy and Z., Nadtochyi and Tehranchi, Berrier et
al., El Karoui and M’rad



The zero volatility case: a(x, t) ≡ 0



Time-monotone performance process

The forward performance SPDE simplifies to

dU (x, t) = 1
2

∣∣σσ+A (U (x, t)λ)
∣∣2

A2U (x, t) dt

The process

U (x, t) = u (x,At) with At =
∫ t

0
|λs|2 ds

and u(x, t) a strictly increasing and concave w.r.t. x function solving

ut = 1
2

u2
x

uxx

is a solution

MZ (2006, 2009)
Berrier, Rogers and Tehranchi (2009)



Optimal wealth and portfolio processes
and a fast diffusion equation



Local risk tolerance function and a fast diffusion equation

rt + 1
2r2rxx = 0

r(x, t) = − ux(x, t)
uxx(x, t)

System of SDEs at the optimum

R∗t , r(X∗t ,At) and At =
∫ t

0
|λs|2ds

Then {
dX∗t = R∗t λt · (λtdt + dWt)
dR∗t = rx(X∗t ,At)dX∗t

and the optimal portfolio is π∗t = R∗t σ+
t λt



Complete construction

utility inputs, heat eqn and fast diffusion eqn

ut = 1
2

u2
x

uxx
←→ ht + 1

2hxx = 0 ←→ rt + 1
2r2rxx = 0

positive solutions to heat eqn and Widder’s thm

hx (x, t) =
∫
R

exy− 1
2 y2tν (dy)

optimal wealth process

X∗,xt = h
(
h(−1)(x, 0) + At + Mt ,At

)
M =

∫ t

0
λs ·dWs, 〈M 〉t = At

optimal portfolio process

π∗,xt = r(X∗t ,At)σ+
t λt = hx

(
h(−1) (X∗,xt ,At

)
,At

)
σ+

t λt



Forward performance approach under
Knightian uncertainty



Forward robust portfolio criterion
(Kallbald, Ob lój, Z.)

• allow flexibility with respect to the investment horizon
• incorporate ”learning”
• produce optimal investment strategies closer to the ones used in

practice

Forward robust criterion

A pair (U (x, t) , γt,T (Q)) of a utility process and a penalty criterion
which satisfies, for all 0 ≤ t ≤ T ,

U (x, t) = ess sup
α

ess inf
Q∈Qt,T

(
EQ

(
U (x +

∫ T

t
αs · dSs,T )

∣∣∣∣∣Ft

)
+ γt,T (Q)

)

with QT = {Q ∈ Q : Q|FT ∼ P|FT}

This criterion gives rise to an ill-posed SPDE corresponding to a
zero-sum stochastic differential game



Connection with the Kelly criterion



Is there a pair (U (x, t) , γt,T ) that yields the Kelly optimal-growth
portfolio?

“True” model dSt = St
(
λtdt + σtdW 1

t
)
, (W 1,W 2) under P

“Proxy” model: dSt = St
(
λ̂tdt + σtdŴ 1

t
)
, (W 1,W 2) under P̂

For each Q ∼ P̂ and each T > 0, let ηt = (η1
t , η

2
t ), 0 ≤ t ≤ T ,

dQ
dP̂

∣∣∣∣
FT

= E
(∫ ·

0
η1

s dŴ 1
s +

∫ ·
0
η2

s dŴ 2
s

)
T

Doléans-Dade exponential: E (Y )t = exp
(
Yt − 1

2〈Y 〉t
)

Candidate penalty functionals

γt,T (Q) = EQ

(∫ T

t
g(ηs, s)ds

∣∣∣∣∣Ft

)



Logarithmic risk preferences
and quadratic penalty

U (x, t) = ln x − 1
2

∫ t

0

δs
1 + δs

λ̂2
sds, t ≥ 0, x > 0

γt,T (Qη) = EQη

(∫ T

t

δs
2 |ηs|2 ds

∣∣∣∣∣Ft

)

• The process δt is adapted, non–negative and controls the strength
of the penalization

• It models the confidence of the investor re the ”true” model



(Fractional) Kelly strategies and forward optimal controls

Investor chooses proxy model (λ̂t) and confidence level (δt)

Optimal measure Qη∗

η∗t =
(
− λ̂t

(1 + δt)
, 0
)

and dQη∗

dP̂
= E

(
−
∫ ·

0

λ̂t
1 + δt

dŴ 1
t

)
T

Optimal forward Kelly portfolio

π̄t = δt
1 + δt

λ̂t
σt

• If δt ↑ ∞ (infinite trust in the estimation), then π̄t ↓ λ̂t
σt
, which is the

Kelly strategy associated with the most likely model P̂
• If δt ↓ 0 (no trust in the estimation), then π̄t ↓ 0 and the optimal

behavior is to invest nothing in the stock



Open problems

 

 

  approach

reconcile with Black-Litterman
inject manager’s views in

reconcile with Kelly criterion
model ambiguity and

reconcile with MV
forward, dynamic construction

the forward volatility and drift

and fractional Kelly

connect these three criteria
provide a normative platform to

study of forward SPDE

existence and uniqueness

characterize admissible
volatility processes

approx. of slns via finite-dim
Markovian multi-factor processes

ergodic properties of
portfolios and wealth processes

for concave, increasing slns

Academic research Investment practice

Forward performance


