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Abstract

The subject of this article is a review of all possible transmission problems for electromagnetic
phenomena. In particular, we study the case of a perfect dielectric and a perfect conductor via a (for-
mal) limit with conductivity approaching zero or infinity, and discuss the expected regularity of the
involved unknowns. Finally, we formulate equivalent variational formulations for each considered
problem.
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1 Overview

The paper is organized as follows. After having introduced the necessary notational framework, we
turn our attention to electromagnetic phenomena and the partial differential equations describing them:
Maxwell’s equations. This is done in section 2. Section 3 and section 4 focuson the analysis of
transmission problems. The goal of each section is to obtain an equivalent variational formulation for
as few unknowns as possible. We start with the natural transmission problem between two conducting
materials and deduce the equations describing the other transmission problemsout of this. From a
mathematical point of view, the governing equations modeling a perfect electric conductor or perfectly
dielectric media may then be obtained via a limiting process.

Before we look at mathematics, we need to agree on some notations. We definethe following vector
spaces ofL2-integrable functions
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H1
loc(R

3) =
{

v ∈ L2
loc(R

3) : ∇v ∈ L2
loc(R

3)3
}

(1)

Hloc(∇×,R3) =
{

v ∈ L2
loc(R

3)3 : ∇× v ∈ L2
loc(R

3)3
}

(2)

Hloc(∇·,R3) =
{

v ∈ L2
loc(R

3)3 : ∇ · v ∈ L2
loc(R

3)
}

. (3)

We need further the following two definitions

Definition 1.1 1. Angular brackets〈 · , · 〉 denote a duality pairing between the space of test functions
D(R3) and the its topological dual - the space of distributionD(R3)′. By definition,D(R3)′

comprises all continuous functionals onD(R3). If the functional can be identified with anL2
loc-

function, the duality pairing reduces to the integral,

v ∈ L2
loc(R

3), ϕ ∈ D(R3) : 〈v, ϕ〉 =

∫

R3

vϕ dx =

∫

Ω1

vϕ dx +

∫

Ω2

vϕ dx ,

for an arbitrary decompositionR3 = Ω1 ∪ Γ ∪ Ω2.

2. Letn be the outer normal of the boundary of a Lipschitz domainΩ1 ⊂ R
3 andR

3 = Ω1 ∪Γ∪Ω2.
For u ∈ H(∇·,R3) we define

u1 = u|Ω1
u2 = u|Ω2

.

We define the jump in the normal trace as

[γnu] = γnu1 − γnu2 .

Analogously, we define foru ∈ H(∇×,R3)

[γDu] = n × u1 − n × u2 .

2 Maxwell’s equations

Maxwell’s equations are a set of eight partial differential equations thatdescribe the interaction of the
electric fieldE and the magnetic fieldH within arbitrary medium and relate them to their sources,
charge density and current density.

∇× E = −∂B

∂t

∇× H =
∂D

∂t
+ J + J

imp

∇ · D = ρ+ ρimp

∇ · B = 0 .

The equations are known as Faraday’s law of induction, Ampère’s law with Maxwell’s correction and
the two Gauß’ laws for the electric and the magnetic field.

We restrict our analysis to time harmonic electromagnetic waves where the time dependency of all
quantities is harmonic

v(x, t) = ṽ(x)ejωt

andω > 0 denotes the angular frequency. In this case Maxwell’s equations simplify to

∇× Ẽ = −jωB̃

∇× H̃ = jωD̃ + J̃ + J̃
imp

∇ · D̃ = ρ̃+ ρ̃imp

∇ · B̃ = 0 .
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To simplify the notation, we will drop the tildes in what follows.
The Maxwell’s equations are completed with relations betweenD andE, andB andH. The so

called constitutive relations correspond physically to specifying the response of bound charge and bound
current to the fields. They describe how much polarization and magnetizationa material acquires in the
presence of an electromagnetic field [5].

In a linear, isotropic, nondispersive, uniform material, the relations are:

D = εE B = µH .

A lossy medium comprises free, mobile charge. The electric current caused by these moving elec-
trons depends on material properties and on the present electric field. For linear material one assumes
the validity of Ohm’s law:

J = σE .

The constitutive laws yield

∇× E = −jωµH

∇× H = jωεE + J + J
imp

∇ · εE = ρ+ ρimp

∇ · µH = 0

J = σE .

Notice that we have used the constitutive equations to eliminate the electric and magnetic fluxes but
have included the Ohm’s law explicitly. This reflects the plan to keep the permittivityε and permeability
µ fixed, but let conductivityσ → 0 or σ → ∞.

What makes Maxwell’s equations difficult is that none of these equations is independent. To end up
with as many equations as unknowns we need to clarify their mutual dependence.

In what concerns the impressed sources we assume the so-called continuity equation to hold true

−∇ · J imp = jωρimp .

Thus, we notice that the validity of

∇× E = −jωµH (4)

∇× H = jωεE + J + J
imp (5)

∇ · εE = ρ+ ρimp (6)

J = σE (7)

yield formally Gauß’ law for the magnetic field and the continuity equation that linksthe unknownsρ
andJ :

∇ · µH = 0 (8)

−∇ · J = jωρ . (9)

The continuity equation ties together dynamics and statics, it says that the only source of an electric
currentJ is a variation of a free charge densityρ in time.

Although we complete our list of equations always by (8) and (9) we keep inmind that (4)-(7) yield
10 (scalar) equations for (scalar)10 unknownsE,H,J , ρ.

As every media is lossy, it is reasonable to analyze Maxwell’s equations in lossy media first and
deduce all other scenarios from this case.

Let R
3 be partitioned into two disjoint, open domainsΩ1,Ω2 with common boundaryΓ, R

3 =
Ω1 ∪ Γ ∪ Ω2. Unless otherwise stated, we assume the permeabilityµ as well as the permittivityε to
piecewise continuous, bounded and bounded away from zero:

µi ∈ C (Ωi), 0 < µ0 ≤ µi ≤ µ1 <∞, i = 1, 2
εi ∈ C (Ωi), 0 < ε0 ≤ εi ≤ ε1 <∞, i = 1, 2 .

(10)
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The conductivity is supposed to be piecewise constant such that

σ =

{

0 < σ1 <∞, Ω1

0 < σ2 <∞, Ω2

. (11)

Thus, we are looking for

E =

{

E1, Ω1

E2, Ω2

H =

{

H1, Ω1

H2, Ω2

J =

{

J1, Ω1

J2, Ω2

ρ =

{

ρ1, Ω1

ρ2, Ω2

(12)

in all overR3 with:

∇× E = −jωµH

∇× H = jωεE + J + J
imp

∇ · εE = ρ+ ρimp

J = σE

∇ · µH = 0
−∇ · J = jωρ ,

(13)

where the two last equations are implicitly satisfied.

We will begin with the fundamental questions:

• In what function spaces do we look for a solution?

• What do we call a solution?

• Is it possible to further reduce the number of unknowns?

2.1 Mathematical Setting

Before we can formulate a mathematical task we have to find a functional settingthat suits the problem.
In what concerns the impressed sources we assume throughout the paper

ρimp ∈ L2
loc(R

3) , J
imp ∈ L2

loc(R
3)3 with −∇ · J imp = jωρimp, [γnJ

imp] = 0 . (14)

Finite energy considerations of the electromagnetic field lead to the following requirement [8]

∀ compactK ⊂ R
3 :

∣

∣

∣

∣

∣

∣

∫

K

E × H dx

∣

∣

∣

∣

∣

∣

<∞ .

Thus, it is natural to requireL2
loc-integrability of E and H. Faraday’s law implies then theL2

loc-
integrability of∇× E. We look thus for a solution in the following function spaces:

(E,H,J , ρ) ∈
(

Hloc(∇×,R3) × L2
loc(R

3)3 ×
(

D(R3)3
)′ × D(R3)′

)

. (15)

As long as the conductivities are boundedσ1, σ2 < ∞ our functional setting allows for more con-
clusions:

1. Ohm’s law tells us thatJ is in L2
loc(R

3)3, and the magnetic field is as regular as the electric field
H ∈ H(∇×,R3).

2. Moreover, due to Faraday’s law we know implicitly

for a.e. x ∈ R
3 : ∇× E = −jωµH ⇒ µH ∈ Hloc(∇·,R3) .
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We summarize: a solution to (13) satisfies for allF ∈ D(R3)3, ψ ∈ D(R3)

∫

R3

(∇× E) · F dx + 〈[γDE]δΓ,F 〉 = −jω
∫

R3

(µH) · F dx

∫

R3

(∇× E) · F dx + 〈[γDH]δΓ,F 〉 = jω

∫

R3

(εE) · F dx +

∫

R3

J · F dx +

∫

R3

J
imp · F dx

−
∫

R3

(εE) · ∇ψ dx = 〈ρ, ψ〉 +

∫

R3

ρimpψ dx

∫

R3

J · F dx =

∫

R3

σE · F dx

∫

R3

(∇ · µH)ψ dx − 〈[γnµH]δΓ, ψ〉 = 0

∫

R3

J · ∇ψ dx = jω〈ρ, ψ〉 .

Matching terms yields the transmission conditions

∀F ∈ D(R3)3 : 〈[γDE]δΓ,F 〉 = 0 ⇒ [γDE] = 0

∀F ∈ D(R3)3 : 〈[γDH]δΓ,F 〉 = 0 ⇒ [γDE] = 0

∀ψ ∈ D(R3) : 〈[γnµH]δΓ, ψ〉 = 0 ⇒ [γnµH] = 0 .
(16)

We emphasize that there is no information about the regularity of∇ · (εE). Consequently, Gauß’ law
has to be understood in distributional sense and we cannot conclude continuity of the normal component
of the electric fluxεE. This will be illustrated with simple examples at the end of section 3. In general,
the normal component of the electric flux may jump at the boundary

∀ψ ∈ D(R3) : 〈[γnεE]δΓ, ψ〉 6= 0 ⇒ [γnεE] = ρΓ . (17)

and thereforeρ ∈ D(R3)′ exhibits, in general, a surface charge contribution.

Due to the functional setting, some of the equations in (13) are going to be satisfied in a weak sense
and others pointwise [4]. We rewrite setting (15) in a more compact form,

〈∇ × E,F 〉 = −jω〈µH ,F 〉, [γDE] = 0

〈H,∇× F 〉 = jω〈εE,F 〉 + 〈J ,F 〉 + 〈J imp,F 〉
−〈εE,∇ψ〉 = 〈ρ, ψ〉 + 〈ρimp, ψ〉

〈J ,F 〉 = 〈σE,F 〉

−〈µH,∇ψ〉 = 0

〈J ,∇ψ〉 = jω〈ρ, ψ〉 .

By spacing the two sets of equations, we emphasize that the first four equations imply automatically the
last two.

3 Transmission between two conductors

We recall what we have learned about a Maxwell solution for the transmission problem between two
conductors.
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0 < σ1 <∞, ε1, µ1 Ω1 = 
ondu
tor 1

0 < σ2 <∞, ε2, µ2 Ω2 = 
ondu
tor 2

Definition 3.1 For the conductor/conductor problem with0 < σ1, σ2 < ∞, a Maxwell solutionE ∈
Hloc(∇×,R3), H,J ∈ L2

loc(R
3)3, ρ ∈ D(R3)′ satisfies for allF ∈ D(R3)3,ψ ∈ D(R3) the equations:

〈∇ × E,F 〉 = −jω〈µH ,F 〉 (18)

〈H,∇× F 〉 = jω〈εE,F 〉 + 〈J ,F 〉 + 〈J imp,F 〉 (19)

−〈εE,∇ψ〉 = 〈ρ, ψ〉 + 〈ρimp, ψ〉 (20)

〈J ,F 〉 = 〈σE,F 〉 (21)

−〈µH,∇ψ〉 = 0 (22)

〈J ,∇ψ〉 = jω〈ρ, ψ〉 . (23)

We refer to them as Faraday’s law(18), Amp̀ere’s law(19), Gauß’ law(20), Ohm’s law(21), Gauß’ law
for the magnetic field(22)and the continuity equation(23).

The goal of this section is to set up a reduced system of equations for lessunknowns, namelyE,J
andρ. A closer look at Faraday’s law (18) and Ampère’s law (19) clarifies where this idea comes from:
we can substitute one equation into the other and eliminate one quantity [3], [7].The new system is
shown to yield a Maxwell solution in the sense of definition 3.1.

Our functional setting is such that we fulfill Faraday’s law (18) almost everywhere. Providedω > 0,
we can substitute the magnetic field

H = (−jω)−1(µ)−1∇× E

into Ampères’s law (19) to obtain
∫

R3

(

µ−1∇× E
)

· ∇ × F dx = ω2

∫

R3

εE · F dx − jω

∫

R3

J · F dx − jω

∫

R3

J
imp · F dx .

In its abbreviated version the second order equation reads

〈µ−1∇× E,∇× F 〉 = ω2〈εE,F 〉 − jω〈J ,F 〉 − jω〈J imp,F 〉 . (24)

Lemma 3.2 If E ∈ Hloc(∇×,R3) satisfies for allF ∈ D(R3)3

(−jω)−1〈µ−1∇× E,∇× F 〉 = jω〈εE,F 〉 − jω〈σE,F 〉 − jω〈J imp,F 〉

and we defineJ andρ by

∀ F ∈ D(R3)3 〈σE,F 〉 = 〈J ,F 〉 ,
∀ ϕ ∈ D(R3) jω〈ρ, ψ〉 = 〈J ,∇ψ〉

thenJ ∈ L2
loc(R

3)3, ρ ∈ D(R3)′ and(E,J , ρ) is a Maxwell solution in the sense of definition3.1.

Proof: The only equation that is left to check is Gauß’ law. The special choice of test functionsF =
∇ψ ∈ D(R3)3 yields

−ω2〈εE,∇ψ〉 + jω〈σE,∇ψ〉 + jω〈J imp,∇ψ〉 = 0 .

Under consideration of (14) and the definition ofρ, we end up with Gauß’ law

−〈εE,∇ψ〉 = 〈ρ, ψ〉 + 〈ρimp, ψ〉 .

�
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Example 3.3 Let us assume the material data is piecewise constant and that the electric field has zero
divergence, i.e.∇ · Ei = 0 in Ωi, ρi = ρimp = 0, i = 1, 2. For the special choice of test functions
F = ∇ψ ∈ D(R3)3 the second order equation(24)shrinks to

jω〈(jωε+ σ)E,∇ψ〉 = 0 .

Thus, the following identity holds true

jω(ε1n · E1 − ε2n · E2) + (σ1n · E1 − σ2n · E2) = 0 .

Unless the material data and the electric field fulfill

ε1
ε2

=
σ1

σ2
, (25)

n · E1 =
ε1
ε2

n · E2 ,

the normal components of the electric flux and the normal components ofthe electric current jump

ρΓ = ε1n · E1 − ε2n · E2 ⇒ σ1n · E1 − σ2n · E2 = −jωρΓ .

Example 3.4 AppendixA is devoted to a detailed study of uniform plane waves. In sectionA.3, we use
the analytical solution of the scattering problem to affirm what we learned form example3.3: unless(25)
holds, the oblique incidence of an parallel polarized plane wave causes an surface charge distribution
on the interface between two conducting medias.

4 Transmission problems

The transmission between two conductors serves now as a starting point for all other scenarios. We
introduce the characteristic functions.

Definition 4.1 Let R = Ω1 ∪ Γ ∪ Ω2.

χ1(x) =

{

1, x ∈ Ω1

0, x ∈ Ω2

χ2(x) =

{

0, x ∈ Ω1

1, x ∈ Ω2

.

Perfect dielectric. We say that domainΩ2 is a perfect dielectric ifσ2 → 0, say inL∞-norm. If the
corresponding electric field stays uniformly bounded inL2

loc, then the corresponding currentJ2 → 0 in
the same norm. This implies that the corresponding free chargeρ2 → 0 in the sense of distributions. This
does not imply that that the corresponding free chargeρ2 → 0 in L2

loc. For this,J2 → 0 must converge to
zero in the strongerHloc(∇·,Ω2)-norm. For instance, functionfn(x) = 1

n
sinnx converges uniformly

to zero, its derivativef ′n(x) = cosnx converges to zero in the sense of distributions but, obviously, not
in theL2

loc sense.
In the limit, J = J1χ1. Under the additional assumption thatJ1 ∈ Hloc(∇·,Ω1), well known trace

theorem allow us to conclude

∇ · J = jωρ1χ1 + jωρΓδΓ ,

jωρΓ = n · J1 .

Consulting the continuity equation for this case, we learn that∇ · J exhibits the surface charge
density at the interfaceΓ

∀ψ ∈ D(R3) : 〈J ,∇ψ〉 = jω〈ρ1χ1, ψ〉 + jω〈ρΓδΓ, ψ〉 .

It is important to notice
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1. The electromagnetic field does not vanish anywhere, neither inΩ1 nor inΩ2.

2. The unknown charge density readsρ = ρ1χ1 + ρΓδΓ.

3. Due to the regularity assumption about the current we also haveε1E1 ∈ H(∇·,Ω1) and

0 = jω[εEn] + [Jn] = jω[εEn] − n · J1 ⇒ [εEn] = ρΓ . (26)

Example 4.2 We verify the assumptions for the special case of uniform plane waves propagating through
dielectric material. This is done in subsectionA.1.

Perfect conductor. We say that domainΩ1 is a perfect conductor, ifσ1 → ∞. We shall assume that

1. σ1Eχ1 converges inL2
loc(Ω1) to zero.

2. Eχ1 converges inHloc(∇×,Ω1) to zero.

Due to Faraday’s law the latter property implies that the magnetic fieldH converges inL2
loc(Ω1) to zero.

This limiting behavior impacts on all Maxwell equations. The electric field converges to step func-
tion E = E2χ2. E2χ2 ∈ Hloc(∇×,R3) and, due to the continuity of the trace operator,γD

1, the
transmission condition (16) translates into a boundary condition

∇× E2 = −jωµ2H2 with γDE2 = 0 .

As σ2 < ∞ we know from Amp̀ere’s law thatH2 ∈ H(∇×,Ω2). Under the additional assumption
ε2E2 ∈ H(∇·,Ω2), the step functions

H = H2χ2 ∈ L2
loc(R

3)3 ,

εE = ε2E2χ2 ∈ L2
loc(R

3)3

result in the following distributions

∇× H =
(

jωε2E2 + J2 + J
imp
2

)

χ2 + JΓδΓ ,

∇ · εE =
(

ρ2 + ρimp
2

)

χ2 + ρΓδΓ ,

where the surface distributions correspond to the following traces

ρΓ = n · ε2E2 (27)

JΓ = n × H2 . (28)

Finally, let us analyze Ohm’s law. Contrary to the perfect dielectric case,J itself picks up a surface
contribution

J = J2χ2 + JΓδΓ

= σ2E2χ2 + JΓδΓ ,

∇ · J = jωρ2χ2 + jωρΓδΓ + ∇Γ · JΓδΓ .

It is important to notice

1. The electromagnetic field vanishes inΩ1.

2. The unknown charge density readsρ = ρ1χ1 + ρΓδΓ.

3. The unknown current density readsJ = J2χ2 + JΓδΓ.

Example 4.3 We verify the assumptions for the special case of uniform plane waves. This isdone in
subsectionA.2.

In the next sections we apply the reasoning for the perfect dielectric andperfect conductor to all pos-
sible transmission problems. Analogously to the conductor/conductor problem, we formulate equivalent
systems of equations with less unknowns.

1[3]
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4.1 Transmission between a conductor and a perfect dielectric

Let Ω1 be filled with a conducting material with0 < σ1 < ∞, and letΩ2 be occupied by a perfect
dielectricσ2 = 0.

0 < σ1 <∞, ε1, µ1 Ω1 = 
ondu
tor

σ2 = 0, ε2, µ2 Ω2 = perfe
t diele
tri


We are looking for

E ∈ Hloc(∇×,R3)

H ∈ L2
loc(R

3)3

J = σ1E1χ1 ∈ L2
loc(R

3)3

ρ ∈ D(R3)′ .

Definition 4.4 E ∈ Hloc(∇×,R3), H,J ∈ L2
loc(R

3)3, ρ ∈ D(R3)′ is a solution to the transmission
problem between the conductorΩ1 and the perfect dielectricΩ2 if

〈∇ × E,F 〉 = −jω〈µH ,F 〉
〈H,∇× F 〉 = jω〈εE,F 〉 + 〈J ,F 〉 + 〈J imp,F 〉
−〈εE,∇ψ〉 = 〈ρ, ψ〉 + 〈ρimp, ψ〉

〈J ,F 〉 = 〈σ1E1χ1,F 〉

−〈µH,∇ψ〉 = 0
〈J ,∇ψ〉 = jω〈ρ, ψ〉

for all F ∈ D(R3)3, ψ ∈ D(R3).
More explicitly, if we represent the unknown quantitiesJ = J1χ1 andρ = ρ1χ1 + ρΓδΓ, we obtain

〈∇ × E,F 〉 = −jω〈µH ,F 〉
〈H,∇× F 〉 = jω〈εE,F 〉 + 〈J1χ1,F 〉 + 〈J imp,F 〉
−〈εE,∇ψ〉 = 〈ρ1χ1, ψ〉 + 〈ρimp, ψ〉 + 〈ρΓδΓ, ψ〉
〈J1χ1,F 〉 = 〈σ1E1χ1,F 〉

−〈µH,∇ψ〉 = 0
〈J1χ1,∇ψ〉 = jω〈ρ1χ1, ψ〉 + jω〈ρΓδΓ, ψ〉

for all F ∈ D(R3)3, ψ ∈ D(R3).

Lemma 4.5 If E ∈ Hloc(∇×,R3) satisfies for allF ∈ D(R3)3

〈µ−1∇× E,∇× F 〉 = ω2〈εE,F 〉 − jω〈σ1E1χ1,F 〉 − jω〈J imp,F 〉
and we defineJ andρ by

∀ F ∈ D(R3)3 〈J ,F 〉 = 〈σ1E1χ1,F 〉 ,
∀ ψ ∈ D(R3) jω〈ρ, ψ〉 = 〈J ,∇ψ〉

thenE,J , ρ is a solution to the transmission problem between a conductor inΩ1 and a perfect dielectric
in Ω2 in the sense of definition4.4.

Proof: The only equation that is left to check is Gauß’ law for the electric field. The special choice of
test functionsF = ∇ψ ∈ D(R3)3 yields

−ω2〈εE,∇ψ〉 = −jω〈σ1E1χ1,∇ψ〉 − jω〈J imp,∇ψ〉 .
The definition ofρ and (14) yield Gauß’ law

−〈εE,∇ψ〉 = 〈ρ, ψ〉 + 〈ρimp, ψ〉 .
�
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4.2 Transmission between a perfect conductor and a conductor

Let Ω1 be occupied by a perfect conductor, and letΩ2 be a conductor with0 < σ2 <∞.

σ1 = ∞, ε1, µ1 Ω1 = perfe
t 
ondu
tor

0 < σ2 <∞, ε2, µ2 Ω2 = 
ondu
tor

We are looking for

E = E2χ2 ∈ Hloc(∇×,R3)

H = E2χ2 ∈ L2
loc(R

3)3

J = J2χ2 + JΓδΓ ∈
(

D(R3)3
)′

ρ = ρ2χ2 + ρΓδΓ ∈ D(R3)′ .

All equations are partial differential equations inΩ2 only, and we drop the characteristic function to
simplify the notations.

Definition 4.6 A Maxwell solution satisfies

〈∇ × E2,F 〉 = −jω〈µ2H2,F 〉
〈H2,∇× F 〉 = jω〈ε2E2,F 〉 + 〈J ,F 〉 + 〈J imp,F 〉
−〈ε2E2,∇ψ〉 = 〈ρ, ψ〉 + 〈ρimp, ψ〉

〈J ,F 〉 = 〈σ2E2,F 〉 − 〈JΓδΓ,F 〉

−〈µ2H2,∇ψ〉 = 0
〈J ,∇ψ〉 = jω〈ρ, ψ〉

for all F ∈ D(R3)3, ψ ∈ D(R3).
More explicitly, withJ = J2χ2 + JΓδΓ andρ = ρ2χ2 + ρΓδΓ we obtain

〈∇ × E2,F 〉 = −jω〈µ2H2,F 〉
〈H2,∇× F 〉 = jω〈ε2E2,F 〉 + 〈J2,F 〉 + 〈J imp,F 〉 + 〈JΓδΓ,F 〉
−〈ε2E2,∇ψ〉 = 〈ρ2, ψ〉 + 〈ρimp, ψ〉 + 〈ρΓδΓ, ψ〉

〈J2,F 〉 = 〈σ2E2,F 〉

−〈µ2H2,∇ψ〉 = 0
〈J2,∇ψ〉 = jω〈ρ2, ψ〉 + 〈(jωρΓ + ∇Γ · JΓ) δΓ, ψ〉

for all F ∈ D(R3)3, ψ ∈ D(R3).

Lemma 4.7 If E2 ∈ Hloc(∇×,R3) satisfies for allF ∈ D(R3)3

〈µ2
−1∇× E2,∇× F 〉 = ω2〈ε2E2,F 〉 − jω〈σ2E2,F 〉 − jω〈J imp,F 〉

−jω〈JΓδΓ,F 〉

and we defineJ andρ by

∀ F ∈ D(R3)3 〈J2,F 〉 = 〈σ2E2,F 〉 ,
∀ ψ ∈ D(R3) jω〈ρ, ψ〉 = 〈J2,∇ψ〉 − 〈∇Γ · JΓδΓ, ψ〉

then E2 ∈ Hloc(∇×,R3),J2 ∈ L2
loc(R

3), ρ ∈ D(R3)′ solve the transmission problem between a
conductor inΩ2 and a perfect conductor inΩ1 in the sense of definition4.6.
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Proof: The only equation that is left to check is Gauß’ law. The special choice of test functionsF =
∇ψ ∈ D(R3)3 yields

−ω2〈ε2E2,∇ψ〉 + jω〈σ2E2,∇ψ〉 + jω〈J imp,∇ψ〉 + jω〈JΓδΓ,∇ψ〉 = 0 .

The definition ofρ2 and (14) yield Gauß’ law

−〈ε2E2,∇ψ〉 = 〈ρ2, ψ〉 + 〈ρimp, ψ〉 + 〈ρΓδΓ, ψ〉 .

�

4.3 Transmission between a perfect conductor and a dielectric

Let Ω1 be occupied by a perfectly conducting material withσ1 = ∞ and letΩ2 be a perfect dielectric,
i.e. σ2 = 0.

σ1 = ∞, ε1, µ1 Ω1 = perfe
t 
ondu
tor

σ2 = 0, ε2, µ2 Ω2 = perfe
t diele
tri


The governing equations are found by a limiting process whose starting point is either transmission
problem 4.1 or transmission problem 4.2.

1. The perfect dielectric occupiesΩ2 and the conductor occupiesΩ1. We recall the governing equa-
tions for this case:

〈∇ × E,F 〉 = −jω〈µH ,F 〉
〈H,∇× F 〉 = jω〈εE,F 〉 + 〈J1χ1,F 〉 + 〈J imp,F 〉
−〈εE,∇ψ〉 = 〈ρ1χ1, ψ〉 + 〈ρimp, ψ〉 + 〈ρΓδΓ, ψ〉
〈J1χ1,F 〉 = 〈σ1E1χ1,F 〉

−〈µH,∇ψ〉 = 0
〈J1χ1,∇ψ〉 = jω〈ρ1χ1, ψ〉 + jω〈ρΓδΓ, ψ〉 .

For σ1 → ∞, Ω1 becomes a perfect conductor. Due to our assumptions Faraday’s law turns into
a variational formulation for a boundary value problem. so it does the Gauß’ law for the magnetic
field, while the volume current densityJ1 vanishes

〈J1,F 〉 = 0

〈∇ × E2,F 〉 = −jω〈µ2H2,F 〉
−〈µ2H2,∇ψ〉 = 0 .

Due to the step properties of the magnetic field and the electric flux, Ampère’s law and Gauß’ law
exhibit surface distributions

〈H2,∇× F 〉 = jω〈ε2E2,F 〉 + 〈J imp,F 〉 + 〈JΓδΓ,F 〉
−〈ε2E2,∇ψ〉 = 〈ρ2, ψ〉 + 〈ρimp, ψ〉 + 〈ρΓδΓ, ψ〉 .

Consequently, the solution has to fulfill

0 = jω〈ρ2, ψ〉 + 〈(jωρΓ + ∇Γ · JΓ)δΓ, ψ〉

for all ψ ∈ D(Ω1). This means that the charge densityρ1 also vanishes.
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2. The perfect conductor occupiesΩ1 and the conductor occupiesΩ2. The governing equations for
this case look as follows.

〈∇ × E2,F 〉 = −jω〈µ2H2,F 〉
〈H2,∇× F 〉 = jω〈ε2E2,F 〉 + 〈J2,F 〉 + 〈J imp,F 〉 + 〈JΓδΓ,F 〉
−〈ε2E2,∇ψ〉 = 〈ρ2, ψ〉 + 〈ρimp, ψ〉 + 〈ρΓδΓ, ψ〉

〈J2,F 〉 = 〈σ2E2,F 〉

−〈µ2H2,∇ψ〉 = 0
〈J2,∇ψ〉 = jω〈ρ2, ψ〉 + 〈(jωρΓ + ∇Γ · JΓ) δΓ, ψ〉

For σ2 → 0, Ω2 turns in a dielectric. This limiting process impacts on Ohm’s law in such a way
that

〈J2,F 〉 = 0 ⇒ J2 = 0 .

The same arguments as before lead us to a vanishing volume charge densityρ2.

In the end, we obtain the same set of equations from the different limiting processes:

〈∇ × E2,F 〉 = −jω〈µ2H2,F 〉
〈H2,∇× F 〉 = jω〈ε2E2,F 〉 + 〈J imp,F 〉 + 〈JΓδΓ,F 〉
−〈ε2E2,∇ψ〉 = 〈ρimp, ψ〉 + 〈ρΓδΓ, ψ〉

−〈µ2H2,∇ψ〉 = 0
0 = 〈(jωρΓ + ∇Γ · JΓ)δΓ, ψ〉 .

The unknowns of the problem are

E = E2χ2 ∈ H(∇×,R3)

H = H2χ2 ∈ L2(R3)3

JΓδΓ ∈
(

D(R3)3
)′

ρΓδΓ ∈ D(R3)′ .

Definition 4.8 Functions above is a Maxwell solution if

〈∇ × E2,F 〉 = −jω〈µ2H2,F 〉
〈H2,∇× F 〉 = jω〈ε2E,F 〉 + 〈JΓδΓ,F 〉

−〈ε2E2,∇ψ〉 = 0 + 〈ρΓδΓ, ψ〉
−〈µ2H2,∇ψ〉 = 0

The continuity equation is satisfied in the sense of distributions,

jω〈ρΓδΓ, ψ〉 = −〈∇Γ · JΓδΓ, ψ〉 .

Lemma 4.9 If E ∈ H(∇×,R3),JΓ ∈
(

D(R3)3
)′

satisfies for allF ∈ D(R3)3, ψ ∈ D(R3)

〈µ2
−1∇× E2,∇× F 〉 = ω2〈ε2E2,F 〉 − jω〈JΓδΓ,F 〉

and we define the surface charge density by

jω〈ρΓδΓ, ψ〉 = 〈JΓδΓ,∇ψ〉 .

(E, ρΓ) is a solution to the transmission problem between a perfect conductor inΩ1 and a perfect
dielectric inΩ2 in the sense of the previous definition.
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Proof: The only equation that is left to check is Gauß’ law. The special choice of test functionsF =
∇ψ ∈ D(R3)3 yields

−ω2〈ε2E2,∇ψ〉 − jω〈JΓδΓ,∇ψ〉 = 0

⇔ −ω〈ε2E2,∇ψ〉 + j〈∇Γ · JΓδΓ, ψ〉 = 0 .

Together with the definition ofρΓ we obtain

〈ε2E2,∇ψ〉 = 〈ρΓδΓ, ψ〉 .

�

Example 4.10 We would like to conclude this section with an example that illustrates the continuity
equation.

σ2 = ∞

σ2 = ∞

σ1 = 0

x = a

y = b

x

y

z

The electromagnetic fields in a rectangular waveguide are given by

E =





0
C ωµa

π
sin

(

πx
a

)

sin(ωt− βz)
0





H =





−C βa
π

sin
(

πx
a

)

sin(ωt− βz)
0

C cos
(

πx
a

)

cos(ωt− βz)



 .

The walls of the waveguide are assumed to be perfect conductors. The electromagnetic field above
satisfies Maxwell’s equations with boundary conditions

∇× E = −µ∂H

∂t
γDE = 0

∇× H = ε∂E

∂t
γDH = JΓ

∇ · (εE) = 0 γn(εE) = ρΓ

∇ · (µH) = 0 γn(µH) = 0

if the coefficients of the solution are such that

β2 a

π
+
π

a
= ω2εµ

a

π
. (29)

As the electromagnetic field is explicitly known, we can determine the unknownboundary dataρΓ
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andJΓ:

y = 0 : JΓ = −Hx

∣

∣

∣

y=0
ez +Hz

∣

∣

∣

y=0
ex

= C
βa

π
sin

(πx

a

)

sin(ωt− βz)ez + C cos
(πx

a

)

cos(ωt− βz)ex

y = b : JΓ = Hx

∣

∣

∣

y=b
ez −Hz

∣

∣

∣

y=b
ex

= −Cβa
π

sin
(πx

a

)

sin(ωt− βz)ez − C cos
(πx

a

)

cos(ωt− βz)ex

x = a : JΓ = Hz

∣

∣

∣

x=a
ey = −C cos(ωt− βz)ey

x = 0 : JΓ = −Hz

∣

∣

∣

x=0
ey = −C cos(ωt− βz)ey .

The surface charge density on the walls is numerically equal to the component ofεE normal to the wall.
Along the walls

y = 0 : ρΓ = εEy|y=0 = Cεµ
ωa

π
sin

(πx

a

)

sin(ωt− βz) (30)

y = b : ρΓ = −εEy|y=b = −Cεµωa
π

sin
(πx

a

)

sin(ωt− βz) (31)

x = a : ρΓ = −εEy|x=a = 0 (32)

x = 0 : ρΓ = −εEy|x=0 = 0 . (33)

Now, we check if we get the same result from the continuity equation. The surface divergence ofJΓ

corresponds to a differentiation with respect toz at at the left and tox at the right wall of the waveguide,
on the other two walls it is a differentiation with respect toz, y

y = 0 : ∇Γ · JΓ = C
−β2a

π
sin

(πx

a

)

cos(ωt− βz) − C
π

a
sin

(πx

a

)

cos(ωt− βz)

= −C
(

β2a

π
+
π

a

)

sin
(πx

a

)

cos(ωt− βz)

y = b : ∇Γ · JΓ = C
β2a

π
sin

(πx

a

)

cos(ωt− βz) + C
π

a
sin

(πx

a

)

cos(ωt− βz)

= C

(

β2a

π
+
π

a

)

sin
(πx

a

)

cos(ωt− βz)

x = a : ∇Γ · JΓ = 0

x = 0 : ∇Γ · JΓ = 0 .

We apply the continuity equation to obtain the surface charge distribution:

y = 0 : ρΓ =
1

ω
∇Γ · JΓ = −C

ω

(

β2a

π
+
π

a

)

sin
(πx

a

)

cos(ωt− βz)

y = b : ρΓ =
1

ω
∇Γ · JΓ =

C

ω

(

β2a

π
+
π

a

)

sin
(πx

a

)

cos(ωt− βz)

x = a : ρΓ =
1

ω
∇Γ · JΓ = 0

x = 0 : ρΓ =
1

ω
∇Γ · JΓ = 0 .

This corresponds to(30)-(33) if we consider(29). �
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4.4 Transmission between two dielectrics

We still miss the transmission problem between two dielectrics.

σ1 = 0, ε1, µ1 Ω1 = perfe
t diele
tri
 1

σ2 = 0, ε2, µ2 Ω2 = perfe
t diele
tri
 2

The unknowns of the problem are only the electromagnetic field components

E ∈ H(∇×,R3)

H ∈ L2(R3)3 .

The governing equations are found again by the limiting process. A starting point is again transmis-
sion problem 4.1:

〈∇ × E,F 〉 = −jω〈µH ,F 〉
〈H,∇× F 〉 = jω〈εE,F 〉 + 〈J1χ1,F 〉 + 〈J imp,F 〉
−〈εE,∇ψ〉 = 〈ρ1χ1, ψ〉 + 〈ρimp, ψ〉 + 〈ρΓδΓ, ψ〉
〈J1χ1,F 〉 = 〈σ1E1χ1,F 〉

−〈µH,∇ψ〉 = 0
〈J1χ1,∇ψ〉 = jω〈ρ1χ1, ψ〉 + jω〈ρΓδΓ, ψ〉

Forσ1 → 0, Ω1 becomes a perfect dielectric which means that Ohm’s law becomes

〈J1χ1,F 〉 = 0

⇒ 0 = jω〈ρ1χ1, ψ〉 + jω〈ρΓδΓ, ψ〉 .

The governing equations read

〈∇ × E,F 〉 = −jω〈µH ,F 〉
〈H,∇× F 〉 = jω〈εE,F 〉 + 〈J imp,F 〉

−〈εE,∇ψ〉 = 〈ρimp, ψ〉
−〈µH,∇ψ〉 = 0 .

Definition 4.11 A Maxwell solution is a functional onD(R3)3, D(R3), with

〈∇ × E,F 〉 = −jω〈µH ,F 〉
〈H,∇× F 〉 = jω〈εE,F 〉 + 〈J imp,F 〉

−〈εE,∇ψ〉 = 〈ρimp, ψ〉
−〈µH,∇ϕ〉 = 0 .

Lemma 4.12 If E ∈ H(∇×,R3) satisfies for allF ∈ D(R3)3, ψ ∈ D(R3)

〈µ−1∇× E,∇× F 〉 = ω2〈εE,F 〉 − jω〈J imp,F 〉 ,

it is a solution to the transmission problem between two perfect dielectric inΩ1 andΩ2 in the sense of
the previous definition.

Proof: The only equation that is left to check is Gauß’ law. The special choice of test functionsF =
∇ψ ∈ D(R3)3 yields

−〈εE,∇ψ〉 = 〈ρimp, ψ〉 .
�
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5 Conclusion

The note discusses all possible transmition problems for the Maxwell equations. The case of a perfect
dielectric or a perfect conductor is interpreted through a limiting process corresponding to conductivity
σ → 0 or σ → ∞. The discussion is only formal, an actual analysis would require “hard estimates”
and investigation of the limits. The obtained limiting cases are illustrated with the case of plane waves
presented in the Appendix. The presented discussion is intended to elucidate a common phrase that many
technical papers begin with:we shall understand the Maxwell equations in the distributional sense.... A
related problem concerns the equivalence of Maxwell equations understood in the distributional sense
discussed here and the integral form of the Maxwell’s equations involvingline and surface integrals, see
e.g. [8], [2]. The two formulations are equivalent in the sense that,with additional regularity assump-
tions, they yield the same classical equations and the same interface conditions. Toour best knowledge,
we are not aware of an equivalence proof that would not use the additional regularity assumptions, like
for the grad-div case discussed in [1].

All discussed cases admit the standard variational formulation in terms of electric field only [6] which
is fully equivalent to the whole Maxwell systemwithoutany extra regularity assumptions.
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A Uniform plane waves

The introduction here follows more or less the lines of [8]. The goal of this section is to derive the so-
called uniform plane waves. These functions are smooth solutions to the harmonic Maxwell equations
in a linear, isotropic, homogeneous medium that comprises no net free charge: ρ = 0. These types of
regions are quite general ones and include the practical cases of freespace (σ = 0) as well as most
conductors and dielectrics. Maxwell’s equations for this region become

∇× E = −µ∂H

∂t

∇× H = ε
∂E

∂t
+ J

∇ · H = 0

∇ · E = 0

J = σE .

We restrict ourselves to solutions with harmonic time dependency

E(x, t) = Ẽ(x)ejωt

H(x, t) = H̃(x)ejωt .

Thus, the above system reduces to equations in terms of the phasors only

∇× Ẽ = −µωH̃ (34)

∇× H̃ = εωẼ + J̃ (35)

∇ · H̃ = 0 (36)

∇ · Ẽ = 0 (37)

J̃ = σẼ . (38)

Whenever it is clear that we are dealing with the phasors, we will skip the tildesfrom the notations. We
assume the electric field vector to have the following representation

E(x, y, z) = Ex(z)ex , (39)

where the complex phasor is supposed to be smooth. Due to

∇× Ex(z)ex =
dEx(z)

dz
ey

Faraday’s law yield the magnetic field vector to be

H(x, y, z) = Hy(z)ey . (40)

Obviously the Gauß’ laws (36)+(37) are automatically fulfilled

dHy(z)

dy
= 0

dEx(z)

dy
= 0 .

They do not contribute to the solution any further. Thus, the ansatz (39) turns (34)-(35) into ordinary
scalar valued differential equations:

dEx(z)

dz
= −µωHy(z) (41)

dHy(z)

dz
= εωEx(z) + σEx(z) . (42)
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As we restrict ourselves to smooth solutions, instead of solving (41)-(43)we can consider the second
order equations

d2Ex(z)

dz2
= −µω(εω + σ)Ex(z) (43)

d2Hy(z)

dz2
= −µω(εω + σ)Hy(z) (44)

that are deduced by another differentiation and substitution. We will use a special symbolγ2 for the
quantityjω(µσ + jωµε) such that

γ2 = jω(µσ + jωµε)

= −ω2µε+ jωµσ . (45)

The positive square root ofγ2, γ, will be referred to as the propagation constant of the medium for
reasons that will become clear in the following section. Sinceγ2 is a complex number, the square root
of γ2 will also be a complex number, which we write as

γ = α+ jβ =
√

jωµ(σ + jωε) . (46)

It will be of particular interest to exploit the dependencyγ(σ) that is why we need explicit expressions for
α andβ. They are easily found by solving a quadratic equation and ignoring possible complex solutions:

α =

(

−1

2

(

ω2µε− ωµ
√

ω2ε2 + σ2
)

) 1

2

(47)

β2 = ωµε− α2 . (48)

The general complex valued solution to (43) and (44) are of the form

Ex = E+
c e

−γz + E−
c e

γz = E+
c e

−αze−jβz + E−
c e

αzejβz (49)

Hy = H+
c e

−γz +H−
c e

γz = H+
c e

−αze−jβz +H−
c e

αzejβz , (50)

where the phasorsH+
c , H

−
c , E

+
c , E

−
c are undetermined complex constants. Before interpreting these

solutions, we notice that from (41) it follows that the phasors are related:

E+
c

H+
c

=
jωµ

γ
= η̂ (51)

E−
c

H−
c

= −jωµ
γ

= −η̂ . (52)

The quantityjωµ/γ has the units of ohms since it is a ratio of electric field intensity (volts per meter)
to magnetic field intensity (amperes per meter). It will be called the intrinsic impedance of the medium
and denoted by the symbolη̂. The intrinsic impedancêη as well asE+

c , E
−
c are complex numbers and

we introduce the following notation for its magnitude and angle

η̂ = ηejθη (53)

E+
c = E+ejθ

+

(54)

E−
c = E+ejθ

−

. (55)

The plane wave solutions to (34)-(38) become

E(z, t) = Ex(z)ejωt
ex

= E+e−αzej(−βz+θ+)ejωt
ex + E−eαzej(βz+θ−)ejωt

ex (56)

H(z, t) = Hy(z)e
jωt

ey

=
E+

η
e−αzej(−βz+θ+−θη)ejωt

ey −
E−

−η e
αzej(βz+θ−−θη)ejωt

ey . (57)

Let us analyze its geometrical character:
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• The fields have got wave character in both, time and space.

• The field vectorsE andH at each point in space lie in thexy plane.

• The spatial part of the field vectors (magnitude and phase) is independent of position in each of
these planes. This is why the waves are called uniform.

• The energy propagates due to the cross productE × H in z direction.

The physical interpretation of the time-domain results (55), (56) is particularly important because we
find estimates for the limiting casesσ → 0, σ → ∞.

A.1 Plane waves in lossless medium

In this section we concentrate on a uniform forward traveling plane wave

E(z, t) = E+e−αzej(−βz+θ+)ejωt
ex

H(z, t) =
E+

η
e−αzej(−βz+θ+−θη)ejωt

ey

and analyze its behavior forσ → 0. The limiting caseσ = 0 characterizes the material that has no
conductivity, i.e. a perfect dielectric. We recall

γ(σ) = α(σ) + jβ(σ)

α =

(

−1

2

(

ω2µε− ωµ
√

ω2ε2 + σ2
)

) 1

2

β2 = ωµε− α2 .

α depends continuously fromσ so that

lim
σ→0

α(σ) = 0 and β = ω
√
µε . (58)

For a forward traveling plane wave we gain the following estimates forz ∈ I = [a, b], 0 < a < b

lim
σ→0

|E(z, t)| ≤ lim
σ→0

|E+|
∣

∣e−αa
∣

∣

∣

∣

∣
ej(−βz+θ+)ejωt

∣

∣

∣

≤ |E+| lim
σ→0

∣

∣e−αa
∣

∣ = |E+| . (59)

This means that the electromagnetic field is uniformly bounded and moreover, the electric current con-
verges uniformly to zero i.e. on every compact intervalz ∈ I = [a, b]

lim
σ→0

|σE(z, t)| ≤ lim
σ→0

σ|E+| = 0 . (60)

In lossless media uniform plane waves propagate harmonically

E(z, t) = E+ej(−βz+θ+)ejωt
ex (61)

H(z, t) =
E+

η
ej(−βz+θ+)ejωt

ey , (62)

whereβ = ω
√
µε andθη = 0. The latter means that electric and magnetic wave are in time phase.

The same reasoning applies to the backward-traveling waves.
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A.2 Perfect conductor

In this section we concentrate on a uniform forward traveling plane wave

E(z, t) = E+e−αzej(−βz+θ+)ejωt
ex

H(z, t) =
E+

η
e−αzej(−βz+θ+−θη)ejωt

ey

and analyze its behavior forσ → ∞. In lossy media, the propagation constantγ has a nonzero real part:

α =

(

−1

2

(

ω2µε− ωµ
√

ω2ε2 + σ2
)

) 1

2

> 0 .

This results always in an exponential decrease of the phasors.
The second difference between lossless and lossy media concerns the intrinsic impedance of the

medium. η̂ is complex and the phase angle of the intrinsic impedanceθη results in the electric and
magnetic fields of time phase by the phase angleθη.

We would like to consider now the limiting behavior of an electromagnetic plane wave forσ → ∞.
The limiting case is a model for a perfectly conducting material i.e. a material whose conductivity is so
hight that free charge moves instantly, without time delay. We recall thatα depends continuously from
σ so that

lim
σ→∞

α(σ) = ∞ . (63)

For a forward traveling plane wave we gain the following estimates forz ∈ I = [a, b], 0 < a < b <∞:

lim
σ→∞

|E(z, t)| ≤ |E+| lim
σ→∞

e−αz = 0

lim
σ→∞

∣

∣

∣

∣

dE(z, t)

dz

∣

∣

∣

∣

≤ |E+| lim
σ→∞

αe−αa = 0

lim
σ→∞

|σE(z, t)| ≤ |E+| lim
σ→∞

σe−
1

2

√
σa = 0 .

Due to the first two limits the electric field component as well as its curl converges uniformly to zero.
Due to Faraday’s law the magnetic field component converges uniformly to zero. Finally, the last equa-
tion says that within a perfect electric conductor the electric current vanishes uniformly. Therefore, no
electromagnetic wave exists within a perfect conductor.

A.3 Scattering of an oblique incident plane wave

We would like to exploit the analytical knowledge of the uniform plane waves toget a feeling for scat-
tering problems. We consider two different materials with dataε1, µ1, σ1 andε2, µ2, σ2. The boundary
between these two medias is assumed to be plane. The plane of incidence is the plane containing the
propagation vector of the incident wave and the normal to the boundary. In our case it is thexz plane.
The polarization of the plane wave, i.e. the angle of incidence, is arbitrary.It is however always possible
to represent the plane wave as a superposition of a so-called parallel polarized and a perpendicular po-
larized plane wave. For perpendicular polarization, the incident electric field vector is perpendicular to
the plane of incidence, as shown in the picture below. For parallel polarization, the incident electric field
vector is parallel to or in the plane of incidence. Let us have a closer look at the scattering of parallel
polarized and perpendicular polarized plane waves. The representation of the solutions in either case is
taken from [8].

1. Parallel Polarization.
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Figure 1: Parallel polarization
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For the case of parallel polarization the phasors of the incidentEi,H i, the reflectedEr,Hr and
the transmitted electromagnetic fieldEs,Hs read

Ei = Ei (cos(θi)ex − sin(θi)ez) e
−γ1(sin(θi)x+cos(θi)z)

H i =
Ei

η̂1
e−γ1(sin(θi)x+cos(θi)z)

ey

Er = −Er (cos(θi)ex − sin(θi)ez) e
γ1(− sin(θi)x+cos(θi)z)

Hr =
Er

η̂1
eγ1(− sin(θi)x+cos(θi)z)

ey

Et = Et (cos(θt)ex − sin(θt)ez) e
−γ2(sin(θt)x+cos(θt)z)

Ht =
Et

η̂1
e−γ2(sin(θt)x+cos(θt)z)

ey .

Due to the boundary conditions

γDEi + γDEr = γDEt

γDH i + γDHr = γDHt

one deduces the following conditions upon the coefficients

sin θi

sin θt
=

γ2

γ1

Ei + E + r

η̂1
e−γ1 sin θix =

Et

η̂2
e−γ2 sin θtx .

Now, we check the jumps in the normal component of the vector fieldsµH, σE andεE respec-
tively.

Normal traces of themagnetic flux: [n·µH] = 0 for all 0 ≤ σ1, σ2 <∞ because this polarization
has no normal component.

Normal traces of theelectric flux [n · εE] and theelectric current [n · σE]: ,

n · (Ei + Er) |z=0 = − (Ei + Er) sin θie
−γ1 sin θix

= −η̂1 sin θi
Ei + Er

η̂1
e−γ1 sin θix = − η̂1

η̂2

γ2

γ1
sin θtEte

−γ2 sin θtx

=
η̂1γ2

η̂2γ1
(n · Et|z=0) .
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Figure 2: Perpenticular polarization
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A closer look at the coefficient reveals

η̂1γ2

η̂2γ1
=

(

jωµ1

σ1 + jωε1

σ2 + jωε2
jωµ2

jωµ2(σ2 + jωε)

jωµ1(σ1 + jωε)

) 1

2

=
σ2 + jωε2
σ1 + jωε1

.

Forω > 0, we conclude

• [n · µH] = 0 for every media .

• If ε1

ε2
= ε1

ε2
, [n · εE] = 0 for lossy media, becauseη̂1γ2

η̂2γ1
= ε2

ε1
.

• If ε1

ε2
= ε1

ε2
, [n · σE] = 0 for lossy media, becauseη̂1γ2

η̂2γ1
= σ2

σ1
.

• If ε1

ε2
6= ε1

ε2
, [n · εE] 6= 0 for lossy media, becauseη̂1γ2

η̂2γ1
6= ε2

ε1
.

• If ε1

ε2
6= ε1

ε2
, [n · σE] 6= 0 for lossy media, becauseη̂1γ2

η̂2γ1
6= σ2

σ1
.

• [n · εE] = 0 for lossless media, becauseη̂1γ2

η̂2γ1
= ε2

ε1
.

2. Perpendicular Polarization.

For the case of perpendicular polarization the phasors of the incidentEi,H i, the reflectedEr,Hr

and the transmitted electromagnetic fieldEs,Hs read

Ei = Eie
−γ1(sin(θi)x+cos(θi)z)

ey

H i =
Ei

η̂1
(cos(θi)ex − sin(θi)ez) e

−γ1(sin(θi)x+cos(θi)z)

Er = Ere
γ1(− sin(θi)x+cos(θi)z)

ey

Hr =
Er

η̂1
(cos(θi)ex − sin(θi)ez) e

γ1(− sin(θi)x+cos(θi)z)

Et = Ete
−γ2(sin(θt)x+cos(θt)z)

ey

Ht =
Et

η̂1
(cos(θt)ex − sin(θt)ez) e

−γ2(sin(θt)x+cos(θt)z) .

Due to the boundary conditions

γDEi + γDEr = γDEt

γDH i + γDHr = γDHt
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one deduces the following conditions upon the coefficients

sin θi

sin θt
=

γ2

γ1

Ei + Er

η̂1
e−γ1 sin θix =

Et

η̂2
e−γ2 sin θtx .

Now, we check the jumps in the normal component of the vector fieldsµH, σE andεE respec-
tively.

• [n · µH] = 0 for every media, because

n · (H i + Hr) |z=0 = −Ei + Er

η̂1
sin θie

−γ1 sin θix

= − η̂2

η̂1

γ2

γ1
sin θt

Et

η̂2
e−γ2 sin θtx

=
η̂2γ2

η̂1γ1
(n ·Ht|z=0) .

A closer look at the coefficient reveals

η̂2γ2

η̂1γ1
=

µ2

µ1
.

• [n · εE] = [n · σE] = 0, because the normal component of the electric field vanishes.
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B Survey: Interface conditions

Transmission problem between two conductors

0 < σ1 <∞, ε1, µ1 Ω1 = 
ondu
tor 1

0 < σ2 <∞, ε2, µ2 Ω2 = 
ondu
tor 2

∇× E = −jωB + 0δΓ [n × E] = 0

∇× H = jωD + J + 0δΓ [n × H] = 0

∇ · D = ρ + ρΓδΓ [n · D] = ρΓ

∇ · B = 0 + 0δΓ [n · B] = 0

∇ · J = −jωρ − jωρΓδΓ [n · J ] = −jωρΓ

Transmission problem between two perfect dielectrics

σ1 = 0, ε1, µ1 Ω1 = perfe
t diele
tri
 1

σ2 = 0, ε2, µ2 Ω2 = perfe
t diele
tri
 2

∇× E = −jωB + 0δΓ [n × E] = 0

∇× H = jωD + 0δΓ [n × H] = 0

∇ · D = 0 + 0δΓ [n · D] = 0
∇ · B = 0 + 0δΓ [n · B] = 0

−−−

Transmission problem between a conductor and a perfect dielectric

0 < σ1 <∞, ε1, µ1 Ω1 = 
ondu
tor

σ2 = 0, ε2, µ2 Ω2 = perfe
t diele
tri


∇× E = −jωB + 0δΓ [n × E] = 0

∇× H = jωD + J1χΩ1
+ 0δΓ [n × H] = 0

∇ · D = ρ1χΩ1
+ ρΓδΓ [n · D] = ρΓ

∇ · B = 0 + 0δΓ [n · B] = 0

∇ · J1 = −jωρχΩ1
− jωρΓδγ n · J1 = −jωρΓ

Transmission problem between a perfect conductor and a conductor

σ1 = ∞, ε1, µ1 Ω1 = perfe
t 
ondu
tor

0 < σ2 <∞, ε2, µ2 Ω2 = 
ondu
tor

∇× E2 = −jωB2 + 0δΓ n × E2 = 0

∇× H2 = jωD2 + J2 + JΓδΓ n × H2 = JΓ

∇ · D2 = ρ2 + ρΓδΓ n · D2 = ρΓ

∇ · B2 = 0 + 0δΓ n · B2 = 0

∇ · J2 = −jωρ2 − (jωρΓ + ∇Γ · JΓ) δΓ n · J2 = −jωρΓ −∇Γ · JΓ
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Transmission problem between a perfect conductor and a perfectdielectric

σ1 = ∞, ε1, µ1 Ω1 = perfe
t 
ondu
tor

σ2 = 0, ε2, µ2 Ω2 = perfe
t diele
tri


∇× E2 = −jωB2 + 0δΓ n × E2 = 0

∇× H2 = jωD2 + JΓδΓ n × H2 = JΓ

∇ · D2 = 0 + ρ∞Γ δΓ n · D2 = ρΓ

∇ · B2 = 0 + 0δΓ n · B2 = 0

0 = 0 − (jωρΓ + ∇Γ · JΓ) δΓ ∇Γ · JΓ = −jωρΓ
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