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Iterated averaging of three-scale oscillatory systems

Gil Ariel, Bjorn Engquist, Seong Jun Kim and Richard Tsai

Abstract A theory of iterated averaging is developed for a class of highly oscillatory ordinary differential equations
(ODEs) with three well separated time scales. The solutions of these equations are assumed to be (almost) periodic in
the fastest time scales. It is proved that the dynamics on the slowest time scale can be approximated by an effective
ODE obtained by averaging out oscillations. In particular, the effective dynamics of the considered class of ODEs is
always deterministic and does not show any stochastic effects. This is in contrast to systems in which the dynamics
on the fastest time scale is mixing. The systems are studied from three perspectives: first, using the tools of averaging
theory; second, by formal asymptotic expansions; and third, by averaging with respect to fast oscillations using nested
convolutions with averaging kernels. The latter motivates a hierarchical numerical algorithm consisting of nested inte-
grators.

1 Introduction

Averaging methods are some of the most widely used tools for the study and approximation of highly oscillatory
ordinary differential equations (ODEs). In its most basic form, averaging means that following a change of variables
that separates the system into slow coordinates and periodic fast ones, the effect of the fast oscillations can be integrated
out, yielding an approximate effective equation. More precisely, consider the initial value problem

x′ = f (x,ε−1t), x(0) = x0, (1)

where 0 < ε ≤ ε0 � 1 denotes the scale separation in the problem. It is assumed that a unique uniformly bounded
solution x(t) ∈Rd exists in a time segment [0,T ] which is independent of ε . Furthermore, f (x,s) is sufficiently smooth
and 1-periodic in s. See, for example [11, 40] for details. Then, x(t) can be approximated by the effective averaged
equation

ξ
′ = F(ξ ), ξ (0) = x0, (2)

where F(ξ ) is the average of f (x,s) over one period of s

F(ξ ) = 〈 f (ξ , ·)〉s ≡
∫ 1

0
f (ξ ,s)ds. (3)

Furthermore, the approximation is of order ε in the sup norm, i.e.

sup
0≤t≤T

|x(t)−ξ (t)|= O(ε). (4)
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This elementary result has been generalized considerably to include, for example, chaotic and stochastic systems [7,
10, 11, 30, 31, 38, 39, 40]. From a computational point of view, averaging methods inspire efficient numerical schemes
for integrating the slow components of slow-fast systems without fully resolving all fast oscillations in [0,T ]. See, for
example [1, 2, 8, 14, 15, 16, 18, 19, 23, 25, 41, 42, 44] and references therein.

The main purpose of this paper is twofold. First, we generalize the classical two-scale averaging theory (1)-(4) to
a class of highly oscillatory systems whose solutions possess slow variables or observables as well as fast oscilla-
tions with frequencies that are separated by two large spectral gaps. We shall call such systems three-scale oscillatory
systems. Our generalization is along the lines of the so called iterated homogenization problem [9, 10, 12, 29, 34]. Sim-
ilarly, we develop a theory of iterated averaging which is approached from three different points of view: (1) application
of long time asymptotic and second order averaging theorems [40, 43]; (2) formal perturbation expansions applied to
an associated SDE; and (3) a direct proof by repeated convolution with averaging kernels across different time scales.
The latter is the foundation for a hierarchical numerical algorithm consisting of nested integrators, which is the second
main objective of the paper. We demonstrate how tiers of two-scale numerical methods can be ”stacked-up” in order
to construct a consistent approximation of the effective slow dynamics in three-scale systems. To our knowledge, very
few algorithms have been developed considering directly three or more scales. We develop our algorithm using the
framework of the heterogeneous multiscale method (HMM) for highly oscillatory ODEs [2, 16]. A proof of concept
for the algorithm was previously suggested in [6] without the underlying mathematical theory of iterated averaging or
proof of convergence.

To gain insight on the analysis of the numerical method described in [6], it is helpful to study the method when it is
applied to an appropriately chosen and simpler problem which shows the similar features of the original model but is
easier to analyze. We thus develop a simple model, motivated by Fermi, Pasta and Ulam (FPU) [24], which shows the
multiscale behavior in time scales of integer powers of ε . The FPU model involves almost-periodic motion on the ε time
scale, motion of the soft nonlinear springs on the time scale independent of ε , and the slow energy exchange among
stiff springs on the ε−1 time scale; see e.g. [28]. We remark however that there of course exist dynamical systems
whose multiscale features are not integer powers of ε , e.g. in weakly coupled, nearly resonant harmonic oscillators. A
review of the near-resonance is beyond the scope of this paper, but a new approach for these general systems will be
reported in a forthcoming paper.

On this account, we consider a system of ODEs written in the following form;
x′ = f1(x,y,z)+ ε f0(x,y,z), x(0) = x0,

y′ = g1(x,y,z)+ εg0(x,y,z), y(0) = y0,

z′ = ε−1h2(x,y,z), z(0) = z0

(5)

where f1 and f0 are periodic in both y and z; z(t)∈R is the fast variable, and its time derivative in O(ε−1) time interval
remains O(ε−1); y(t)∈R is the intermediate variable with derivative bounded uniformly in any O(ε−1) time intervals;
x ∈Rd is the slow variable, which effectively varies on the time scale of O(ε−1) or longer. More precisely, there exists
slowly changing quantity ξ (t) over t ∈ [0,ε−1T ] and C > 0 such that

sup
0≤t≤ε−1T

|x(t)−ξ (t)| ≤Cε

where T =O(1). When only looking for the effective dynamics ξ (t) of the slow variable x(t) in the time interval [0,T ]
which is independent of ε , one can simply truncate the ε f0 term, and average over y and z. On the other hand, in case
of ε−1T , we cannot neglect ε f0 because its effect appears in this longer time interval. We will show that the condition
for existence of ξ (t) is that f1 should have a zero average in z for fixed x and y.

For convenience we rescale (5) by replacing t by ε−1t so that the slowest time scale of interest is independent of ε .
When more than two time scales are considered as above, a new type of slow variables whose formal derivatives are not
bounded along the flow of the dynamical system appears. Note that the time derivative of x(t) now becomes formally
unbounded for 0 < ε ≤ ε0. Such type of slow variables does not exist for problems with only two separated time scales.
We refer to [6] for more detailed discussions. In addition, we emphasize that the effective behavior described by this
type of slow variables should be taken into account on building multiscale algorithms. This will be discussed later in
Section 5.2.

We further assume that the evolution of x(t) is essentially constant in time intervals whose length is o(1), i.e.,

|g1(x(t),y(t),z(t))−g1(x(t0),y(t),z(t))| ≤C1ε, |h2(x(t),y(t),z(t))−h2(x(t0),y(t),z(t))| ≤C2ε
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hold over O(ε), O(ε2) time intervals respectively. In this context, y(t) and z(t) is essentially independent of x(t) and
the following simplified model equation will be considered in the paper:

x′ = ε
−1 f1(x,ε−1t,ε−2t)+ f0(x,ε−1t,ε−2t), x(0) = x0, (6)

where f1(x,s1,s2) and f2(x,s1,s2) are sufficiently smooth (e.g. C1) and 1-periodic in s1 and s2. It is assumed that a
unique bounded solution exists in a time segment [0,T ]. Both the bound and T are independent of ε . The dynamics of
(6) can be characterized across three well-separated time scales: a fast time scale involving time intervals with length
of order ε2, an intermediate scale of order ε and a slow O(1) scale.

In the following, we shall use s1 and s2 exclusively for the variables which will be scaled respectively to ε−1t and
ε−2t. In the following, averages of a function f (x,s1,s2) with respect to s1 and s2 with x fixed are denoted respectively
by

〈 f (ξ ,s1,s2)〉1, 〈 f (ξ ,s1,s2)〉2,

The double average of f (x,s1,s2) over both s1 and s2 is denoted by

〈 f (x,s1,s2)〉12.

We proceed formally. Assuming that for fixed x and s1 the average of f1 with respect to s2 vanishes, x(t) can be
written as a sum of a smooth function w(t) whose first time derivative is bounded independent of ε , and fast oscillations
around w(t) whose amplitudes tend to zero as ε→ 0 [37, 40]. As a motivation for identifying an ODE for w(t), consider
the form

x(t) = w(t)+ εφ(w(t),ε−1t,ε−2t).

Substituting into (6) yields

w′ = ε
−1( f1−

∂φ

∂ s2
)+(∇x f1)φ −

∂φ

∂ s1
+ f0 +O(ε). (7)

In order to have that w′(t) is bounded independent of ε we require that ∂φ/∂ s2 = f1. Consequently, φ should be taken
to be the anti-derivative of f1 with respect to s2 and

w′ = (∇x f1)φ −
∂φ

∂ s1
+ f0 +O(ε). (8)

Since φ is periodic, ∂φ/∂ s1 averages to zero and therefore does not contribute to the effective equation. In order to
eliminate small oscillations in φ , the right hand side (RHS) of (8) should be averages with respect to s1 and s2. This
leads to the averaged equation

ξ
′ = F(ξ ), ξ (0) = x0, (9)

where
F = 〈(∇x f1)φ + f0〉12,

φ(ξ ,s1,s2) =
∫ s2

0
f1(ξ ,s1,τ)dτ.

(10)

Remark 1. The definition of φ is not unique. For example, it is straightforward to verify that taking φ(ξ ,s1,s2) =∫ s2
0 f1(ξ ,s1,τ)dτ+a(ξ ,s1) where, for fixed ξ , a(ξ ,s1) is periodic in s1, one would arrive at the same averaged equation.

Two canonical choices are either a(ξ ,s1) = 0 which is used in Sections 2 and 4, or a(ξ ,s1) such that 〈φ〉2 = 0 which
is used in Section 3.

Remark 2. Following the previous remark we note that in general, it is not true that writing x = w+ εφ +O(ε2).

The following theorem is proved in Section 2.

Theorem 1. Let x(t) and ξ (t) denote solutions of equations (6) and (9) respectively. If f1 has a zero average with
respect to s2, then there exists a constant C > 0 independent of ε such that

sup
0≤t≤T

|x(t)−ξ (t)| ≤Cε.
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In fact, as will be seen later, the same theorem holds under weaker assumptions on the fast and intermediate time scales
s1 and s2. The fast, ε2 scale can be periodic, ergodic on a torus or almost periodic with frequencies that are bounded
from below. On the intermediate O(ε) scale, the only requirement is that for fixed ξ , the effective dynamics obtained
after integrating the fastest ε2 time scale is ergodic and that a two-scale averaging principle [40] holds. This includes
both oscillatory, stochastic and chaotic dynamics. Such generalizations are further discussed in Section 5.

1.1 A simple example

Consider the ODE system
x′ = 2πε

−1 [xsin(2πε
−2t)+ cos(2πε

−2t)
]
, x(0) = 0. (11)

for 0≤ t ≤ 1. By the method of variation of parameters, the exact solution of (11) is found to be

x(t) = 2πε
−1e−ε cos(2πε−2t)

∫ t

0
cos(2πε

−2s)eε cos(2πε−2s)ds. (12)

Expanding in ε ,
x(t) = πt + ε

[
sin(2πε

−2t)−πt cos(2πε
−2t)

]
+O(ε2). (13)

Hence, x(t) = πt +O(ε) for t ∈ [0,1].
A naive approach for obtaining an effective equation is to assume that in any sufficiently short time interval the

solution of (11) can be approximated by integrating over the fast oscillations in the RHS of (11) while keeping x fixed.
This yields

x̃(t) = 2πε
−1
∫ t

0

[
X sin(2πε

−2s)+ cos(2πε
−2s)

]
ds
∣∣∣∣
X=x̃(t)

= 2πε
−1 [XO(ε2)+O(ε2)

]
, (14)

which implies that x̃(t) = O(ε) in t ∈ [0,1].
In contrast, Theorem 1 yields the correct averaged equation for x for t ∈ [0,1]:

X ′ = π, X(0) = 0,

which clearly implies that
sup

t∈[0,1]
|x(t)−X(t)| ≤ (1+π)ε.

On the other hand, performing averages over fast oscillations can be approximated in a convenient and computationally
efficient way by convolution of x′ with appropriate compactly supported kernels. Inside the convolution, the value of
x is not exactly fixed but varies following the correct dynamics. This subtle change in the values of x(t) allows for the
kernel to capture the correct effective change of x(t) in a longer time scale. This can be demonstrated in the case of
example (11). Consider a cosine kernel, which is particularly convenient in this example

K(t) =
1
2

χ[−1,1](t) [1+ cos(πt)] ,

where χA is the indicator function of a set A. Furthermore, for η > 0, let Kη denote a scaling of K(t) to [−η ,η ],

Kη(t) =
1
η

K
(

t
η

)
.

Without loss of generality, we calculate the convolution of Kη with x′ in (11) at t = 0

(Kη ∗ x′)(0) =
2π

ε

∫
η

−η

Kη(−s)
[
x(s)sin(2πε

−2s)+ cos(2πε
−2s)

]
ds.

Substituting in the expansion of x(s) shown in Eq. (13), and using η = nε2 yields
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(Kη ∗ x′)(0) =
π

ηε

∫ nε2

−nε2

[
1+ cos(

πs
η
)

][
πssin(

2πns
η

)+ cos(
2πns

η
)

]
ds

+
π

η

∫ nε2

−nε2

[
1+ cos(

πs
η
)

][
sin2(

2πns
η

)− πs
2

sin(
4πns

η
)

]
ds+O(ε)

=π +O(ε),

which is, to leading order in ε , the correct derivative for the slow variable x.
In Section 4 these ideas are generalized to oscillatory three-scale systems in which kernels are applied iteratively to

the different time scales. This can then be exploited for construction of efficient multiscale numerical schemes.

1.2 Formal asymptotic expansions

Formal asymptotic expansions of singularly perturbed operators have been successfully applied to a wide variety of
problems [10, 39]. Of particular relevance are the applications to stochastic differential equations [15, 35, 38, 44].
Consider SDE systems of the form {

dxt =
[
ε−1 f1(xt ,yt)+ f0(xt ,yt)

]
dt

dyt = ε−2a(xt ,yt)dt + ε−1β (xt ,yt)dBt ,
(15)

where Bt is a standard Brownian motion in Rd . The variable xt ∈ Rd is a slow process that evolves according to an
ODE with a fast random coefficient yt ∈ Rn. Under some ergodicity, smoothness and growth assumptions, xt can be
approximated by an effective equation of the form

dXt = F(Xt)dt +b(Xt)dBt , (16)

where F and b can be expressed as averages with respect to the fast process yt with X fixed [38, 39]. One of the
interesting consequences of (16) is that if the dynamics of y is mixing1, then the effective diffusion b(x) may be
non-zero even if yt is deterministic, i.e., β = 0. For details and examples, see [17, 23, 26, 27, 35, 36, 39].

Many oscillatory dynamics are not mixing, even though for fixed xt the fast dynamics is ergodic on a low-
dimensional invariant manifold. In Section 3 we show that the method of formal asymptotic expansions gives the
correct vanishing effective diffusion coefficient, i.e., the effective slow dynamics is deterministic. Furthermore, the
method reproduces the correct effective drift.

1.3 Numerical methods

The above discussion on applying averaging kernels across different time scales motivates a numerical method which
applies our previous two-scale HMM algorithms [3, 4, 5] hierarchically to multiple (> 2) timescale systems. We
consider the time scales O(ε2), O(ε) and O(1) and assume that both the ε and ε2 scales are oscillatory.

The HMM to be constructed should evaluate the effective rate of change of x(t). For three-scale problems this
requires averaging over the O(ε2) as well as the O(ε) scale oscillations, thus obtaining a numerical approximation for
the effective equation. See [6] for further details.

The hierarchical HMM structure is illustrated in Fig. 1. The downward pointing arrows depict the determination
of an initial condition for a lower, fast scale from data in an upper tier working on a slower time scale. The upward
pointing arrows from 2nd tier to 1st tier and 1st tier to 0th tier relate the evaluation of averages with respect to s2 and
s1, respectively. Below we detail the equations solved in each tier.

Let ηi and hi denote the range of integration and step size used in the i-th tier, respectively. A chosen ODE solver in
the 2nd tier numerically approximates the full ODE at the initial time tn,m = nh0 +mh1.

1 Loosely speaking, mixing means that for any two possible states of yt , the occurrence of the states is independent if a sufficient amount of
time t is given. For the precise definition and properties see [45]
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x′2 = ε
−1 f1(x2,ε

−1t,ε−2t)+ f0(x2,ε
−1t,ε−2t), x2(tn,m) = X1,

in a time segment t ∈ [tn,m−η2, tn,m +η2] where X1(tn,m;X0(tn)) is an approximation of x(t) at tn,m obtained from the
1st tier. Denote the solution by x2(t;X1) and let

F1(tn,m;X1) = Kη2 ∗
(
ε
−1 f1(x2(·;X1),ε

−1·,ε−2·)+ f0(x2(·;X1),ε
−1·,ε−2·)

)
.

The 1st tier numerically approximates the effective ODE for the O(ε) scale

x′1 = F1(t;X1), x1(tn) = X0.

in the time interval t ∈ [tn−η1, tn +η1] where X0(tn) is an approximation of x(t) at tn = nh0 obtained from the 0th tier.
Denote the solution x1(t;X0) and let

F0(tn;X0) = Kη1 ∗F1(·).

Finally, the 0th tier numerically approximates the effective ODE for the O(1) scale

x′ = F0(x), x(0) = x0

in t ∈ [0,η0] = [0,T ].

O(ε2)

O(ε)

O(ε2)

O(1)0th tier

1st tier

2nd tier

Fig. 1 An illustration of a three scale algorithm.

1.4 Layout

The layout of the paper is as follows. Section 2 details a proof of Theorem 1 using the tools of averaging theory. In
Section 3, the same result is derived using formal asymptotic expansions to singular perturbations of SDEs in which
the white noise is turned off. Section 4 proves that the effective dynamics can be approximated using convolution with
respect to averaging kernels which are applied iteratively to the different time scales. The methods can be used in
a numerical HMM scheme as described above. The HMM scheme suggests that the basic idea of iterated averaging
can be applied in more general settings. Such generalizations are discussed in Section 5. A few examples of such
generalizations are presented in Section 6. We conclude in Section 7.

2 A theory of iterated averaging

In this section we prove Theorem 1 which generalizes an averaging theorem for long time scales due to van der Burgh
[40, 43]. Further generalizations are discussed in Section 5.

2.1 Basic estimate

As before, let x(t) solve
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x′ = ε
−1 f1(x,ε−1t,ε−2t)+ f0(x,ε−1t,ε−2t), x(0) = x0, (17)

where f1(x,s1,s2) and f0(x,s1,s2) are sufficiently smooth and 1-periodic in s1 and s2. It is further assumed that the
solution x(t) exists, is unique and remains bounded independent of ε for a time segment [0,T ] independent of ε . When
〈 f1〉2 = 0, then x(t) can be approximated by a slow trajectory and then our goal is to derive an approximate ODE
for such a trajectory. As usual, by slow we mean that the first derivative of a time-dependent function is bounded
independent of ε .

We consider two functions w(t) and y(t). Let w(t) solve

w′ = h(w(t),ε−1t,ε−2t)+ f0(w(t),ε−1t,ε−2t), w(0) = x0, (18)

where h is defined by

h(x,s1,s2) =(∇x f1)φ(x,s1,s2)−
∂φ

∂ s1
(x,s1,s2),

φ(x,s1,s2) =
∫ s2

0
f1(x,s1,τ)dτ.

(19)

Note that for fixed x, h(x,s1,s2) and φ(x,s1,s2) are 1-periodic in s1 and s2.

Notation 1 We use the notation (∇x f1)φ(x,s1,s2) for the multiplication of φ by the derivative of f1 with respect to x
and both are evaluated at (x,s1,s2).

Let y(t) solve
y′ = G(y,ε−1t), y(0) = x0, (20)

where G is given by
G(y,s1) =〈h(y,s1,s2)〉2 + 〈 f0(y,s1,s2)〉2. (21)

We will show that for t ∈ [0,T ], there exist nonnegative constants C0 and C1 independent of ε such that

|x(t)−w(t)| ≤C0ε and |w(t)− y(t)| ≤C1ε.

Thus, we conclude by the triangle inequality for t ∈ [0,T ] that

|x(t)− y(t)| ≤Cε.

We denote a generic positive constant by C whose value may change between expressions but is independent of ε .

Lemma 1. The solutions x(t) and w(t) defined above satisfy

|x(t)−w(t)| ≤ εCe(L f0+Lh)t

for t ∈ [0,T ] and T > 0 which is independent of ε . L f0 and Lh are Lipschitz constants for f0 and h, respectively.

Proof. From (17) and (18), integrating with respect to time yields that

x(t)− x0 =
∫ t

0
ε
−1 f1(x(τ),ε−1

τ,ε−2
τ)dτ +

∫ t

0
f0(x(τ),ε−1

τ,ε−2
τ)dτ,

w(t)− x0 =
∫ t

0
h(w(τ),ε−1

τ,ε−2
τ)dτ +

∫ t

0
f0(w(τ),ε−1

τ,ε−2
τ)dτ.

This leads to

|x(t)−w(t)| ≤
∣∣∣∣∫ t

0
ε
−1 f1(x(τ),ε−1

τ,ε−2
τ)−h(w(τ),ε−1

τ,ε−2
τ)dτ

∣∣∣∣+L f0

∫ t

0
|x(τ)−w(τ)|dτ. (22)

where L f0 is a Lipschitz constant for f0. We will show that the first integral in (22) is bounded by

Lh

∫ t

0
|x(τ)−w(τ)|dτ +O(ε)
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where Lh is a Lipschitz constant for h. Then, we have

|x(t)−w(t)| ≤ (L f0 +Lh)
∫ t

0
|x(τ)−w(τ)|dτ +O(ε).

It follows from Gronwall’s inequality that

|x(t)−w(t)| ≤ εCe(L f0+Lh)t .

To this end, let n denote the largest integer such that ε2n 5 t. We have

ε
−1
∫ t

0
f1(x(τ),ε−1

τ,ε−2
τ)dτ =

n−1

∑
j=0

∫
ε2( j+1)

ε2 j
ε
−1 f1(x(τ),ε−1

τ,ε−2
τ)dτ + ε

−1
∫ t

ε2n
f1(x(τ),ε−1

τ,ε−2
τ)dτ.

Since f1 is bounded and 0 ≤ t− nε2 < ε2, the last term is O(ε). Denoting t j = ε2 j and using the periodicity of f1 in
s2, each term in the sum can be written as

ε

∫ 1

0
f1(x(t j + ε

2s),ε−1t j + εs,s)ds. (23)

By the fundamental theorem of calculus, we write

x(t j + ε
2s) = x(t j)+

∫ t j+ε2s

t j

x′(τ)dτ

= x(t j)+
∫ t j+ε2s

t j

[
ε
−1 f1(x(τ),ε−1

τ,ε−2
τ)+ f0(x(τ),ε−1

τ,ε−2
τ)
]

dτ

= x(t j)+
∫ t j+ε2s

t j

ε
−1 f1(x(τ),ε−1

τ,ε−2
τ)dτ +O(ε2)

(24)

since f0 is bounded independent of ε . After the substitution of (24) into (23) and using a Taylor expansion of f1(x(t j +
ε2s),ε−1t j + εs,s2) around s = 0 while keeping s2 fixed,

ε

∫ 1

0
f1(x(t j + ε

2s),ε−1t j + εs,s)ds = ε

∫ 1

0

{
f1(x(t j),ε

−1t j,s)+

(∫ t j+ε2s

t j

x′(τ)dτ

)
∇x f1(x(t j),ε

−1t j,s)

+εs
∂ f1

∂ s1
(x(t j),ε

−1t j,s)
}

ds+O(ε3)

=
∫ 1

0

(∫ t j+ε2s

t j

f1(x(τ),ε−1
τ,ε−2

τ)dτ

)
∇x f1(x(t j),ε

−1t j,s)ds

+
∫ 1

0
ε

2s
∂ f1

∂ s1
(x(t j),ε

−1t j,s)ds+O(ε3).

where we used the fact that 〈 f1〉2 = 0. Hence, for ε−1 ∫ t
0 f1dτ ,

ε
−1
∫ t

0
f1(x(τ),ε−1

τ,ε−2
τ)dτ =

n−1

∑
j=0

[∫ 1

0

(∫ t j+ε2s

t j

f1(x(τ),ε−1
τ,ε−2

τ)dτ

)
∇x f1(x(t j),ε

−1t j,s)ds

+
∫ 1

0
ε

2s
∂ f1

∂ s1
(x(t j),ε

−1t j,s)ds+O(ε3)

]
.

(25)

Next, changing of variables to s = ε−2τ in
∫ t

0 hdτ gives
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∫ t

0
h(w(τ),ε−1

τ,ε−2
τ)dτ =

n−1

∑
j=0

[∫ t j+1

t j

(∫
ε−2τ

0
f1(w(τ),ε−1

τ,v)dv

)
∇x f1(w(τ),ε−1

τ,ε−2
τ)dτ

−
∫ t j+1

t j

∫
ε−2τ

0

∂ f1

∂ s1
(w(τ),ε−1

τ, ṽ)dṽdτ

]
+O(ε2).

=
n−1

∑
j=0

[∫ j+1

j
ε

2
(∫ s

j
f1(w(ε2s),εs,v)dv

)
∇x f1(w(ε2s),εs,s)ds

−
∫ j+1

j
ε

2
(∫ s

0

∂ f1

∂ s1
(w(ε2s),εs, ṽ)dṽ

)
ds
]
+O(ε2).

Changing variables back to τ = ε2v in the first integral and ṽ = τ in the second integral,

∫ t

0
h(w(τ),ε−1

τ,ε−2
τ)dτ =

n−1

∑
j=0

[∫ j+1

j

(∫
ε2s

t j

f1(w(ε2s),εs,ε−2
τ)dτ

)
∇x f1(w(ε2s),εs,s)ds

−ε
2
∫ j+1

j

∫ s

0

∂ f1

∂ s1
(w(ε2s),εs,τ)dτds

]
+O(ε2).

(26)

We need to compare (25) and (26). Note that w′(t) is bounded independent of ε and that τ ∈ [ j, j+1].{
w(ε2s) = w(τ)+O(ε2s− τ) = w(τ)+O(ε2),

w(ε2s) = w(ε2 j)+O(ε2s− ε2 j) = w(t j)+O(ε2)
(27)

and {
εs− ε−1τ = O(ε),

εs− ε−1t j = O(ε).
(28)

Therefore, the first integration in (26) can be written as

∫ j+1

j

(∫
ε2s

t j

f1(w(τ),ε−1
τ,ε−2

τ)dτ

)
∇x f1(w(t j),ε

−1t j,s)ds+O(ε3)

=
∫ 1

0

(∫ t j+ε2s

t j

f1(w(τ),ε−1
τ,ε−2

τ)dτ

)
∇x f1(w(t j),ε

−1t j,s)ds+O(ε3)

which has the same form of the first term in (25) with an O(ε3) error.
Now compare the second integrals. Applying integration by parts to the second term in (25) gives

∫ 1

0
ε

2s
∂ f1

∂ s1
(x(t j),ε

−1t j,s)ds =
[

ε
2s
∫ s

0

∂ f1

∂ s1
(x(t j),ε

−1t j,τ)dτ

]1

s=0
− ε

2
∫ 1

0

∫ s

0

∂ f1

∂ s1
(x(t j),ε

−1t j,τ)dτds

=−ε
2
∫ 1

0

∫ s

0

∂ f1

∂ s1
(x(t j),ε

−1t j,τ)dτds

(29)

On the other hand, in (26) using (27) and (28),

−ε
2
∫ j+1

j

∫ s

0

∂ f1

∂ s1
(w(ε2s),εs,τ)dτds =−ε

2
∫ j+1

j

∫ s

0

∂ f1

∂ s1
(w(t j),ε

−1t j,τ)dτds+O(ε3)

=−ε
2
∫ 1

0

∫ s

0

∂ f1

∂ s1
(w(t j),ε

−1t j,τ)dτds+O(ε3)

(30)

Thus, it is shown that (29) and (30) are different up to an O(ε3) error. Putting all estimates together and noting
n = O(ε−2), we conclude that
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0
ε
−1 f1(x(τ),ε−1

τ,ε−2
τ)−h(w(τ),ε−1

τ,ε−2
τ)dτ

∣∣∣∣≤ Lh

∫ t

0
|x(τ)−w(τ)|dτ +O(ε) (31)

where Lh is a Lipschitz constant for the function h. Substituting (31) into (22) yields the desired estimate.

The following lemma gives an estimate of how much w(t) and y(t) can be apart in 0≤ t ≤ T .

Lemma 2. Let w(t) and y(t) be defined as above. Then, the following estimate holds

|w(t)− y(t)| ≤ εCeLGt , (32)

for some constant C > 0 which is independent of ε , where LG is a Lipschitz constant for G.

Proof. Consider w′− y′. Using (18) and (20) we have,

w′− y′ = f0(w,ε−1t,ε−2t)−〈 f0〉2(y,ε−1t)+h(w,ε−1t,ε−2t)−〈h〉2(y,ε−1t)

=[G(w,ε−1t)−G(y,ε−1t)]+ z(w,ε−1t,ε−2t),

where
z(w,s1,s2) = [ f0(w,s1,s2)−〈 f0〉2(w,s1)]+ [h(w,s1,s2)−〈h〉2(w,s1)].

Note that for fixed w and s1, z(w,s1,s2) is 1-periodic in s2 with a zero average, 〈z〉2 = 0. Integrating to the time t

w(t)− y(t) =
∫ t

0
[G(w(τ),ε−1

τ)−G(y(τ),ε−1
τ)]dτ + r(t;ε),

where r(t;ε) =
∫ t

0 z(w(τ),ε−1τ,ε−2τ)dτ . Taking absolute values

|w(t)− y(t)| ≤
∫ t

0

∣∣G(w(τ),ε−1
τ)−G(y(τ),ε−1

τ)
∣∣dτ + |r(t;ε)|.

Let LG denote a Lipschitz constant for G. Then,

|w(t)− y(t)| ≤ LG

∫ t

0
|w(τ)− y(τ)|dτ + |r(t;ε)|. (33)

In order to evaluate r(t;ε), let n denote the largest integer such that ε2n≤ t. We have

r(t;ε) =
n−1

∑
j=0

∫
ε2( j+1)

ε2 j
z(w(τ),ε−1

τ,ε−2
τ)dτ +

∫ t

ε2n
z(w(τ),ε−1

τ,ε−2
τ)dτ. (34)

Since z is bounded and 0 5 t−nε2 < ε2, the last term is O(ε2). Denoting t j = ε2 j and using the periodicity of z in s,
each term in the sum can be written as

ε
2
∫ 1

0
z(w(t j + ε

2s),ε−1t j + εs,s)ds.

Expanding in ε yields,

ε
2
∫ 1

0
z(w(t j),ε

−1t j,s)ds = ε
2 [〈z〉2(w(t j),ε

−1t j)+O(ε)
]
= O(ε3).

Therefore,
r(t;ε) =O(nε

3) = O(ε). (35)

Substituting into (33) yields

|w(t)− y(t)| ≤LG

∫ t

0
|w(τ)− y(τ)|dτ +O(ε).

Using Gronwall’s inequality we conclude Lemma 2.
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2.2 Proof of Theorem 1

Lemma 1 and 2 imply that
sup

0≤t≤T
|x(t)− y(t)| ≤ εC, (36)

where y(t) is the solution of
y′ = G(y,ε−1t), y(0) = x0,

with
G(y,s1) = 〈h(y,s1,s2)〉2 + 〈 f0(y,s1,s2)〉2,

h(y,s1,s2) = (∇x f1)φ −
∂φ

∂ s1
,

φ(y,s1,s2) =
∫ s2

0
f1(y,s1,τ)dτ.

(37)

Since the RHS of G(y,s1) is periodic in s1, we are in a position to apply the two-scale averaging theorem [40], inte-
grating out the intermediate O(ε) time scale. Noting that since φ is 1-periodic in s1, ∂φ/∂ s1 is also periodic and has
zero average with respect to s1. This leads to an averaged equation for y(t):

ξ
′ = F(ξ ), ξ (0) = x0,

where
F(ξ ) = 〈(∇x f1)φ(ξ ,s1,s2)〉12 + 〈 f0(ξ ,s1,s2)〉12 (38)

and we have
sup

0≤t≤T
|y(t)−ξ (t)| ≤ εC. (39)

Combining (36) with (39) completes the proof of Theorem 1.

Remark 3. It is not difficult to generalize this result to systems with non-commensurate and widely separated frequen-
cies.

3 Formal asymptotic expansions

In this section we analyze the multiscale structure of a system using the operator formalism firstly developed by
Papanicolaou et al. as a formal asymptotic expansion for singular perturbations of SDEs [10, 38]. This approach
has been further generalized and applied to many different problems, for example, in [35, 39, 44]. For the case of
Hamiltonian dynamics, including integrable periodic systems, a rigorous version of formalism is presented in [21, 22]
and references therein. The derivation in this section is formal; nonetheless, it is instructive and provides intuitive
explanation for Theorem 1.

3.1 Stochastic differential equations

For completeness, we begin by reviewing singular perturbation expansions of SDEs. The resulting effective equations
are then considered in the case in which all diffusion coefficients are formally set to zero.

Consider SDE systems of the form{
dxt =

[
ε
−1 f1(xt ,yt)+ f0(xt ,yt)

]
dt

dyt =ε
−2a(xt ,yt)dt + ε

−1
β (xt ,yt)dBt ,

(40)

where xt ∈ Rd is a slow process that evolves according to an ODE with a fast random coefficient yt ∈ Rn. We assumed
that β (x,y)β T (x,y) is uniformly positive definite in Rd×Rn. Furthermore, we assume that for fixed xt the dynamics of
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yt is ergodic on an invariant set Σx with a unique invariant measure dµx. The expectations with respect to the invariant
measures are denoted 〈·〉y, in which the x dependence is suppressed. A necessary condition for x to be slow is that
〈 f1〉y = 0. Otherwise, x exhibits non-trivial dynamics on the O(ε) time scale. It is well known that under some suitable
conditions on (40), x(t) satisfies an effective SDE that is independent of ε ,

dXt = F(Xt)dt +b(Xt)dBt , (41)

where F and b can be expressed as averages with respect to the fast process y(t) with X fixed [10, 38, 39, 44]. We begin
with a brief overview of the relevant results of [38]. For details the reader is referred to [39] and references therein.

The backwards equation that governs the evolution of a probability density, φ , of the initial conditions{
∂tu = L u
u(0,x,y) = ϕ(x,y),

where L , the generator of (40) can be written as

L = ε
−2L2 + ε

−1L1 +L0

L0 = f0 ·∇x

L1 = f1 ·∇x

L2 = a ·∇y +
1
2

ββ
T : ∇y∇

T
y ,

(42)

where A : B denotes formally the trace of the matrix ABT . Next, consider a formal asymptotic expansion of u in ε

u(t,x,y) = u0(x)+ εu1 + ε
2u2 + . . . ,

where we assumed that the leading order term u0 only depends on the slow process. Substituting into the backwards
equation yields

L2u0 = 0 (43)
L2u1 =−L1u0 (44)
L2u2 = ∂tu0−L1u1−L0u0. (45)

The leading order equation (43) is automatically satisfied since u0 only depends on x. Let L ∗
2 be the L2 adjoint of L2,

and assume that the Null space of L ∗
2 is a one dimensional subspace, spanned ρx, the density of the invariant measure

dµx. 2 Applying the Fredholm alternative, equation (44) has a solution if f1∇xu0 is perpendicular to the Null space of
L ∗

2 . In other words, the projection of f1∇xu0 on Null L ∗
2 should vanish. This projection amounts to averaging with

respect to the invariant measure of y (at fixed x), which is also equivalent to taking the standard L2 inner product in Σx
with ρ . This yields the condition

〈 f1(x,y)〉y = 0,

which implies the reasonable requirement that the average of f1 vanishes. Otherwise, x oscillates with large amplitudes
on the ε time scale and thus cannot be approximated by a slow variable. Then, (44) has a unique solution such that
〈u1〉y = 0. We formally write

u1 =−L −1
2 [L1u0].

Applying again the Fredholm alternative, equation (45) also has a solution if the RHS is perpendicular to the Null space
of L∗2, i.e.

〈∂tu0−L1u1−L0u0〉y = 0

Substituting in L0, L1 and u1 we obtain

∂tu0 = F(x)∇xu0 +B(x) : ∇x∇xu0, (46)

2 The assumptions holds for the case of ergodic rotations on a torus in which we are interested
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where
F(x) = 〈− f1 ·∇xL

−1
2 [ f1]+ f0〉y

B(x) = 〈− f1L
−1

2 [ f1]〉y.
(47)

We identify (46) as the backwards equation associated with the effective SDE (41) and 2B(x) = b(x)b(x)T .
If ββ T is uniformly positive, then inverting L2 amounts to solving a uniformly elliptic cell problem

[a ·∇y +
1
2

ββ
T : ∇y∇y]r(x,y) = f1(x,y), (48)

with appropriate boundary conditions, e.g., periodic on a torus. The equation indeed has a unique solution. See [39] for
further details.

3.2 Periodic ODEs

We now formally set β = 0 and consider a case in which for fixed x the dynamics of y is periodic. Hence, we can
think of y as an fast oscillator. Assume that a(x,y) is uniformly positive in Rd×Rn, infx∈Rd ,y∈Rn |a(x,y)|> 0. Loosely
speaking, this means that the system remains highly oscillatory at all times. Therefore, for fixed x trajectories are
closed loops and the invariant set Σx is a one-dimensional manifold in Rd that depends on the initial y and on x. The
invariant measure dµx, which is supported on Σx is absolutely continuous with respect to the Lebesgue measure on Σx.
The ergodic assumption holds with respect to the same manifold and measure. A rigorous treatment of this problem is
beyond the scope of this manuscripts. For two-scale systems the reader is referred to [21, 22] and references therein.

Instead, we continue formally trying to identify the effective equation for xt . The main difference between the
periodic and the stochastic cases can be seen from two complementary points of view. First, as a dynamical system, the
fast process in the SDE (40) is mixing (for fixed x). This is no longer the case with periodic systems which are ergodic
but not mixing. Second, as a homogenization problem, since ββ T = 0 the cell problem (48) is no longer elliptic.

For fixed x, consider the periodic solution of

dζ

dt
= a(x,ζ (t)),

with a suitable initial condition on Σx. The period is denoted τx. ζ (t) transverses the exact periodic trajectory of y(t)
and with the correct invariant measure. Therefore, averages with respect to dµx can be written as the time average over
a single period of ζ

〈h(x,y)〉y =
1
τx

∫
τx

0
h(x,ζ (t))dt =

1
τx

∫
Σx

h(x,ζ (t))
1

a(x,ζ (t))
dζ .

Furthermore, recall the hierarchy of operators (42). Substituting β = 0, L2 takes the form

L2 = a(x,y) ·∇y.

We note that, for any y ∈ Σx, L2 is the directional derivative of ζ along the tangent direction to Σx and that |L2ζ | is
inversely proportional to the density of dµx

L2h(x,y) = a(x,y) ·∇yh(x,y) =
d
dt

h(x,ζ (t))
∣∣∣∣
ζ (t)=y

.

This implies that the inverse of L2 can be described in terms of integration with respect to time along the trajectory of
ζ (t)

H(x,y) = L −1
2 h(x,y) =

∫ t(y)

0
h(x,ζ (s))ds+C(x),

where t(y) is the unique time in which ζ (t) = y within one period of ζ . Following the Fredholm alternative, we pick
the unique inverse that is perpendicular to Null L ∗

2 , i.e., we require
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〈H(x,y)〉y =
1
τx

∫
τx

0
H(x,ζ (t))dt = 0.

This fixes the constant
C(x) =− 1

τx

∫
τx

0

∫ t

0
H(x,ζ (s))dsdt.

In particular, we recognize that L −1
2 [ f1] = φ as given by

φ(x,y) =
∫ y

0
f1(x,τ)dτ−〈

∫ y

0
f1(x,τ)dτ〉y (49)

so that 〈φ〉y = 0. Substituting into (47) yields

F(x) = 〈− f1 ·∇xφ + f0〉y
B(x) = 〈− f1φ〉y.

(50)

In order to identify (50) with the averaged equation (37), we need a simple Lemma.

Lemma 3. Let h(s) denote an S-periodic function with zero average and let H(s) be an anti-derivative of h, H ′ = h.
Then, ∫ S

0
h(s)H(s)ds = 0. (51)

Proof. First, we note that since h(s) has zero average,
∫ S

0 h(τ)dτ = 0, its anti-derivative is also S-periodic

H(S+ s) = H(0)+
∫ S+s

0
h(τ)dτ = H(s).

Then, using integration by parts ∫ S

0
h(s)H(s)ds =

[
H2(s)

]S
0−

∫ S

0
H(s)h(s)ds.

The first term on the right vanishes, which proves (51).

Since φ is the anti-derivative of f1, an immediate consequence is that B(x) = −〈 f1(x,y)φ(x,y)〉y = 0. Hence, the
effective dynamics of xt is deterministic. More precisely, the variance of the stochastic perturbation is of order ε .
Furthermore,

0 = ∇x〈 f1(x,y)φ(x,y)〉y = 〈∇x f1(x,y)φ(x,y)〉y + 〈 f1(x,y)∇xφ(x,y)〉y.

We conclude that the effective drift and diffusion coefficient can be written as

F(x) = 〈(∇x f1) ·φ + f0〉y,
B(x) = 0.

(52)

Thus, we obtain the consistent form of the effective drift as proven by Theorem 1. Note that since (40) contains only
two scales O(1) and O(ε2), ∂φ

∂ s1
= 0 in (37).

4 Iterated averaging with multiple kernels

The goal of this section is to generalize the framework of averaging kernels studied in [2, 3, 4, 5, 20] to include three
or more time scales. In particular, we prove that averaging of three scale oscillatory problems can be approximated via
convolution with respect to kernels with known support, differentiability properties and moments. Let Kp,q denote the
space of normalized Cq functions, supported on [−1,1] that have p vanishing moments, i.e.,

∫
[−1,1]

K(t)trdt =

{
1, r = 0,
0, 1≤ r ≤ p.

(53)
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Recall that for η > 0, Kη(t) denotes a rescaling of K as Kη(t) = η−1K(η−1t).
We will have an error estimate for approximating the double average 〈 f 〉12 with two convolutions Kη1 ∗ [Kη2 ∗ f ].

Applied to the RHS of (6), the convolution approximates F(ξ ) of Theorem 1. The proposition below establishes the
accuracy of iterated averaging with multiple kernels under the scaling condition ε2� η2� ε � η1� 1.

Proposition 1 Let K ∈Kp,q and f0, f1 ∈Cmax{q,p+1}. Then, for K ∈Kp,q, there exists a constant C > 0 such that

∣∣Kη1 ∗{Kη2 ∗
(
ε
−1 f1 + f0

)
(·)}(t)−F(ξ (t))

∣∣≤C

(
ε2q−1

η
q
2

+
εq

η
q
1
+

η
p+1
2

ε p+2 +η
p+1
1

)
max
j=0...q

||K( j)||1 (54)

for some constant C > 0, where F is given by (37) as in T heorem 1, K( j)(·) denotes the j-th derivative of K and || · ||1
is the L1 norm.

Throughout, C denotes a generic positive constant whose value may change between expressions.

4.1 Estimation of the effective force

Let f : Rn+1→ R denote a scalar function of the vector argument (x,s1,s2, · · · ,sn) and 1-periodic in s1, · · · ,sn. To be
consistent with previous notation, averaging with respect to sk is respectively denoted by

〈 f 〉k =
∫ 1

0
f (x, · · · ,sk, · · ·)dsk, k = 1,2, · · · ,n. (55)

Motivated by the averaging techniques in [2], we approximate 〈 f 〉n using a kernel. First let us prove the following
lemma.

Lemma 4. If f (t,s1,s2, · · · ,sn) = a(t,s1,s2, · · · ,sn−1)b(sn), where n ∈ N, b(sn + 1) = b(sn),
∫ 1

0 b(sn)dsn = 0, a ∈
Cq(Rn) and max

0≤ j≤q
||a( j)||∞ ≤M, then for any K ∈Kp,q and η = O(εk), k > n−1,

|Kη ∗ f (·,ε−1·,ε−2·, · · · ,ε−n·)| ≤CM(
εn

η
)q max

j=0...q
||K( j)||1.

Proof. Let K̃η(x,y) = Kη(x− y)a(y,ε−1y,ε−2y, · · · ,ε−n+1y).

|Kη ∗ f |=
∣∣∣∣∫ K̃η(t,s)b(ε−ns)ds

∣∣∣∣
≤ε

nq
∫
|∂ q

y K̃η(t,s)b[q](ε−ns)|ds

where b[ j](t) =
∫ t

0 b[ j−1](s)ds−
∫ 1

0
∫ t

0 b[ j−1](s)dsdt and ||b[ j](t)||∞ ≤ ||b||∞. For the kernel part,

∫ ∣∣∂ q
y K̃η(t,s)

∣∣ds =
∫ ∣∣∣∣∣ ∑

k1+k2+···+kn+1=q

(
q

k1,k2, · · · ,kn+1

)

· (−η
−1)k1 ·K(k1)

η (t− s) ·
n

∏
i=1

1
εki+1(i−1) ∂

ki+1
i a(s,ε−1s,ε−2s, · · · ,ε−n+1s)

∣∣∣∣∣ds

≤ C
ηq max

j=0...q
||a( j)||∞ max

j=0...q
||K( j)||1

where
(

q
k1,k2, · · · ,kn+1

)
is the multinomial coefficient and defined by q!

k1!k2!···kn+1! .
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Lemma 5. For r = (r1,r2, · · · ,rn) ∈ Zn
+ an ordered n-tuple of nonnegative integers, assume ∂ r f (t,s1, · · · ,sn) is contin-

uous and bounded by C f for r = 0, · · · ,σ , and σ ≥ 1. 3 Then, for any K ∈ Kp,q and η = O(εk) with k > n− 1, there
exists C > 0 such that∣∣Kη ∗ ( f (·,ε−1·,ε−2·, · · · ,ε−n·)−〈 f 〉n)

∣∣≤C
(

εnq

ηq +
ησ

ε(n−1)σ

)
max
j=0...q

||K( j)||1. (56)

Proof. Let
g(t,s1,s2, · · · ,sn) = f (t,s1,s2, · · · ,sn)−〈 f 〉n .

g is 1-periodic with respect to si and ∂ rg(t,s1,s2, · · · ,sn) are continuous and bounded for r ∈ Zn
+, |r| = 0, · · · ,σ . In

considering

Kη ∗g =
∫ t+η

t−η

Kη(t− sn) ·g(sn,ε
−1sn,ε

−2sn, · · · ,ε−nsn)dsn,

we expand g(sn,ε
−1sn,ε

−2sn, · · · ,ε−(n−1)sn, t) around sn = 0 while keeping t fixed. We denote ∂xig by the partial
derivative with respect to the i-th component of g respectively.

g(sn,ε
−1sn,ε

−2sn, · · · ,ε−nsn) =
σ−1

∑
j=0

1
j!

[
n

∑
i=1

sn

ε i−1 ∂xi

] j

g(0, · · · ,0,ε−nsn)

+
1

σ !

[
n

∑
i=1

sn

ε i−1 ∂xi

]σ

g(µ1,ε
−1

µ2, · · · ,ε−n+1
µn,ε

−nsn)

where (µ1,µ2, · · · ,µn) is in the open line segment joining 0 and (sn,ε
−1sn, · · · ,ε−n+1sn) in Rn. The key idea consists

of in writing the expansion as a sum of two parts. Without loss of generality, we set t = 0 and write Kη ∗ g as I1 + I2
where

I1 =
σ−1

∑
j=0

∫
η

−η

Kη(−sn) ·
1
j!

[
n

∑
i=1

sn

ε i−1 ∂xi

] j

g(0, · · · ,0,ε−nsn)dsn,

I2 =
∫

η

−η

Kη(−sn) ·
1

σ !

[
n

∑
i=1

sn

ε i−1 ∂xi

]σ

g(µ1,ε
−1

µ2, · · · ,ε−n+1
µn,ε

−nsn)dsn.

By using Lemma 4, I1 is estimated by

|I1| ≤ C(
εn

η
)q · max

j=0...q
||K( j)||1 ·

σ−1

∑
j=0

1
j!
[

n

∑
i=1

η

ε i−1 ]
j.

Finding the leading order term in the summation, I2 is estimated by

|I2| ≤C(
η

εn−1 )
σ sup

t,s1,s2,··· ,sn

sup
|r|= σ

|∂ r f (t,s1, · · · ,sn)| · ||K||1

Putting these estimates together, we find that there exists a positive constant C such that

∣∣Kη ∗g
∣∣≤C

(
εnq

ηq +
ησ

ε(n−1)σ

)
max
j=0...q

||K( j)||1.

We now compare iterated averaging of (6) with the averaged equation (9). Before we move on to the next step, we
simplify our notation of the forces by writing f (t,ε−1t,ε−2t) instead of f (x(t),ε−1t,ε−2t). This is possible since, after
solving (6) at the 1st tier, x(t) is known up to a prescribed accuracy ∆ . Theorem 2 shows that the error between x and
x1 (solution of the 1st tier) is O(∆).

3 |r|= r1 + r2 + · · ·+ rn and ∂ r = (∂x1 )
r1 (∂x2 )

r2 · · ·(∂xn )
rn .
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Theorem 2. Let x1(t) denote an approximation of x(t) in the 1st tier using a two-scale HMM in the time interval
t ∈ [tn−η1, tn +η1]. Given 0 < ε < ε0 and a prescribed accuracy ∆1, there exists C > 0 such that

sup
t∈[tn−η1,tn+η1]

|x(t)− x1(t)| ≤C∆1. (57)

Proof. By considering 1st and 2nd tier as the two-scale HMM solvers, we generalize the error analysis discussed in
[3, 6, 20]. We denote the order of accuracy, step size and length of integration in i-th tier by mi,hi and ηi respectively.

At the 1st tier, the global accuracy of integrating the original ODE (6) to time η1(� ε) is given by

C max

{
η1hm1

1
εm1+1 ,

η1η2hm2
2

h1ε2m2+1 ,
η1ε2q

h1η
q+1
2

}

for some C > 0. The errors from each evaluation at the 2nd tier accumulate by taking h−1
1 η1 steps. Thus we can balance

the required accuracy ∆1 with different sources of errors. Note that the maximal possible accuracy is ∆1 = ε2 since this
is the error introduced by the averaged equation on the O(ε) time.

Next, by iterated use of Lemma 5, we show that 〈 f (t,s1,s2)〉12 is well approximated by Kη1 ∗ [Kη2 ∗ f ](t).

Lemma 6. Let f0(t,s1,s2) be 1-periodic in s1 and s2. For r = (r1,r2) ∈ Z2
+, assume that ∂ r f0(t,s1,s2) is continuous

and bounded for |r| = 0, · · · ,σ , and σ ≥ 1. Then, for any K ∈ Kp,q, ε2� η2� ε � η1� 1, there exists a constant
C > 0 such that∣∣Kη1 ∗

[
Kη2 ∗

(
f0(·,ε−1·,ε−2·)−〈 f0(t,s1,s2)〉12

)
(·)
]
(t)
∣∣≤ C

(
ε2q

η
q
2
+

εq

η
q
1
+

ησ
2

εσ
+η

σ
1

)
max
j=0...q

||K( j)||1.

Proof. Let
g(t,s1,s2) = f0(t,s1,s2)−〈 f0〉12 (t). (58)

Note that 〈g〉12 =
∫ 1

0
∫ 1

0 ( f0(t,s1,s2)−〈 f0〉12)ds2ds1 = 0 and that g(x,s1,s2) is 1-periodic with respect to s1, s2 and
∂ rg(x,s1,s2) is continuous and bounded for r ∈ Z2

+, |r|= 0, · · · ,σ . Iterated convolution with two kernels yields

Kη1 ∗
[(

Kη2 ∗g(·,ε−1·,ε−2·)
)
(·)
]
(t) =

∫ t+η1

t−η1

Kη1(t− s1)

[∫ s1+η2

s1−η2

Kη2(s1− s2) ·g(s2,ε
−1s2,ε

−2s2)ds2

]
︸ ︷︷ ︸

=I1(s1)

ds1.

We iterate the argument in Lemma 5. First, there exists C > 0 such that

∣∣I1(s1)−〈g〉2 (s1,ε
−1s1)

∣∣≤C
(

ε2q

η
q
2
+

ησ
2

εσ

)
max
j=0...q

||K( j)||1. (59)

Recalling that 〈g〉12 = 0,
I1 = I1−〈g〉2 (s1,ε

−1s1)+ 〈g〉2 (s1,ε
−1s1)−〈g〉12 . (60)

Thus ∣∣∣∣∫ t+η1

t−η1

Kη1(t− s1) · I1ds1

∣∣∣∣
=

∣∣∣∣∫ t+η1

t−η1

Kη1(t− s1)
(
I1−〈g〉2 (s1,ε

−1s1)+ 〈g〉2 (s1,ε
−1s1)−〈g〉12

)
ds1

∣∣∣∣
≤C
(

ε2q

η
q
2
+

ησ
2

εσ

)
max
j=0...q

||K( j)||1 +
∣∣∣∣∫ t+η1

t−η1

Kη1(t− s1)
(
〈g〉2 (s1,ε

−1s1)−〈g〉12
)

ds1

∣∣∣∣ .
(61)

Second, define ĝ(ŝ1,s1) = 〈g〉2(ŝ1,ε
−1s1)−〈g〉12. Hence, ĝ(ŝ1,s1) is 1-periodic in the second variable and the average

over s1 is zero. A second application of Lemma 5 yields existence of C2 > 0 such that∣∣∣∣∫ t+η1

t−η1

Kη1(t− s1)ĝ(ŝ1,s1)ds1

∣∣∣∣≤C2

(
εq

η
q
1
+η

σ
1

)
max
j=0...q

||K( j)||1. (62)
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Hence, we can find a positive constant C such that

∣∣Kη1 ∗
[
Kη2 ∗

(
f0(·,ε−1·,ε−2·)−〈 f0(t,s1,s2)〉12

)
(·)
]
(t)
∣∣≤ C

(
ε2q

η
q
2
+

εq

η
q
1
+

ησ
2

εσ
+η

σ
1

)
max
j=0...q

||K( j)||1.

This concludes the proof of the theorem.

Recall the three scale problem (6) and its averaged equation (9):

x′ = ε
−1 f1(x,ε−1t,ε−2t)+ f0(x,ε−1t,ε−2t), x(0) = x0,

ξ
′ = 〈(∇x f1)φ(ξ ,s1,s2)〉12 + 〈 f0(ξ ,s1,s2)〉12, ξ (0) = x0.

Key to the following theorem is the vanishing of 〈 f1(x(t),s1,s2)〉2.

Theorem 3. Let f1(x(t),s1,s2) be 1-periodic in s1 and s2, and have a zero average with respect to s2. For r = (r1,r2) ∈
Z2
+, assume ∂ r f1(x(t),s1,s2) are continuous and bounded for |r| = 0, · · · ,σ + 1, and σ ≥ 1. Then, for any K ∈ Kp,q

and suitable choice of η1, η2 such that ε2� η2� ε � η1� 1, the following estimate holds.

∣∣Kη1 ∗
{

Kη2 ∗
(
ε
−1 f1(x(·),ε−1·,ε−2·)−〈h〉12 (ξ )

)
(·)
}
(t)
∣∣≤C

(
ε2q−1

η2q
+

εq

η
q
1
+

ησ
2

εσ+1 +η
σ−1
1

)
max
j=0...q

||K( j)||1 (63)

where
h(ξ ,s1,s2) = (∇x f1)φ(ξ ,s1,s2),

φ(ξ ,s1,s2) =
∫ s2

0
f1(ξ ,s1,τ)dτ.

Proof. We begin with the first convolution Kη2 ∗ (ε−1 f1−〈h〉12). Lemma 1 allows ones to write x(t) as

x(t) = w(t)+ εψ(t)+ εφ(t) (64)

where ψ(t) = ψ(w(t),ε−1t,ε−2t), φ(t) = φ(w(t),ε−1t,ε−2t), and ψ(t) is bounded independent of ε .

Kη2 ∗
(
ε
−1 f1−〈h〉12

)
(s1)

=
∫ s1+η2

s1−η2

Kη2(s1− s2) ·
(
ε
−1 f1(w(s2)+ εψ(s2)+ εφ(s2),ε

−1s2,ε
−2s2)−〈h〉12

)
ds2

=I1 + I2 +O(ε)

where we set

I1 =
∫ s1+η2

s1−η2

Kη2(s1− s2) ·
(
ε
−1 f1(w(s2)+ εψ(s2),ε

−1s2,ε
−2s2)

)
ds2

I2 =
∫ s1+η2

s1−η2

Kη2(s1− s2) ·
(
∇x f1(w(s2)+ εψ(s2),ε

−1s2,ε
−2s2)φ(s2)−〈h〉12

)
ds2.

(65)

Each term in the integrations is estimated in a similar way. Before we move on, recall from Theorem 2 that we identify
f1(x(s2),ε

−1s2,ε
−2s2) with f1(s2,ε

−1s2,ε
−2s2). In (65), this simplification is also allowed since by solving the 1st and

2nd tier, we know x(t) over [t−η1, t +η1] , and so does w(t)+ εψ(t). First, applying Lemma 5 to I1 with 〈 f1〉2 = 0
yields

|I1| ≤
(

ε2q−1

η
q
2

+
ησ

2
εσ+1

)
max
j=0...q

||K( j)||1. (66)

Second, for I2, we now return to consider convolving with Kη1 and Kη2 . Note that 〈h〉12 is a function of ξ (·). Theorem 1
yields that

sup
0≤t≤T

|w(t)−ξ (t)| ≤ sup
0≤t≤T

(|w(t)− x(t)|+ |x(t)−ξ (t)|)≤Cε.

Then we have 〈∇x f1 · φ −〈h〉12〉12 = 0+O(ε), and this allows us to use Lemma 6 and thus to get an estimate for∣∣Kη1 ∗ I2(·)
∣∣.
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∣∣Kη1 ∗ I2(·)
∣∣≤ C

(
ε2q

η
q
2
+

εq

η
q
1
+

ησ
2

εσ
+η

σ
1

)
max
j=0...q

||K( j)||1. (67)

Since we differentiate f1 with respect to x, ∂ r∇x f1 ·φ are continuous and bounded for |r|= 0, · · · ,σ . Putting estimates
(66) and (67) together, Theorem 3 follows.

We conclude this section by proving Proposition 1 which is the cornerstone of our numerical method.

Proof. (Proposition 1) The RHS of the estimate in Theorem 3 dominates that of Lemma 6. Therefore, having p (< σ)
vanishing moments yields (54).

Remark 4. Theorem 1 is only valid up to times T independent of ε . However, in special cases in which additional
cancellation or self averaging occurs, iterated averaging with kernels may give an consistent approximation for the
effective behavior of ODEs for longer time intervals.

5 Generalizations

This paper is focused on three scale problems modeled by

x′ = ε
−1 f1(x,ε−1t,ε−2t)+ f0(x,ε−1t,ε−2t), x(0) = x0,

restricting 〈 f1〉2 = 0. However, the discussions at the preceding sections suggest several possible generalizations.

5.1 Almost-periodic dynamics

The three-scale averaging theorem can be generalized to include dynamics in which the fast O(ε2) or O(ε) time
scales are not necessarily periodic but rather ergodic on a torus. The periodicity of s2 is only taken into account when
evaluating the remainder term r(t;ε) in (34). In the case of a torus, r(t;ε) can be written as a finite sum of periodic
functions whose periods are incommensurable. Thus, estimate (35) still holds. A similar generalization can be obtained
for almost-periodic functions whose spectrum is bounded away from zero. See, for example [13, 40].

5.2 The 3-tier HMM using slow charts

In the proof of Theorem 1, as well as while applying the expansion formalism, it was necessary to assume that the aver-
age of the singular O(ε−1) part in x′ vanishes, 〈 f1〉2 = 0. Nonetheless, it can be shown that the estimate of section 2.1
does hold, but only on a short time segment of O(ε) length, i.e.

sup
0≤t≤εT

|x(t)−ξ (t)|= O(ε).

In addition, the HMM procedure which utilizes the iterated averaging estimate indicates that in fact, in order to generate
a consistent approximation of a slow variable, one only needs to evaluate its derivative on a short time segment of order
ε . Then, if the dynamics on the intermediate O(ε) is again oscillatory (i.e. periodic or as above), additional averaging
on the ε time scale may average this divergence out. This self averaging property can be captured by the iterated
averaging procedure.

To this end, we first need to define slow variables. Formally, slow variables of a dynamical system involving three
or more time scales are defined as below [6].

Definition 1. A smooth time dependent function α : [0,T ] 7→ R is said to evolve on the εk time scale in [0,T ] for some
integer k and for 0 < ε ≤ ε0, if there exists a smooth function β : [0,T ] 7→ R and constants C0 and C1 such that
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sup
t∈[0,T ]

∣∣∣∣ d
dt

β (t)
∣∣∣∣≤C0ε

−k and sup
t∈[0,T ]

|α(t)−β (t)| ≤C1ε.

Definition 2. A function ξ (x) is said to evolve on the εk time scale along the trajectories of (6) in [0,T ] if the time
dependent function ξ (x(t;ε,x0)) evolves on the εk time scale in [0,T ]. For brevity, we will refer to variables that evolve
on the ε0 time scale as slow.

The 3-tier HMM using slow variables shares a similar strategy described in Section 1.3, which implements a recur-
sive two-level solver, but the fast oscillations we need to average over are not explicitly given. As [3], with the need
for identifying hidden slow variables, we approximate an averaged equation for slow variables by time averaging the
microscopic evolution using a suitable kernel. Recall that since the time scales O(ε2), O(ε1), and O(1) are considered,
we need to identify three sets of variables which evolve on each time scale respectively.

Suppose we obtain such a coordinate system using, e.g., the method described in [6]. We denote this system of
coordinates ξ = (ξ0,ξ1,ξ2), where ξi = (ξ 1

i , . . . ,ξ
di
i ) are the variables evolving on the ε i time scale, and ∑

2
i=0di = d.

One should take the coordinates of ξ as slow as possible, i.e., if φ evolves on both ε0 and ε1 time scales, then φ ∈ ξ0.
In terms of the new coordinates the ODE system takes the form

ξ
′
0 =ε

−1 f1(ξ0,ξ1,ξ2)+ f0(ξ0,ξ1,ξ2), 〈 f1〉2 = 0,

ξ
′
1 =ε

−1g1(ξ0,ξ1,ξ2)+g0(ξ0,ξ1,ξ2), 〈g1〉2 >C1 > 0,

ξ
′
2 =ε

−2h2(ξ0,ξ1,ξ2),

(68)

where 〈·〉2 denotes averaging with respect to the invariant measure for ξ2 on fixed ξ0 and ξ1 and C1 is independent
of ε , i.e., 〈g1〉2 is bounded away from 0 independent of ε . Note that both (68) and (??) are identical. We assume that
no resonances, passage through resonances or turning points exists as these may cause hidden slow variables and the
decomposition of states into time scales may not be trivial, as discussed in [6, 32].

Then outline of the 3-tier HMM with slow variables is as follows. For simplicity of notation, we suppress the
superscript in ξi. As before, we denote the descretized time tn,m = nh0 +mh1 and tn = nh0. We concentrate on the
forward Euler and a symmetric kernel.

1. Determination of slow variables:
Find a coordinate system ξ (x) = (ξ0(x),ξ1(x),ξ2(x)) where ξi are the variables evolving on the ε i time scale. See [6]
for details. Set n = 0.

2. Multilevel evolution:

• (0th tier) At t = tn, set X̃0 = x1,0 = xn.
a. (1st tier) For m = 0 to k (= η1/h1),

set t = tn,m = nh0 +mh1,
i. (2nd tier) Solve the full ODE (6) in t ∈ [tn,m−η2, tn,m +η2] with initial conditions X̃0.

ii. (2nd tier) Force estimation in O(ε1) scale: approximate ξ ′i (tn,m), i = 0,1 by

〈ξ ′i 〉η2(tn,m) = (Kη2 ∗ξ
′
i )(tn,m). (69)

b. (1st tier) x1,m+1 = x1,m +h1δx1, where δx1 is the least squares solution to the linear system

δx1 ·∇ξi = 〈ξ ′i 〉η2 , (70)

for all i = 0,1. Redefine X̃0 = x1,m+1.
c. End FOR
d. (1st tier) Force estimation in O(1) scale: approximate ξ ′0(tn), by

〈ξ ′0〉η1(tn) = Kη1 ∗
(
〈ξ ′0〉η2(·)

)
(tn). (71)

• (0th tier) xn+1 = xn +h0δx0, where δx0 is the least squares solution to the linear system

δx0 ·∇ξ0 = 〈ξ ′0〉η1 . (72)
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Set X̃0 = xn+1.

3. n = n+1 and repeat 2.

A rigorous proof of Section 5.2 is beyond the scope of the current paper. However, we refer the reader to [2, 3] for
designing multiscale algorithms that compute the effective behavior of two-scale highly oscillatory dynamical systems
by using slow variables. A related example is presented in Section 6.2.

5.3 Stochastic effects

The theory of asymptotic expansions and the nested-HMM integrators approach can be extended to a setting in which
the intermediate scale is stochastic. In fact, the only requirements for applying the numerical method 1.3 is that the
fastest O(ε2) scale is oscillatory - thus ensuring that the effective slow scale is deterministic, and that the intermediate
O(ε) time scale is ergodic. Consider (68). If the dynamics of ξ1 is stochastic, then, on the O(1) time scale averaging
with kernels needs to be replaced by an alternative method such as stochastic HMM [17, 44]. Such an example is
presented in Section 6.3.

6 Examples

In this section, we numerically apply the iterated HMM approach described in Section 1.3 to deterministic and stochas-
tic systems with three scales. A basic example which has the form of (6) is studied in Section 6.1. Following that, we
concentrate on examples which demonstrate the applicability of our method to the generalizations discussed in the pre-
vious section. The classical example of two coupled harmonic oscillators in resonance is illustrated in Section 6.2. In
this example, one of the slow variables has formally unbounded derivatives as ε→ 0, but it evolves on the ε0 time scale
due to a zero-average of ε−1 term. Section 6.3 is a deterministic example for the generalization discussed in Section 5.
The period of the fast oscillator on the O(ε2) time scale changes according to the ε scale variable. Lastly, an interesting
stochastic system whose period of the fastest oscillator changes randomly on the ε scale is given in Section 6.4.

Our multiscale algorithm is constructed as a family of multilevel (>2) solvers which resolve the different time scales
and use kernels to estimate the effective force of the slower scales. In Section 6.1 through 6.3, we use a symmetric C∞

kernel. We see that for a smooth kernel the computational cost is independent of ε — see [6] for discussions about
accuracy and efficiency. In the stochastic example 6.4, a K2,7 kernel is used.

6.1 Example 1

We begin with a simple example of a three-scale system, which is similar to (12)

x′ = ε
−1 [xsin(ε−2t)+ cos(ε−2t)sin2(ε−1t)

]
+ cos2(x)+ cos(ε−1t), x(0) = 1. (73)

Applying Theorem 1 to (73), we have an averaged equation for x(t),

x̄′ = 1/4+ cos2(x̄), x̄(0) = 1. (74)

The different three-time scales of (73) are illustrated in Figures 2 and 3. The solution x(t) undergoes small-amplitude
fast oscillations around the slow trajectory over the interval [0,10]. As proved in Section 2 and 4, the 3-tier HMM
approximates x̄(t) which remains close (of order ε) to the slow trajectory of x(t). We apply an exponential kernel
Kexp ∈K1,∞([−1,1]). See [3, 4, 20] for details. In Figure 3, we compare the results of 3-tier HMM with both x̄(t) and
x(t) obtained by the explicit Runge-Kutta 4th order method. HMM is about 12 times faster than RK4 applied to (73)
directly with the step size h = ε2/5. The computational effort of HMM is independent of ε once ηi and hi are fixed.
However, for classical numerical methods moving from ε = 10−3 to ε = 10−4 multiplies the computational effort by
100.
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Table 1 Section 6.1. Parameters for the 3-tier HMM of example 1.

ε = 10−3 ηi hi Method Kernel
2nd tier 18ε2 ε2/5 RK4 Kexp ∈K1,∞([−1,1])
1st tier 18ε ε1/5 RK2 Kexp ∈K1,∞([−1,1])
0th tier 10 1/3 RK2 -
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Fig. 2 Section 6.1. The dynamics of (73) on the (Left) ε2 time scale and (Right) ε1 time scale (ε = 10−3). Plots are obtained by RK4 with
h = ε2/100.
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Fig. 3 Section 6.1. The dynamics of (73) on the ε0 time scale. x(t) and x̄(t) are represented by a full line where both are almost indistin-
guishable. The results of 3-tier HMM are indicated by circles.

6.2 Example 2

Consider the following system describing two coupled harmonic oscillators in resonance [6].
x′1 =−ε−2y1 + ε−1y2

2−3x1x2
2,

y′1 = ε−2x1 + y1/2,
x′2 =−

(
ε−2 + ε−1

)
y2− x2,

y′2 =
(
ε−2 + ε−1

)
x2− y2 +2x2

1y2.

(75)

As depicted in Figure 4, all four state variables oscillate with a period which is of the order of ε2. Hence, x1, y1, x2 and
y2 evolve on the ε2 time scale.

In order to find a slow coordinate system, we change to polar coordinates (xi,yt) 7→ (Ii,ϕi), i = 1,2 and introduce a
polynomial variable θ that describes the 1:1 resonance between the oscillators
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I1 = x2
1 + y2

1,

I2 = x2
2 + y2

2,

θ = x1x2 + y1y2,

cosϕ1 = x1/
√

I1.

The corresponding time derivatives are

I′1 = 2ε
−1x1y2

2−6x2
1x2

2 + y2
1,

I′2 =−2I2 +4x2
1y2

2,

θ
′ = ε

−1(x2y2
2 + y1x2− x1y2)+(−0.5y1y2− x1x2−3x1x3

2 +2x2
1y1y2),

ϕ
′
1 = ε

−2.

It appears as if (I1, I2,θ ,ϕ1) is a chart in which ϕ1 evolves of the ε2 time scale, I1 and θ evolve on the ε time scale
while I2, which has a bounded derivative, evolves on the O(1) scale. The dynamics of the three slow variables I1, I2 and
θ on the O(ε) scale is depicted on the right in Figure 4. The figure suggests that both I1 and I2 are practically constant
on the ε scale. Indeed, it can be shown that the average of x1y2

2 on any segment of length O(ε) and larger is of order
ε2. Therefore, the ε−1 term in I′1 has a zero average. As a result, the averaged I′1 is bounded independent of ε and I1
evolves on the O(1) time scale, rather than the expected O(ε).

The time evolution of I1 and I2 on the slowest O(1) time scale is depicted in Figure 5. In addition, the figure shows
the results of the 3-tier HMM integrator described in Section 1.3. We refer to the solver integrating the ε i scale as the
i-th tier. The step-size and length of integration of the i-th tier are denoted hi, ηi, respectively. The HMM algorithm
approximates the slow O(1) dynamics using macroscopic steps which are independent of ε . The integration is done
using a fourth order method (in the macroscopic step size) and its efficiency is essentially independent of ε . Simulation
parameters are detailed in Table 2.

Table 2 Section 6.2. Parameters for the 3-tier HMM of example 2.

ε = 10−3 ηi hi Method Kernel
2nd tier 70.1ε2 ε2/10 RK4 Kexp ∈K1,∞([−1,1])
1st tier 70.1ε1 ε1/10 RK4 Kexp ∈K1,∞([−1,1])
0th tier 10 1/3 RK4 -
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Fig. 4 Section 6.2. The dynamics of (75) on the (Left) ε2 time scale and (Right) ε1 time scale. ε = 10−3.
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I1

I2

Fig. 5 Section 6.2. The dynamics of (75) on the ε0 time scale. Plus signs are results of the 3-tier HMM.

6.3 Example 3

Consider the following deterministic system describing two coupled fast harmonic oscillators and a slow dependent
mode. 

x′1 =−ε−2(1+0.5siny2)x2 +(1− z)(x2
1 + x2

2)
−1x1,

x′2 = ε−2(1+0.5siny2)x1,

y′1 =−ε−1y2−0.5(1+ x2
1− z)y1,

y′2 = ε−1y1,

z′ =−(1+0.5x2
1)z+ y2

2

(76)

with initial conditions (x1(0),x2(0),y1(0),y2(0),z(0)) = (1,0,1,1.5,0.5). The system describes two coupled harmonic
oscillators (x1,x2) and (y1,y2) with O(ε2) and O(ε) periods, respectively. However, the period of the fastest O(ε2)
oscillator depends on y2 and is therefore changing on the slower ε scale. Figure 6 (Left) demonstrates the different
period of x1 and x2 over 2.5× 10−7 duration with ε = 10−4. This is an example for the first generalization suggested
in Section 5 in which the fastest oscillation exhibits non-trivial dynamics of the intermediate ε scale.

The system admits three slow variables that evolve on the ε0 scale: z, and the square amplitudes of the harmonic
oscillators, I1 = x2

1 +x2
2 and I2 = y2

1 +y2
2. A numerical algorithm for identifying polynomial slow variables is described

in [3]. Hence, we have a coordinate system (ξ0,ξ1,ξ2) in which ξi evolves on the ε i time scale:

ξ0 = {I1, I2,z},
ξ1 = {y2},
ξ2 = ϕ ∈ S1.

As before, we refer to the solver integrating the ε i scale as the i-th tier. The step-size and length of integration of the
i-th tier are denoted hi, ηi, respectively. The dynamics of the slow variables I1, I2 and z, as well as the 3-tier HMM
approximation is depicted in Fig. 6 (Right). See Table 2 for simulation parameters.

Table 3 Section 6.3. Parameters for the 3-tier HMM of example 3.

ε = 10−4 ηi hi Method Kernel
2nd tier 75.1ε2 ε2/10 RK4 Kexp ∈K1,∞([−1,1])
1st tier 75.1ε1 ε1/10 RK2 Kexp ∈K1,∞([−1,1])
0th tier 10 1/2 RK2 -



Iterated averaging 25

0 0.5 1 1.5 2 2.5

x 10
−7

−1

0

1

3 3.0005 3.001 3.0015 3.002 3.0025

x 10
−4

−1

0

1

x1

x2

x1

x2

t
0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

I1

I2

z

t
10

Fig. 6 Section 6.3. (Left) The period of the fastest O(ε2) oscillator is changing on the slower ε scale. (Right) The dynamics of (76) on the
ε0 time scale. Plus signs: 3-tier HMM. Solid line: a reference solution using the RK4 method with step size h = ε2/50. HMM runs about
1150 times faster. ε = 10−4.

6.4 Example 4

Consider the following system in which a fast harmonic oscillator has a randomly changing period.
dx1 =−(ε−2(1+0.5siny)x2 + x1(1− z))dt,
dx2 = ε−2(1+0.5siny)x1dt,
dy =−ε−1ydt + ε−1/2zdBt ,

dz =−((1+ x2
1)z− y)dt

(77)

with initial conditions: (x1(0),x2(0),y(0),z(0)) = (2,0,1,1). In this example, (x1,x2) is a harmonic oscillator with an
O(ε2) period. However, the period changes randomly through a random variable y which is an Ornstein–Uhlenbeck
process evolving on the O(ε1) time scale. The system has two slow variables that evolve on the O(ε0) scale: z and
I1 = x2

1+x2
2. Thus, we find a coordinate system; ξ0 = {I1,z}, ξ1 = {y} and ξ2 = ϕ ∈ S1 in which ξi evolve on the O(ε i)

scale.
In order to demonstrate that the effective dynamics of z and I1 is indeed deterministic, Figure 7 (Left) shows the

standard deviations of I1 and z as a function of ε . As expected, it is of order
√

ε .
Fig. 7 (Right) compares the results computed by the proposed HMM with those by the semi-implicit Euler

method [33]. The sample averages of I1 and z against t are plotted with a solid line (Euler) and plus signs (HMM).
We estimate the errors of the method by comparing the standard deviation of sample paths. Taking ε = 10−4, for
the semi-implicit Euler, we take 1,000 paths over [0, 4] and decrease step size until the desired accuracy is reached,
(max{σ(I1)}+max{σ(z)})/2 = 0.1. This requires h = ε2/100. For the 3-tier HMM, we compute 100 independent
paths with h0=0.5 and calculate the standard deviation for each. The kernel was constructed from Chebyshev polyno-
mials to have exactly seven continuous derivatives and a single vanishing moment:

K2,7(t) = 4157010 χ[0,1](t)(42t2−44t +11)t8(t−1)8

where χ[0,1] is the characteristic function of the interval [0,1]. HMM parameters are shown in Table 3. With these pa-
rameters, HMM achieves (max{σ(I1)}+max{σ(z)})/2 = 0.025. Even if HMM has four times less standard deviation,
it runs about 1,000 times faster than the semi-implicit Euler. In addition, we note that the dominant error of 3-tier HMM
comes from h0 and decreases with smaller h0.
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Table 4 Section 6.4. Parameters for 3-tier HMM
ε = 10−4 ηi hi Method Kernel
2nd tier 50ε2 ε2/10 semi-implicit Euler K2,7 ∈K2,7([0,1])
1st tier 50ε1 ε1/10 Euler K2,7 ∈K2,7([0,1])
0th tier 10 1/10 RK2 -
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Fig. 7 Section 6.4. (Left) o-markers are max
t∈[0,4]

{σ(I1)}. x-markers are max
t∈[0,4]

{σ(z)}. The dashed line is a guide for the eye with slope 1/2.

(Right) The evolution of the slow variables in example 3. Plus signs: HMM. The solid line is a reference solution calculated as explained in
the text.

7 Summary

We developed an iterated averaging theory for oscillatory dynamical systems involving three widely separated time
scales and the relevant multiscale method for computing the effective behavior. In such multiple time scale problems,
we identified a new type of slow variables which do not have formally bounded derivatives. The effective behavior for
such variables are studied intensively in two ways: one is a formal approach via the tools of averaging theory, and the
other involves homogenization techniques based on singular perturbation expansions and consequent matching of vari-
ables. We showed that the results of the developed averaging theory can be efficiently approximated computationally
via convolutions of the dynamical system’s solutions with a smooth compactly supported kernel. With the developed
averaging strategies, we proposed an HMM which is built hierarchically from our previously developed HMMs for
two-scale problems. Several numerical examples were presented that demonstrate the efficacy of the proposed algo-
rithms.
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