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Abstract

The subject of this article is a review of all possible traission problems for electromagnetic
phenomena. In particular, we study the case of a perfectatied and a perfect conductor via a (for-
mal) limit with conductivity approaching zero or infinitynd discuss the expected regularity of the
involved unknowns. Finally, we formulate equivalent véidaal formulations for each considered

problem.
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The paper is organized as follows. After having introduced the nemgess#ational framework, we
turn our attention to electromagnetic phenomena and the partial differentiafi@os describing them:
Maxwell’'s equations. This is done in section 2. Section 3 and section 4 fatdke analysis of
transmission problems. The goal of each section is to obtain an equivaléational formulation for

as few unknowns as possible. We start with the natural transmission praleteveen two conducting
materials and deduce the equations describing the other transmission prabieofsthis. From a

mathematical point of view, the governing equations modeling a perfectieleotrductor or perfectly
dielectric media may then be obtained via a limiting process.
Before we look at mathematics, we need to agree on some notations. Wetdefiokbowing vector
spaces of.?-integrable functions



H, (R*) = {veLj(R%: Vve L} (R*?} 1)

loc
Hioo(Vx,RY) = {ve L} (R®)?: V xwve L (R} )
Hioe(V,R?) = {veli (R°)?: V.velLj (R%}. 3)

We need further the following two definitions

Definition 1.1 1. Angular brackets-, - ) denote a duality pairing between the space of test functions
2(R?) and the its topological dual - the space of distributigi{R®)’. By definition, Z(R3)’
comprises all continuous functionals &n(R?). If the functional can be identified with aly, -
function, the duality pairing reduces to the integral,

ve L (R, 0 € 2(R3): (v, ) = /vgpdaz = /vgpda: + /vgpda:,
R3 o Q
for an arbitrary decompositiolR? = Q; UT U Q.

2. Letn be the outer normal of the boundary of a Lipschitz donfainc R3 andR? = Q; UT U Q.
Foru € H(V-,R?) we define

u] = ulg, uy = ulq, .
We define the jump in the normal trace as
[Ynu] = Ynu1 — ynuz.
Analogously, we define far € H(V x,R3?)

[Yypu] =n xu; —n X us.

2 Maxwell's equations

Maxwell’'s equations are a set of eight partial differential equationsdbatribe the interaction of the
electric field E and the magnetic fieldd within arbitrary medium and relate them to their sources,
charge density and current density.

0B
EFE = ——
V x 5
oD :
H = —+J+J"™
V x at—i'— +
V-D = p+p"™?
v-B = 0.

The equations are known as Faraday’s law of induction, &mp law with Maxwell’s correction and
the two Gaul3’ laws for the electric and the magnetic field.
We restrict our analysis to time harmonic electromagnetic waves where the tiraedidery of all
guantities is harmonic '
v(x,t) = o(x)e!"
andw > 0 denotes the angular frequency. In this case Maxwell’'s equations simplify to
VxE = —jwB
VxH = jwuD+J+J"
AV D — ﬁ+ﬁimp
V-B = 0.



To simplify the notation, we will drop the tildes in what follows.

The Maxwell's equations are completed with relations betwBeand E, and B and H. The so
called constitutive relations correspond physically to specifying the rsspaf bound charge and bound
current to the fields. They describe how much polarization and magnetizati@terial acquires in the
presence of an electromagnetic field [5].

In a linear, isotropic, nondispersive, uniform material, the relations are:

D =cFE B=uH.

A lossy medium comprises free, mobile charge. The electric currentddystese moving elec-
trons depends on material properties and on the present electric figltinéar material one assumes
the validity of Ohm’s law:

J=0oF.
The constitutive laws yield
VxE = —jwuH
VxH = jueE+J+Jm
V-eE = p+p™
V-uH = 0
J = oF.

Notice that we have used the constitutive equations to eliminate the electric andtodlyxes but
have included the Ohm’s law explicitly. This reflects the plan to keep the permittiabd permeability
u fixed, but let conductivityy — 0 oro — cc.

What makes Maxwell’s equations difficult is that none of these equationdépéndent. To end up
with as many equations as unknowns we need to clarify their mutual dependen

In what concerns the impressed sources we assume the so-called itpefijation to hold true

i v Jz'mp _ jwpimp .

Thus, we notice that the validity of

VXE = —jwuH 4
VxH = jweE+J+J™ (5)
V-eE = p+p™ (6)

J = oF (7

yield formally Gaul?’ law for the magnetic field and the continuity equation that finksunknowns
andJ:

V-uH = 0 (8)
—-V-J = jwp. 9)

The continuity equation ties together dynamics and statics, it says that thecambe of an electric
currentJ is a variation of a free charge densityn time.

Although we complete our list of equations always by (8) and (9) we keegnd that (4)-(7) yield
10 (scalar) equations for (scalar) unknownsE, H, J, p.

As every media is lossy, it is reasonable to analyze Maxwell's equations iy toedia first and
deduce all other scenarios from this case.

Let R3 be partitioned into two disjoint, open domaif, 2, with common boundary’, R? =
Q1 UT U Qq. Unless otherwise stated, we assume the permeapility well as the permittivity to
piecewise continuous, bounded and bounded away from zero:

pi € C(Q), 0<po<p <p<oo, i=1,2

g € %(Ql), O0<egg<eg <1 <0, 1=1,2. (10)

3



The conductivity is supposed to be piecewise constant such that

0<0’1<OO7 Ql
g =
0< o9 <oo, 9

Thus, we are looking for

(11)

E Q H Q J Q Q
E— 1, 1 H— 1, 1 J— 1, 1 o= P1, 1 (12)
E27 Q2 H27 QQ J21 QQ P2, QQ
in all overR3 with:
VxE = —jwuH '
VxH = jweE+J+ J"P
V-eE = p+pm
J = oFE (13)
V-uH = 0
—V-J = jwp,

where the two last equations are implicitly satisfied.
We will begin with the fundamental questions:

¢ In what function spaces do we look for a solution?
e What do we call a solution?

e Is it possible to further reduce the number of unknowns?

2.1 Mathematical Setting

Before we can formulate a mathematical task we have to find a functional siinguits the problem.
In what concerns the impressed sources we assume throughout ére pap
PP € Li,.(R?) — VTP = ",

JmP ¢ 2 (R3)?  with [y J™P] =0.  (14)

Finite energy considerations of the electromagnetic field lead to the followingreznent [8]

V compactK C R3: /Edea: < 00.
K

2
loc

Thus, it is natural to require??oc-integrability of E and H. Faraday’s law implies then thé
integrability of V x E. We look thus for a solution in the following function spaces:

(E,H,J,p) e <Hloc(Vx,R3) x L2.(R%)3 x (2(R3)3) x _@(R3)’) . (15)

As long as the conductivities are bounded oo < oo our functional setting allows for more con-
clusions:

1. Ohm’s law tells us thaf is in L7 _(R?)3, and the magnetic field is as regular as the electric field
H c H(Vx,R3).

2. Moreover, due to Faraday’s law we know implicitly

xcR?:

for a.e. VxE=—jupH = pH € Hj(V-,R?).



We summarize: a solution to (13) satisfies forBle 2(R3)3, ¢ € 2(R3)

/(v < B)-Fdz+ (ypEor, F) — —jw/(,uH)~Fda:
R3 R3
/(VXE).Fda}—i—([’yDH](SDF) = jw/(€E)'FdiB+/J'Fdw+/Jimp~Fda:
R3 R3 R3 R3

- [eB)-Voiz = o+ [irode

R3 R3
J -Fdx = oF - Fdx
o]

[ (9 k)b b (e, 0) = 0
R3

/J-vwdm = jwlp,9).

R3

Matching terms yields the transmission conditions

VFe2®):  (pElr,F) = 0 = [ypE = 0
YFea®): (hpHWrF) = 0 = [pE = 0 (16)
Vi € Z(R?): ((rmpHlor,¢) = 0 = [ywuH] = 0.

We emphasize that there is no information about the regularity ofe E). Consequently, Gaul?’ law
has to be understood in distributional sense and we cannot concluiteudtyrof the normal component

of the electric fluxc E. This will be illustrated with simple examples at the end of section 3. In general,
the normal component of the electric flux may jump at the boundary

V€ 2(R3): ([yneElor,v) #0 = [vneE] =pr. a7)
and therefore < @(R?’)’ exhibits, in general, a surface charge contribution.

Due to the functional setting, some of the equations in (13) are going to bieshiisa weak sense
and others pointwise [4]. We rewrite setting (15) in a more compact form,
= _jw<MH7F>7 [’YDE] =0
= jw<€E7F> + <J7F> + <szp7F>

)
)

—(E. V) = {p,¥) + (o)
) = (oE,F)

~(uH,VY) = 0
(I, V) = jwip,d).

By spacing the two sets of equations, we emphasize that the first fouramianply automatically the
last two.

3 Transmission between two conductors

We recall what we have learned about a Maxwell solution for the transmigsoblem between two
conductors.



0<o0y<o00,e1, u1 §21 = conductor 1

0 <09 <00, €9, ua 2 = conductor 2

Definition 3.1 For the conductor/conductor problem with< o1,09 < oo, a Maxwell solutionE €
Hioo(VX,R3), H,J € L? (R?)3, pc 2(R3) satisfies for allFF ¢ 2(R3)3, ¢ € 2(R?) the equations:

loc

(VxE,F) = —jw(uH,F) (18)
(H,V x F) = jw(eE, F)+(J,F)+(J™_ F) (19)
(B, V) = (p,) + (0", ) (20)
(J,F) (0E,F) (21)
—(pH,Vy) = 0 (22)
(J, V) = jw(p, ). (23)

We refer to them as Faraday’s lafd8), Amgere’s law(19), Gaul3’ law(20), Ohm’s law(21), Gaul3’ law
for the magnetic field22) and the continuity equatiof23).

The goal of this section is to set up a reduced system of equations farmksswns, namel®, J
andp. A closer look at Faraday’s law (18) and Agmg’s law (19) clarifies where this idea comes from:
we can substitute one equation into the other and eliminate one quantity [3]Tli¢l.new system is
shown to yield a Maxwell solution in the sense of definition 3.1.

Our functional setting is such that we fulfill Faraday’s law (18) almostyavkere. Provided) > 0,
we can substitute the magnetic field

H=(—jw) (0)'V x E
into Amperes’s law (19) to obtain
/(MIVXE) ‘V><Fdw:w2/5E-Fdw—jw/J-Fdw—jw/J"mp‘Fda:.

R3 R3 R3 R3

In its abbreviated version the second order equation reads
(W7'V x E,V x F) =w?(cE,F) — jw(J,F) — ju(J™ F). (24)
Lemma 3.2 If E € Hy,.(Vx,R?) satisfies for allFF € 2(R3)3
(—jw) N p 'V x B,V x F) = jw(¢E, F) — jw(oE, F) — jw(J"", F)
and we defineJ andp by

VFe9RS (0E,F) = (J,F),
Voe 2[R jwip) = (J,Vy)
thend € L? (R3)3,p € 2(R3) and(E, J, p) is a Maxwell solution in the sense of definiti@L

loc

Proof: The only equation that is left to check is GaulR’ law. The special choicesbfuactionsF =
Vi € 2(R3)3 yields

—WHeE, V) + jwloE, V) + ju(J™ Vi) = 0.
Under consideration of (14) and the definitionfve end up with Gaul3’ law

—(E, V) = (p,9)) + (0™, ).



Example 3.3 Let us assume the material data is piecewise constant and that the eletttibds zero
divergence, i.eV - E; = 0inQ;, p; = p"? =0, i = 1,2. For the special choice of test functions
F = V¢ € 2(R?)3 the second order equatiq@4) shrinks to

Jjw((jwe +0)E, V1)) =0.
Thus, the following identity holds true
jw(em - Ey —en- Ey)+ (oin-E1 —oyn - Ey) =0.

Unless the material data and the electric field fulfill

€1

= 2, (25)
£9 g9
n-E = ‘n.E,
€2

the normal components of the electric flux and the normal componetits efectric current jump
pF:El’I’L'El—EQTI,-EQ = Uln'El—UgTL-EQZ—jpr.

Example 3.4 AppendixA is devoted to a detailed study of uniform plane waves. In seci@)we use
the analytical solution of the scattering problem to affirm what we learned totample3.3. unless(25)
holds, the oblique incidence of an parallel polarized plane wave causasidiace charge distribution
on the interface between two conducting medias.

4 Transmission problems

The transmission between two conductors serves now as a starting poalik éoher scenarios. We
introduce the characteristic functions.

Definition 4.1 Let R = Q; UT' U Qs.

( ) 1, e ( ) 0, e
r) = €r) =
X 0, xe X2 1, e

Perfect dielectric. We say that domaif, is a perfect dielectric itbo — 0, say inL°°-norm. If the
corresponding electric field stays uniformly bounded.f)., then the corresponding curreft — 0 in
the same norm. This implies that the corresponding free charge 0 in the sense of distribution3 his
does not imply that that the corresponding free charge> 0in L2 . For this,Jo — 0 must converge to

zero in the strongeH,.(V-, Q2)-norm. For instance, functiofi,(z) = L sin nz converges uniformly

n
to zero, its derivativef) (x) = cos nz converges to zero in the sense of distributions but, obviously, not
inthe L7 . sense.

In the limit, J = J1x1. Under the additional assumption thit € H;,.(V-, 1), well known trace
theorem allow us to conclude

V-J = jwpixi+ jwprdr,
jwpr = m-Ji.

Consulting the continuity equation for this case, we learn WiatJ exhibits the surface charge
density at the interfacE

Vi€ 2R3 1 (J, V) = jw(pix1,¥) + jw(pror, v).

It is important to notice



1. The electromagnetic field does not vanish anywhere, neitter ivor in 2.
2. The unknown charge density reads- p1x1 + pror.

3. Due to the regularity assumption about the current we alsohdvec H(V-, ;) and
0 = jwleE,] + [Jn] = jwleEy] —m-J1 = [eE,] =pr. (26)

Example 4.2 We verify the assumptions for the special case of uniform plane wavesgatiqg through
dielectric material. This is done in subsectignl.

Perfect conductor. We say that domaife, is a perfect conductor, f; — oco. We shall assume that
1. o1 Ex; converges in? (£2;) to zero.

loc
2. Ex; converges inH,.(Vx, ;) to zero.
Due to Faraday’s law the latter property implies that the magnetic Fietcbnverges in.2 (€);) to zero.

loc

This limiting behavior impacts on all Maxwell equations. The electric field cayje®to step func-
tion E = Eyxs. Esxe € Hio(Vx,R?) and, due to the continuity of the trace operatgs, !, the
transmission condition (16) translates into a boundary condition

V x E2 = —jwugﬂg with ’)/DEQ =0.

As oy < oo we know from Amgre’s law thatH » € H(V %, 23). Under the additional assumption

eoEy € H(V-,$)y), the step functions
H = H2X2 S LZQOC(R3)37
eE = 621;2)(2 € L%OC(R3)3

result in the following distributions

VxH = <jw€2E2+J2+J;mp> x2 +Jror,

V-eE = <p2+p§mp) X2 + pror,
where the surface distributions correspond to the following traces
pr = mn-ekE, (27)
Jr = nx H,. (28)

Finally, let us analyze Ohm’s law. Contrary to the perfect dielectric cdsiself picks up a surface
contribution

J = Joxo+ Jpor
= o3FEox2 + Jror,
V-J = jwpaxz+ jwprdr + Vr - Jror.
It is important to notice
1. The electromagnetic field vanishe<1n.

2. The unknown charge density reads- p1x1 + pror.

3. The unknown current density readls= Jsy2 + Jror.

Example 4.3 We verify the assumptions for the special case of uniform plane waves. Tusdsn
subsectionA.2.

In the next sections we apply the reasoning for the perfect dielectripenfielct conductor to all pos-
sible transmission problems. Analogously to the conductor/conductor pmotle formulate equivalent
systems of equations with less unknowns.

'[3]



4.1 Transmission between a conductor and a perfect dielectr

Let Q; be filled with a conducting material with < o7 < oo, and let{2, be occupied by a perfect
dielectricoy = 0.

0< o1 <00, €1, 1 1 = conductor

o9 =0, 9, o Qo = perfect dielectric

We are looking for

E € Hp(Vx,R?)

H e L}, (R’
J=01Eix1 € L}, (R%?

p € (R,

Definition 4.4 E € H;,.(Vx,R?), H,J € L? (R%)3,p € 2(R3) is a solution to the transmission

loc

problem between the conductQi and the perfect dielectrifs if
= —jw(uH,F) ]
jw(eE,F)+ (J,F)+ (J"P F)

)
)

_<€E> VW = <107 ¢> + <pimp7 ¢>
) = (o1Eix1, F)

—(uH,V¢) = 0
(J, V) = jwp,v)
forall F € 2(R3)3, ¢ € 2(R3).
More explicitly, if we represent the unknown quantities= J1x; andp = p1x1 + pror, we obtain

(VxE,F) = —jw(uH,F)

(H,V x F) = jw(eE,F)+ (Jix1, F)+ (J"",F)

—(eE,VY) = (pix1,¥) + ("7, ) + {pror, ¥)
(Jixi, F) = (o1E1x1, F)

—(uH,Vy¢) = 0
(Jix1, V) = jwlpixi,¥) +  jw{pror,¥)
forall F € 2(R3)3,v¢ € 2(R3).
Lemma 4.5 If E € Hy,.(Vx,R?) satisfies for allFF € 2(R3)3
(1™'V x B,V x F) = w*¢E, F) — ju(o1Eix1, F) — jw(J"™", F)
and we defing andp by
VFE.@(RB)‘S <J,F> = <O’1E1X1,F>,
Ve 2R jwlipy) = (J,Vi)

thenE, J, pis a solution to the transmission problem between a conduct@y iand a perfect dielectric
in Q5 in the sense of definitiod.4.

Proof: The only equation that is left to check is Gaul®’ law for the electric field. Teeial choice of
test functionsF = V¢ € 2(R?)3 yields

—weE, V) = —jwlo1 E1x1, Vi) — jw(J™ V) .
The definition ofp and (14) yield Gaul3’ law
—(eE, V) = (p, ) + (0", 1)) .



4.2 Transmission between a perfect conductor and a conduato

Let 2, be occupied by a perfect conductor, and{lgtbe a conductor witlh < o9 < 0.

o1 =00, €1, 1§21 = perfect conductor

0 <oy <00, €9, g Sy = conductor

We are looking for

E=Ey;x; € Hp(Vx,R?
H =Eyx, € L}, (R%?3
J=Jdox2+Jror € (Q(RS)B),
p=pax2+pror € PR3 .

All equations are partial differential equations(¥a only, and we drop the characteristic function to
simplify the notations.

Definition 4.6 A Maxwell solution satisfies

(V% By F) = —juwlpsHy, F) |
<H2,V><F> = jw<52E2,F>+<J7F>+(szp,F>
—(e2E2, V) = (p,¢) + (p"",¢)

(J,F) = (09Ey, F) — (Jror, F)

—(p2H2, Vi) = 0
<J7VQ1Z)> = JW<PM/)>

forall F € 2(R3)3,v¢ € 2(R3).
More explicitly, withJ = Jox2 + Jror andp = pax2 + prdor we obtain

(V X EQ,F> = —jw<,u,2H2,F> '

<H2,VXF> = jw(EgEg,F>+<J2,F>+<Jlmp,F> + <JF5F,F>

—(e2E2, Vi) = (pa, ) + (p"", 1)) + (prdr,¥)
(Jo, F) = (02FE9, F)

—(p2H2, V) = 0
(J2, V) = jw(p2,¥) + ((jwpr + Vr - Jr) dr, ¢)

forall F € 2(R3)3,v¢ € 2(R3).
Lemma 4.7 If E; € Hy,.(Vx,R?) satisfies for allF € 2(R?)3

(7' X B3,V x F) = we3Bs, F) — jw(os By, F) — jw(J ™, F)
—jw(Jror, F)

and we defingJ andp by

VFec2R) (Jo,F) = (02Ey F),
Vwe Q(Rg) JW</)7¢> = <J27v¢> - <VF'JF6F7¢>

then By € Hyoo(VX,R3),Jy € L2 (R?),p € 2(R3) solve the transmission problem between a

loc

conductor inQ2; and a perfect conductor if2; in the sense of definitiod.6.

10



Proof: The only equation that is left to check is GaulR’ law. The special choicesbfuactionsF’ =
Vi € 2(R3)3 yields

~w*(e2E2, V) + jw(o2 B2, Vi) + jw(J"P, Vi) + jw(Jrér, Vi) = 0.
The definition ofp2 and (14) yield Gaul3’ law

—(e2 B2, V) = (p2,¥) + (0", ) + {pror, ¥) .

4.3 Transmission between a perfect conductor and a dieledtr

Let ©2; be occupied by a perfectly conducting material with= oc and let(), be a perfect dielectric,
i.e. o9 = 0.

o1 =00, €1, 1§21 = perfect conductor

09 =0, €9, ua Qo = perfect dielectric

The governing equations are found by a limiting process whose startingipe@ither transmission
problem 4.1 or transmission problem 4.2.

1. The perfect dielectric occupi€y and the conductor occupi€y . We recall the governing equa-
tions for this case:

(VX E F) = —jw(uH,F)

(H,V x F) = jw(eE,F)+ (Jix1, F)+ (J"",F)

—(eE,VY) = (pix1,¥) + (0", ¢) +  (pror, ¥)
(Jix1, F) = (o1Eix1, F)

~(uH, V) = 0
<J1X17vw> - ]W<91X17¢> + JW<PF5F77/J>
Foro, — oo, 21 becomes a perfect conductor. Due to our assumptions Faraday’s lesniritm

a variational formulation for a boundary value problem. so it does the 'Gawfor the magnetic
field, while the volume current densiff; vanishes

(J1,F) = 0
(VX Eq, F) = —jw(usH>, F)
—(u2Hy,Vip) = 0.

Due to the step properties of the magnetic field and the electric flux edeigplaw and Gaul3’ law
exhibit surface distributions

(H9,V X F) = jw(esEy, F)+ (J" F)
—(e2BE2, V) = (p2,¢) + ("7, )

Consequently, the solution has to fulfill

<JF5F7F>

+
+ (prér, ) .

0 = jw(p2,¥) + ((jwpr + Vr - Jr)dr, 1)

forall ¢» € 2(€1). This means that the charge dengityalso vanishes.

11



2. The perfect conductor occupi€s and the conductor occupi€k. The governing equations for
this case look as follows.

(V% By F) = —jwlinHs,F) |
<H2,VXF> = jw<82E2,F>+<J2,F>—|—<szp,F> -+ <JF5F,F>
+

_<€2E27 V¢> = <p2a ¢> + <pimp7 ¢> <pF(SFa Q/)>
(Jo, F) = (02FE, F)
—(ueH2, Vi) = 0
(Jo, V) = jwlp2,9) + ((Jwpr + Vr - Jr)ér, ¢)
Foroe — 0, Q5 turns in a dielectric. This limiting process impacts on Ohm’s law in such a way

that
(Jo,F)=0 =Jy3=0.

The same arguments as before lead us to a vanishing volume charge density

In the end, we obtain the same set of equations from the different limitingpses:

<V XEQ,F> = —jw<u2H2,F> A
<H2,VXF> = jq<€2E2,F>+<Jlmp,F> + <JF5F,F>
—(e2E2, V) = (p"P,¢) +  (pror, )

—(peH2, V) = 0
0 = ((jwpr + Vr-Jr)or,v).

The unknowns of the problem are

E=E;x; € H(Vx,R?

H=H,x, € L*R?®?3
Jror € (.@(R?’)g),
pror € 2(R3.

Definition 4.8 Functions above is a Maxwell solution if

(VX Ey, F) = —ju(usH;, F)
(Hy,V x F) = jw(esE, F) + (Jrér, F)

—(e9E9, V) = 0 +  (pror, )
—(u2Hy,Vip) = 0

The continuity equation is satisfied in the sense of distributions,
jw(pror,v) = —(Vr - Jror, ) .
Lemma 4.9 If E € H(Vx,R?), Jr € (2(R?)?) satisfies for allF € 2(R%)?, 4 € 9(R?)
(127 IV x E9,V x F) = w*(e9 By, F) — jw(Jrop, F)
and we define the surface charge density by
jw(prér, v) = (Jrdr, V).

(E, pr) is a solution to the transmission problem between a perfect conduct@ iand a perfect
dielectric in€)5 in the sense of the previous definition.
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Proof: The only equation that is left to check is GaulR’ law. The special choicesbfuactionsF’ =
Vi € 2(R3)3 yields

—w?(e9Ey, V) — jw(Jror, Vip) =
= *w<52E2,V¢)> +J<VI‘ ‘JF5F,7/1> =

Together with the definition gfr we obtain
(e2E2, V1) = (pror,v).

0

Example 4.10 We would like to conclude this section with an example that illustrates the continuity
equation.

The electromagnetic fields in a rectangular waveguide are given by

0
E = C“L% sin (Z2) sin(wt — B2)
0

2 gin (%) sin(wt — fBz)

H =
C cos (%) cos(wt — f32)

The walls of the waveguide are assumed to be perfect conductors. |dtimmagnetic field above
satisfies Maxwell's equations with boundary conditions

Vx E = —uag—i[ vypFE = 0
VxH = 87? "}/DH = JF
V- (eE) = 0 m(EE) = pr
V- (uH) = 0 Mm(pH) = 0

if the coefficients of the solution are such that
a Vs a
B2+ = =wleu—. (29)
Vs a ™

As the electromagnetic field is explicitly known, we can determine the unknawrdary dataor

13



y=0: Jpr = —H, e.+H, €y
y=0 y=0
= C’@ sin <E) sin(wt — Bz)e, + C cos <E) cos(wt — fz)e,
0 a a
y=> Jr = H; e, —H, €Ex
y=b y=b
= —C@ sin (E) sin(wt — Bz)e, — C cos (E) cos(wt — Bz)ey
7r a a
r=a: Jp = H. ey=—Ccos(wt—pz)ey
x=0: Jp = —H, = —C cos(wt — fz)e, .

The surface charge density on the walls is numerically equal to the compoir normal to the wall.
Along the walls

wa ., (TxT\ .
y=0: pr=cEyly—0 = C’au7 sin (;) sin(wt — (2) (30)
wa ., (TxT\ .
y=b: pr=—cbl|y— = —Cs;L? sin (;) sin(wt — fBz) (31)
r=a: pr=—cbylp—qg = 0 (32)
r=0: pr=—cBEyl,—0 = 0. (33)

Now, we check if we get the same result from the continuity equation. Tlaeesudivergence of
corresponds to a differentiation with respect:tat at the left and ta at the right wall of the waveguide,
on the other two walls it is a differentiation with respect:tgy

yzO: VF-JF = C

—;a sin (%) cos(wt — Bz) — Cg sin (%) cos(wt — (3z)
= —C <62a + 7T) sin (%) cos(wt — fz)

T a
—p- _ B*a . (mx ™. /T
y=b: Vp-Jr = 6’7 sin (7) cos(wt — Bz) + C’E sin (?) cos(wt — 32)
B B%a  w\ . (7x
= ( - + . sm( . )cos(wt Bz)

C
r=a: Vp-Jpr = 0
xr=0: Vp-Jr = 0

We apply the continuity equation to obtain the surface charge distribution:

1 2

y=20 pr=—Vp-Jpr = —g <ﬂa+7r> sin <E) cos(wt — (32)
w w 7r a a
1 2

y== pr=—Vr-Jpr = g (ﬁa + 7r> sin (E) cos(wt — Bz)
w w 7 a a
1

r=a por=—Vr-Jpr = 0
w
1

z=0 pr = *VF . Jr = 0
w

This corresponds t@B0)-(33) if we considel(29). O
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4.4 Transmission between two dielectrics

We still miss the transmission problem between two dielectrics.

01 =0, e1, u1 3 = perfect dielectric 1

09 =0, €9, uo Qo = perfect dielectric 2
The unknowns of the problem are only the electromagnetic field components
E ¢ H(Vx,R%
H ¢ L*R3)3.

The governing equations are found again by the limiting process. A stadingip again transmis-
sion problem 4.1

(VX E,F) = —jw(uH,F)

(H,V x F) = jw(eE,F)+ (Jix1, F)+ (J"",F)

—(eE,VY) = (pix1,¥) + ("7, ) + {pror, ¥)
(Jixi, F) = (o1E1x1, F)

—(uH, Vi) = 0
(Jix1, V) = jw(pixi,¥) +  jw(pror,v)

Foro; — 0, 1 becomes a perfect dielectric which means that Ohm'’s law becomes
(Jixi,F) = 0
=0 = jw(pixi,¥) + jwlpror, ).
The governing equations read

<VXE7F> = _jw<:U'H7F> .
(H.VxF) = jw(cE,F)+(J"F)
_<€E7 v¢> = <p7lmp7 ¢>
—(uH,Vy) = 0

Definition 4.11 A Maxwell solution is a functional o (R?)3, 2(R3), with
(VxE,F) = —jw(uH,F) )
(HV xF) = jwleE,F)+ (J™ F)
—(eE,VY) = (o, ¢)
—(uH,Vyp) = 0.

Lemma 4.12 If E € H(Vx,R?) satisfies for allF ¢ 2(R?)3, ¢ € 2(R?)

(W'V x E,V x F) = W*cE, F) — jw(J™ F),

it is a solution to the transmission problem between two perfect dielectfi iand €2, in the sense of
the previous definition.

Proof: The only equation that is left to check is GaulR’ law. The special choicesbfuactionsF =
Vi € 2(R3)3 yields A
—(eE, V) = (p"",¢).
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5 Conclusion

The note discusses all possible transmition problems for the Maxwell egsiafibre case of a perfect
dielectric or a perfect conductor is interpreted through a limiting procasesmonding to conductivity
o — 0 oro — oo. The discussion is only formal, an actual analysis would require “hamha®s”
and investigation of the limits. The obtained limiting cases are illustrated with the tatane waves
presented in the Appendix. The presented discussion is intended to &ciciammon phrase that many
technical papers begin witlwe shall understand the Maxwell equations in the distributional senge...
related problem concerns the equivalence of Maxwell equations stoderin the distributional sense
discussed here and the integral form of the Maxwell's equations involiieg@nd surface integrals, see
e.g. [8], [2]. The two formulations are equivalent in the sense thidl, additional regularity assump-
tions they yield the same classical equations and the same interface conditiang. G@st knowledge,
we are not aware of an equivalence proof that would not use the asditiegularity assumptions, like
for the grad-div case discussed in [1].

All discussed cases admit the standard variational formulation in terms tiefezd only [6] which
is fully equivalent to the whole Maxwell systewithoutany extra regularity assumptions.
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A Uniform plane waves

The introduction here follows more or less the lines of [8]. The goal of thitien is to derive the so-
called uniform plane waves. These functions are smooth solutions to tm@hiarMaxwell equations
in a linear, isotropic, homogeneous medium that comprises no net fregechas 0. These types of
regions are quite general ones and include the practical cases afpfree § = 0) as well as most
conductors and dielectrics. Maxwell’s equations for this region become

OH
E = —p=r
VX "ot
OF
VxH = e—+J
X 58t+
V-H = 0
V-E = 0
J = oF.

We restrict ourselves to solutions with harmonic time dependency

E(xz,t) = 133(:5)6]'#
H(x,t) = H(x)e"".

Thus, the above system reduces to equations in terms of the phasors only

VxE = —uwH (34)
VxH = swE+J (35)
V-H = 0 (36)
V-E = 0 (37)

J = oE. (38)

Whenever it is clear that we are dealing with the phasors, we will skip the fildesthe notations. We
assume the electric field vector to have the following representation

E(z,y,2) = Ex(2)ex, (39)
where the complex phasor is supposed to be smooth. Due to

dE,(2)
dz €

V x Ex(z)e; =
Faraday'’s law yield the magnetic field vector to be
H(z,y,z) = Hy(z)e,. (40)

Obviously the GauRR’ laws (36)+(37) are automatically fulfilled

dHy(z) - 0
dy

dE.(z) 0
dy ’

They do not contribute to the solution any further. Thus, the ansatz (B9 (34)-(35) into ordinary
scalar valued differential equations:

Pl oty (41)
df;yz@ — cwEy(2) + 0Ba(2). (42)
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As we restrict ourselves to smooth solutions, instead of solving (41)v¢é3}an consider the second
order equations

TEE) — slew+ ) B (43)
2
dgjj;z) = —Mw(gw—i—a)Hy(z) (44)

that are deduced by another differentiation and substitution. We will upecias symboh? for the
quantity jw(uo + jwpue) such that

7" = jw(po + jwpe)
= —wlue + jwuo . (45)
The positive square root of?, ~, will be referred to as the propagation constant of the medium for

reasons that will become clear in the following section. Siptés a complex number, the square root
of 72 will also be a complex number, which we write as

V= a8 = /R T 709 (46)

It will be of particular interest to exploit the dependendy ) that is why we need explicit expressions for
«a andg. They are easily found by solving a quadratic equation and ignoringlpes®mplex solutions:

1

a = <—; (wzus —wpV w?e? + 02>> ’ (47)
= wpe—a’. (48)
The general complex valued solution to (43) and (44) are of the form
E, = Ele 4+ E "= E;re_aze—jﬁz + Ec_eazejﬁz (49)
H, = Hfe 4+ H e? = He P 1 H el (50)

where the phasor&l, H., EX, E- are undetermined complex constants. Before interpreting these
solutions, we notice that from (41) it follows that the phasors are related:

Ef _ jen

ae = o= (51)
E- Jjw )

e = =i (52)

The quantityjwp/~ has the units of ohms since it is a ratio of electric field intensity (volts per meter)
to magnetic field intensity (amperes per meter). It will be called the intrinsic impedafithe medium
and denoted by the symbgl The intrinsic impedancg as well asE, E. are complex numbers and
we introduce the following notation for its magnitude and angle

o= el (53)
Ef = Ete (54)
E; = E*te. (55)

The plane wave solutions to (34)-(38) become

E(z,t) = Ey(2)ee,

= E+efazej(7ﬁz+9+)ejmex + E~ el (B2407) giwt e (56)
H(z,t) = Hy(2)e"e,
+ -
_ ie—azej(—ﬁz+9+—9n)€jwtey B ieazej(ﬁz+9_—9n)ejwtey ) (57)
n )

Let us analyze its geometrical character:
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The fields have got wave character in both, time and space.

The field vectorsE and H at each point in space lie in thg plane.

The spatial part of the field vectors (magnitude and phase) is indepenideosition in each of
these planes. This is why the waves are called uniform.

The energy propagates due to the cross profiugt H in z direction.

The physical interpretation of the time-domain results (55), (56) is partlgutaportant because we
find estimates for the limiting cases— 0, o0 — .

A.1 Plane waves in lossless medium

In this section we concentrate on a uniform forward traveling plane wave

E(z,t) = E+€_az€j(_ﬂz+9+)ej°"tex
+

Hzt) = Zl oot g
n

and analyze its behavior fer — 0. The limiting caser = 0 characterizes the material that has no
conductivity, i.e. a perfect dielectric. We recall

v(o) = alo)+ jp(0)
a = (; (wz,us — wpy w?e? + 02>> ’
f? = wpe—a?.

« depends continuously fromso that

lim a(c) =0 and [ =w/ue. (58)

o—0

For a forward traveling plane wave we gain the following estimates forl = [a,b],0 < a < b

PP
eI (=B2407T) juwt

IN

lin% |E(z,t)] lin% |E| ‘e_a“|

IN

|ET| lim le=*%| = |E*]|. (59)

This means that the electromagnetic field is uniformly bounded and moreoseieittric current con-
verges uniformly to zero i.e. on every compact interval I = [a, b]

lir% loE(z,t)] < 11H%)U|E+| =0. (60)

In lossless media uniform plane waves propagate harmonically

E(z,t) = Etel (=007 giwte (61)
Bt . .
H(zt) = Tej(fﬁzwﬂejwtey 7 (62)

whereg = w,/ue andd,, = 0. The latter means that electric and magnetic wave are in time phase.
The same reasoning applies to the backward-traveling waves.
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A.2 Perfect conductor

In this section we concentrate on a uniform forward traveling plane wave

E(z,t) = Ete el civte,
+

H(z,t) = ie—azej(—ﬁz+9+—9n)6jwtey
n

and analyze its behavior for — oco. In lossy media, the propagation constartas a nonzero real part:

1
o = 1 w2ue — 242 2) )’ 0
= 5 He —wpN wee® + o >0.

This results always in an exponential decrease of the phasors.

The second difference between lossless and lossy media concerngrith@cinmpedance of the
medium. 7 is complex and the phase angle of the intrinsic impedahceesults in the electric and
magnetic fields of time phase by the phase afigle

We would like to consider now the limiting behavior of an electromagnetic plane Veaw — oc.
The limiting case is a model for a perfectly conducting material i.e. a materialewsductivity is so
hight that free charge moves instantly, without time delay. We recalkiltgpends continuously from
o so that

lim a(o) = co. (63)

g—00
For a forward traveling plane wave we gain the following estimates forl = [a,b],0 < a < b < 00:

lim |E(z,t)| < |EY| lim e =0

g—0Q ag—00

E
lim ‘d (Z’t)‘

o—00 dz

lim |[cE(z,t)] < |ET| lim ge 2V = (.
ag—00 a—00

|ET| lim ae™®* =0

g—00

Due to the first two limits the electric field component as well as its curl consargdormly to zero.
Due to Faraday’s law the magnetic field component converges uniformlydo Eaally, the last equa-
tion says that within a perfect electric conductor the electric current vasigniformly. Therefore, no
electromagnetic wave exists within a perfect conductor.

A.3 Scattering of an oblique incident plane wave

We would like to exploit the analytical knowledge of the uniform plane wavegeta feeling for scat-
tering problems. We consider two different materials with datau,, o1 andes, s, 02. The boundary
between these two medias is assumed to be plane. The plane of incidencelathegntaining the
propagation vector of the incident wave and the normal to the boundaguricase it is the:z plane.
The polarization of the plane wave, i.e. the angle of incidence, is arbittasyhowever always possible
to represent the plane wave as a superposition of a so-called parddliered and a perpendicular po-
larized plane wave. For perpendicular polarization, the incident eleafc\fector is perpendicular to
the plane of incidence, as shown in the picture below. For parallel pdiariz#he incident electric field
vector is parallel to or in the plane of incidence. Let us have a closer lbtileascattering of parallel
polarized and perpendicular polarized plane waves. The represerétive solutions in either case is
taken from [8].

1. Parallel Polarization.
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Figure 1: Parallel polarization

€y

For the case of parallel polarization the phasors of the inciienH ;, the reflected®,., H, and
the transmitted electromagnetic fidiel, H ; read

E; = E;(cos(;)e, — sin(b;)e,) e (s 0n)z+cos(9:)z)
H, = Ee—m (sin(@i)x—&-cos(ei)z)ey

n
E, = —E,(cos(f;)e, — sin(f;)e,) e (= sin:)+eos(6:)z)
H, = %671 (—sin(0;)z+cos(0;)z) ey

m
E, = E;(cos(by)e, —sin(h;)e,) e~ 725100 )z-+cos(6:)2)
H, = Ee—yg(sin(et)x—i-cos(ét)z) e, .

m

Due to the boundary conditions

YyoE; +vypE, = ~pE;
vyoH; +vypH, = ~pH;

one deduces the following conditions upon the coefficients

sin QZ . Y2
sinf,  m

Ei+E+ Tef'yl sinf;x Ee*’ﬁ sin 0x )
m 2

Now, we check the jumps in the normal component of the vector fields c E andec E respec-
tively.

Normal traces of thenagnetic flux [n-uH| = 0forall 0 < 01, 02 < oo because this polarization
has no normal component.

Normal traces of thelectric flux [n - ¢ E] and theelectric current [n - 0 E]: ,

n-(E;+E,)|.co = —(B;+ E;)sinfe b
= —7’71 Sin Q’L'Me_wl sin 911’ — 7@2 sin etEte_WQ sin et:E
n 2 71
172
= 12 & (n - Ey|.—0) -
m2n
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Figure 2: Perpenticular polarization

€

v ey (OH—e,
\\\ HI‘
. B
o/ | iz
,,,,,,,,,,,, ,}f;’,@,,,,,,,,,,,
€1, 11,01 0: // €2, 2,02
A,
A closer look at the coefficient reveals
1
My _ ( Jwp o2+ jwes jwpus (oo +jW€)> 2
271 o1+ jwer  jwpz  jwpa(or + jwe)
02+ jwe
o1+ jwer
Forw > 0, we conclude
e [n-uH] =0 forevery media.
e If £ = 2L, [n-cE] = 0 for lossy media, becausk nm =2,
o If &L =21 [n.oE] =0 forlossy media, becau nm =22,
o If 2L 75 L, [n - cE] # 0 for lossy media, becaus%%z—j o
o If £ # 2L, [n - oE] # 0 for lossy media, becauéﬁgz—f # 2.

o [nn- 5E] = 0 for lossless media, becau%;%1 =2.

2. Perpendicular Polarization.

For the case of perpendicular polarization the phasors of the inclde® ;, the reflected®,., H -
and the transmitted electromagnetic fidld, H ; read

E, = Eie—wl(sin(@i)ac—&-cos(ei)z)ey
E; .

H; = —(cos(b;)e, —sin(b;)e,) e 1 n0)r+cos(@:)z)
m

E, = Ere'yl(— sin(Gi)z—&—cos(Gi)z)ey
E i

H, = = (cos(t;)e, — sin(f;)e,) ¢~ sin:)a+eos(6:)z)
m

E, = Ete—vg(sin(Gt):v+cos(9t)z)ey
E )

H;, = —(cos(b;)e, —sin(f;)e.) e 12in0)ztcos(0)2)
m

Due to the boundary conditions
YwE;i+vpE, = ypE:
yH; +vpH, = ~ypH;
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one deduces the following conditions upon the coefficients

sin 6; Yo
sin 0, Y
E;+ E, e~ sinfx Ee—'yg sin Oz

m Tl
Now, we check the jumps in the normal component of the vector fields o E andec E respec-
tively.

e [n - uH] = 0 for every media, because

n-(Hi+H,)|,—0 = _$ Singie—msme,x
m
e _@B S'n Gtge—’)ﬂ sin Oy x
m 7 72
22
= 72 1 (n - Hy|.—0) -
m
A closer look at the coefficient reveals
Y2 _ M2
mmn n1

o [n-cE] =[n-ocE] =0, because the normal component of the electric field vanishes.
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B Survey: Interface conditions

Transmission problem between two conductors

0<O’1<OO,€1,/1,1

7 = conductor 1

VxE
VxH
V-D
V-B

v-J

0<U2<OO7€27/’['2

Q) = conductor 2

= —jwB + 0or [nx E]=0
= jwD+J + O0ér [nx H) =0
= p +  pror [n- D] = pr
=0 + 00p n-B]=0
= —jwp — Jwprdr [n - J] = —jwpr

Transmission problem between two perfect dielectrics

01=0,¢1, 11

Q, = perfect dielectric 1

Qo = perfect dielectric 2

o2 =0, €2, p2

VxE = —jwB +
VxH = jwD +
V-D = 0 +
V-B = 0 +

05I‘ [n X E]
0(5{‘ [’I’L X H]
0(5{* [n : D] =
0(5r [n . B]

Transmission problem between a conductor and a perfect dielectric

0<o1 <0061, 1

)y = conductor

o o oo

VxE =
VxH =
V-D =
V-B =

V.-J, =

o2 =0, g2, u2

—jwB
JwD + J1xq,

P1XQ
0

+ o+ +

—Jwpx, -

Qo = perfect dielectric

0(5{‘ [TL E]
05F [’I’L H]
pror [n- D]
O(Sp [n B]
jwpf‘(gw n-J;

Transmission problem between a perfect conductor and a conduot

VXEQ
VXHQ
V- Dy
V.- By

V- Js

g1 =

00, €1, U1

Q, = perfect conductor

0<02<OO752,,U2

)y = conductor

—jwBs + 0dp n x Ey
jwDo+Jo + Jrir n X Hy
P2 +  pror n- Dy
0 + 061" n- 32
—jwp2 — (jprJrVr'Jr) or n-Jo

24
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—jwpr

Jr
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—jwpr — Vr-Jr



Transmission problem between a perfect conductor and a perfeatielectric

VXEQ
VXHQ
V- Dgy
V.- By

01 = 00, €1, M1

Q, = perfect conductor

o2 =0, €2, u2

—jwBy
JwDy

0

0

_|_
_|_
+
_|_

0or
Jror
P or
0dp

(jwpr + Vr - Jr) or

25

Q) = perfect dielectric

’I’LXEQ
’I’I,XHQ
’I’I,‘DQ
’I’L'BQ

Vr-Jr

Jr
oT

—Jjwpr
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