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Abstract

In turbulence applications, strongly imposed no-slip conditions often lead to inaccurate
mean flow quantities for coarse boundary-layer meshes. To circumvent this shortcoming,
weakly imposed Dirichlet boundary conditions for fluid dynamics were recently introduced
in [4]. In the present work, we propose a modification of the original weak boundary condi-
tion formulation that consistently incorporates the well-known “law of the wall”. To com-
pare the different methods, we conduct numerical experiments for turbulent channel flow
at Reynolds number 395 and 950. In the limit of vanishing meshsize in the wall-normal
direction, the weak boundary condition acts like a strong boundary condition. Accordingly,
strong and weak boundary conditions give essentially identical results on meshes that are
stretched to better capture boundary layers. However, on uniform meshes that are incapable
of resolving boundary layers, weakly imposed boundary conditions deliver significantly
more accurate mean flow quantities than their strong counterparts. Hence, weakly imposed
boundary conditions present a robust technique for flows of industrial interest, where op-
timal mesh design is usually not feasible and resolving boundary layers is prohibitively
expensive. Our numerical results show that the formulationthat incorporates the law of the
wall yields an improvement over the original method.
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1 Introduction

In computational fluid dynamics formulations that employ continuous representa-
tion of the fields, Dirichlet boundary conditions are typically imposed by specifying
the nodal values of the solution. This amounts to so-called “strong satisfaction” of
the boundary conditions. In flow computations, strongly imposed no-slip conditions
often lead to inaccurate mean flow quantities for insufficiently fine boundary-layer
meshes. Recently, Bazilevs and Hughes [4] proposed to satisfy Dirichlet bound-
ary conditions in a weak sense rather than strongly. To this end, the variational
equations are augmented by terms that enforce the Dirichletconditions weakly as
Euler-Lagrange conditions. Thus, the functions representing the discrete solution
are not required to satisfy the Dirichlet conditions explicitly. It was found that for
the linear advection-diffusion equation it is precisely the weak Dirichlet bound-
ary conditions that are able to mitigate or even entirely eliminate oscillations due
to unresolved boundary layers as well as to improve the accuracy in the regions
away from the layers. Moreover, numerical results for low Reynolds number flows
computed on coarse meshes demonstrated that weak no-slip boundary conditions
provide a significant increase in accuracy over their strongcounterparts.

In the present work, we revisit the weak Dirichlet conditionformulation. Although
the design of the boundary condition is based on numerical rather than physical
considerations, the weak treatment seems to behave like a wall function. To exploit
this link with wall modeling, we propose a modification of theoriginal formula-
tion that consistently incorporates the well-known “law ofthe wall”, an empirical
relation between the near-wall fluid velocity and the distance from the wall that
is commonly assumed to hold for a broad range of Reynolds numbers [21]. We
combine the weakly imposed boundary condition formulationwith residual-based
turbulence modeling, which is a new paradigm for computing turbulent flows in-
troduced in [6, 15] and further developed in [1]. To compare the different Dirichlet
boundary condition formulations, we assess their performance on turbulent chan-
nel flows at medium-to-high Reynolds numbers. These numerical test cases are
more challenging than the ones considered previously in [4]due to the increased
Reynolds number. In the limit of vanishing mesh size in the wall-normal direction,
the weak formulation acts like a strong formulation. Accordingly, strong and weak
formulations give essentially identical results on stretched meshes that are designed
to better resolve the boundary layer. However, on meshes that are uniform also in
the wall-normal direction, weakly imposed Dirichlet boundary conditions deliver
significantly more accurate mean flow quantities than their strong counterparts.
This fact makes the weakly enforced boundary condition formulations attractive
for computing flows of industrial interest, allowing one to avoid the costly resolu-
tion of boundary layers without compromising the accuracy of large-scale features.
We also find that the weak formulation modified to incorporatethe law of the wall
provides an improvement over the original formulation. Throughout this work, the
spatial discretization makes use of the Isogeometric Analysis approach [2, 3, 8, 16].
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The paper is organized as follows. In Section 2, we describe the weak formula-
tion of the continuous problem for the incompressible Navier-Stokes equations.
We then state the discrete, residual-based variational multiscale formulation of the
problem with no-slip Dirichlet boundary conditions imposed weakly. In Section 3,
we describe the new formulation with weakly imposed boundary conditions that
incorporates the law of the wall by appropriately modifyingthe boundary terms of
the original weak boundary condition formulation. In Section 4, we show numeri-
cal results for an equilibrium turbulent channel flow at Reynolds numbers 395 and
950 based on friction velocity. In all cases, we use meshes for our computations
that are orders of magnitude coarser than the ones employed in high-fidelity Direct
Numerical Simulation (DNS); see [9, 20]. In Section 5, we draw conclusions.

2 Weak Imposition of Dirichlet Boundary Conditions for Inco mpressible Navier-
Stokes Equations

2.1 Continuous problem

We begin by considering a weak formulation of the Incompressible Navier-Stokes
equations. LetV denote the trial solution and weighting function spaces, which are
assumed to be the same. We also assumeu = 0 on Γ and

∫

Ω p(t) dΩ = 0 for all
t ∈ ]0, T [. The variational formulation is stated as follows: FindU = {u, p} ∈ V
such that∀W = {w, q} ∈ V,

B(W , U) = (W , F ) (1)

where

B(W , U) =

(

w,
∂u

∂t

)

Ω

− (∇w, u ⊗ u)
Ω

+ (q,∇ · u)Ω − (∇ · w, p)Ω (2)

+ (∇sw, 2ν∇su)
Ω

,

and

(W , F ) = (w, f )Ω. (3)

Variational equations (1)-(3) imply satisfaction of the linear momentum equations
and of the incompressibility constraint, namely

L(u, p) − f = 0 in Ω, (4)
∇ · u = 0 in Ω, (5)
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where

L(u, p) =
∂u

∂t
+ ∇ · (u ⊗ u) + ∇p −∇ · (2ν∇su). (6)

We also introduce the “advective” form of the above operator

Ladv(u, p) =
∂u

∂t
+ u · ∇u + ∇p − ν∆u , (7)

which is obtained from (6) by using the incompressibility constraint in the advective
term and in the viscous stress term.

2.2 Discrete formulation

Below, we recall the discrete variational formulation of the incompressible Navier-
Stokes equations with weakly imposed Dirichlet boundary conditions; see also [4].

Let Ω be decomposed intonel elements, which induces the decomposition ofΓ into
neb boundary faces. We approximate (1)-(3) by the following variational problem
over the finite element spaces: FindUh = {uh, ph} ∈ Vh, uh · n = 0 on Γ such
that∀W h = {wh, qh} ∈ Vh, wh · n = 0 onΓ,

B(W h, Uh) − (wh, f )Ω (8)

+
nel
∑

e=1

({uh · ∇wh + ∇qh}τM ,Ladv(u
h, ph) − f )Ωe

+
nel
∑

e=1

({uh · (∇wh)T}τM ,Ladv(u
h, ph) − f )Ωe

−
nel
∑

e=1

(∇wh, τM{Ladv(u
h, ph) − f} ⊗ τM{Ladv(u

h, ph) − f})Ωe

+
nel
∑

e=1

(∇ · wh, τC∇ · uh)Ωe

−
neb
∑

b=1

(wh, 2ν∇suh · n)Γb∩Γ

−
neb
∑

b=1

(2ν∇swh · n, uh − 0)Γb∩Γ

+
neb
∑

b=1

(wh CI
b ν

hb

, uh − 0)Γb∩Γ = 0 ,

with the following definitions

τM := (
Ct

∆t2
+ uh · Guh + CIν

2G : G)−1/2, (9)
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and

τC := (g · τMg)−1 , (10)

whereG is a second-rank metric tensor

G =

(

∂ξ

∂x

)T
∂ξ

∂x
, (11)

g is a vector obtained by summingG on its first index as

g = (g)i =
d
∑

j=1

(G)ji , (12)

and ∂ξ
∂x is the inverse Jacobian of the element mapping between the parent and the

physical domain. In (8)-(9),hb is the wall-normal element mesh-size, andCb
I , Ct

andCI are positive constants.

Remarks

(1) The above formulation makes use of a Residual-Based Multiscale Method
(see e.g. [1, 6, 15]), which is based on the Variational Multiscale Formulation
(see e.g. [10–14, 17]). These residual-based methods possess a dual nature:
on the one hand they are bona-fide LES-like turbulence models, and on the
other hand they may be thought of as stabilized methods, suchas SUPG [5],
extended to the nonlinear realm.

(2) The last three terms of (8) pertain to the weak enforcement of the no-slip
condition, as presented in [4]. We choose to enforce the normal component of
the no-slip boundary condition, that is, the no-penetration condition, strongly
on the trial and weighting function spaces.

(3) In the case of strongly imposed no-slip conditions, the last three terms of (8)
vanish.

3 Weakly Imposed No-Slip Dirichlet Boundary Conditions Based on a Wall
Function Formulation

In this section, we revisit weakly imposed Dirichlet boundary conditions and pro-
pose a modification of the original formulation presented inthe previous section.
This modification draws on the knowledge of the fluid behaviour in the vicinity of
the wall in the regime of fully developed turbulence. In whatfollows, we reformu-
late the weakly imposed Dirichlet condition in a way that is consistent with the idea
of wall modeling.
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In engineering practice it is often of interest to accurately resolve large-scale flow
features rather than fine-scale components. It is typicallynot the detailed features
of the boundary layer turbulence that are relevant for the application, but their ef-
fect on the overall flow behavior. This fact can be accounted for by wall modeling,
in which the no-slip Dirichlet boundary condition is replaced by a traction Neu-
mann boundary condition; see for example [19, p. 47]. In the direction tangent to
the wall a shear stress is specified by adding the following term to the variational
formulation

neb
∑

b=1

(wh, u∗2 uh

||uh||
)Γb∩Γ , (13)

where|| · || denotes Euclidean length. The magnitude of the wall shear stressu∗2

is consistent with the so-called law of the wall. This “law” is an empirical relation
between the mean fluid speed and the normal distance to the wall. Among the many
available parameterizations we employ the one given by Spalding [21]

y+ = f(u+) = u+ + e−χB

(

eχu+

− 1 − χu+ −
(χu+)

2

2
−

(χu+)
3

6

)

, (14a)

wherey+ andu+ denote the distance from the wall and the mean fluid speed, re-
spectively, expressed in non-dimensional wall units

y+ :=
yu∗

ν
, (14b)

u+ :=
||uh||

u∗
. (14c)

In Eqs. (14b) and (14c),u∗ is the friction velocity,y is the vertical distance to the
wall, uh is the velocity parallel to the wall, andχ = 0.4 andB = 5.5.

Upon rearranging terms in (13), and dropping the sum over theelement boundaries
for brevity, the “penalty” structure of (13) becomes apparent, that is

(

wh, u∗2 uh

||uh||

)

Γb∩Γ

=

(

wh

[

u∗2

||uh||

]

, uh − 0

)

Γb∩Γ

=
(

whτB, uh − 0

)

Γb∩Γ
,

(15)
with

τB :=
u∗2

||uh||
(16)

acting as a penalty parameter. Based on this observation, wepropose to mod-
ify the original weak boundary condition formulation (8) asfollows: Find Uh =
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{uh, ph} ∈ Vh, uh·n = 0 onΓ such that∀W h = {wh, qh} ∈ Vh, wh·n = 0 onΓ,

B(W h, Uh) − (wh, f )Ω (17)

+
nel
∑

e=1

({uh · ∇wh + ∇qh}τM ,Ladv(u
h, ph) − f )Ωe

+
nel
∑

e=1

({uh · (∇wh)T}τM ,Ladv(u
h, ph) − f )Ωe

−
nel
∑

e=1

(∇wh, τM{Ladv(u
h, ph) − f} ⊗ τM{Ladv(u

h, ph) − f})Ωe

+
nel
∑

e=1

(∇ · wh, τC∇ · uh)Ωe

−
neb
∑

b=1

(wh, 2ν∇suh · n)Γb∩Γ

−
neb
∑

b=1

(2ν∇swh · n, uh − 0)Γb∩Γ

+
neb
∑

b=1

(whτB, uh − 0)Γb∩Γ = 0 .

Variational equation (17) differs from (8) only in the last term on the left-hand side,
and it may be thought of as a generalization of (8). Selectingy to be a constant
multiple of the wall-normal mesh sizehb, that is,y = hb/C

I
b , and lettinghb go

to zero, the Spalding equation (14a) reduces toy+ = u+, which is a well-known
parameterization of the viscous sublayer. In this limit,τB becomes independent of
the slip velocityuh and takes on the expression

τB =
ν

y
=

νCI
b

hb

. (18)

Thus, we recover the original weak formulation (8). This, inturn, implies that the
formulation (17) inherits all the attributes of the original formulation (8) in this
limit. Conversely, when the mesh sizehb is large,τB deviates from (18).

Algorithm 1 outlines a Newton procedure to determineτB from givenuh, hb and
ν in accordance with the law-of-the-wall equation (14a). This procedure is lo-
cal to each boundary-face integration point. Expression (18) with y = hb/C

I
b is

used to initializeτB. In caseuh, hb andν correspond to the viscous sublayer, the
law-of-the-wall equation (14a) is satisfied by the initial values, and no iteration is
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necessary. Algorithm 1 makes use of the Jacobian

∂r

∂τB
=

hb

2νCI
b

τ
−1/2

B,i ||uh||1/2 (19)

+

(

1 + χe−χB

(

eχu+

− 1 − χu+ −
(χu+)2

2

))

τ
−3/2

B,i

2
||uh||1/2 ,

wherer := y+ − f(u+) is the residual of the Spalding equation (14a).

Alg. 1: Algorithm for computingτB.

1. Initialize iteration counter:i = 0
2. InitializeτB,i = CI

b
ν
hb

3. y+
i = u+

i = τ
−1/2

B,i ||uh||1/2

4. ri = y+
i − f(u+

i )
5. While (|ri| > TOL) Do
6. Build Jacobian:∂r

∂τB

|i according to (19)

7. Solve for increment:∆τB,i+1 = −
(

∂r
∂τB

|i
)−1

ri

8. Update:τB,i+1 = τB,i + ∆τB,i+1

9. y+
i+1 = hb

νCI

b

τ
1/2

B,i+1||u
h||1/2

10. u+
i+1 = τ

−1/2

B,i+1||u
h||1/2

11. ri+1 = y+
i+1 − f(u+

i+1)
12. i = i + 1
13. Enddo

4 Numerical experiments for turbulent channel flow

4.1 Problem setup

To investigate the performance of the weak boundary condition formulations, we
conduct numerical experiments for turbulent channel flow atReynolds numbers
Reτ = 395 andReτ = 950, with Reτ based on the friction velocity and the channel
half width. We compare the results with the formulation thatimposes the no-slip
condition strongly. To assess the accuracy of our methods, we compare our results
to the DNS results of [20] forReτ = 395 and [9] forReτ = 950.

The problem setup is shown in Figure 1. The flow is driven by a pressure gradient in
the stream-wise direction. At the computational domain boundary, periodic bound-
ary conditions are imposed in both stream-wise and span-wise directions, whereas a
homogeneous Dirichlet boundary condition is applied in thewall-normal direction.
Stream-wise and span-wise directions are commonly referred to as homogeneous
directions.
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Solid wall

Flow driven by pressure gradient

Fig. 1. Turbulent channel flow. Problem setup.

The spatial discretization is comprised of quadratic spline functions that areC1-
continuous at knots. This type of discretization is commonly employed in isoge-
ometric analysis [16]. The semi-discrete equations are advanced in time using the
generalized-α method [7, 18]. We employ meshes that are uniform in all directions.
For comparison we also use meshes that are stretched in the wall-normal direction
to cluster points near the boundary layer. The stretching isobtained by distributing
the knots according to a hyperbolic tangent function such that the first knot lies at
y+ ≈ 1.3, which is typical of Large Eddy Simulation (LES) computations. Details
of the computational setup are shown in Table 1. Moreover, wesetCt = 4, CI = 36
andCI

b = 4.

Table 1
Details of the computational setup.Lx,y,z denotes the length of the channel in the stream-
wise, wall-normal and span-wise direction,Nel is the number of elements in the domain,
Nx,y,z is the number of basis functions in the stream-wise, wall-normal and span-wise
direction,fx is the forcing in the stream-wise direction, andν denotes kinematic viscosity.

Lx Ly Lz Nel Nx Ny Nz fx ν

Re = 395 2π 2
2
3
π 32

3
32 34 32 3.372040 · 10−3

1.47200 · 10−4

Re = 950 4π 2
4

3
π 64

3
64 66 64 2.630991 · 10−3

0.53992 · 10−4

Numerical results for all cases are reported in the form of statistics of the mean
velocity and root-mean-square of the velocity fluctuations. Statistics are computed
by sampling the velocity field at the mesh knots and averagingthe solution in time
as well as in the stream-wise and span-wise directions. The mean velocity is typi-
cally referred to as the primary statistic, while the fluctuations are called secondary
statistics. It is generally acknowledged that accuracy of the fluctuations is more
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difficult to achieve than accuracy of the mean velocity. Results are presented in
non-dimensional wall units.

4.2 Turbulent channel flow atReτ = 395

Our computations are carried out on a mesh of323 elements. This discretization
gives 32 basis functions in the homogeneous directions and 34 basis functions in the
wall-normal direction due to the open knot vector construction (see [16] for details).
In terms of the number of degrees-of-freedom, this type of resolution is typical of
LES at Reynolds number 395. The domain size is2π, 2, and2/3π in the stream-
wise, wall-normal, and span-wise directions, respectively. The corresponding DNS
computation was carried out on a domain of the same size and the discretization
used256× 193× 192 spectral functions in the stream-wise, wall-normal and span-
wise direction, respectively.

Figures 2 and 3 show statistics of the computations on the stretched and uniform
meshes, respectively.

On the stretched mesh, both the mean flow and the fluctuations are in very good
agreement with the DNS (see Figure 2). In fact, the accuracy of the results is vir-
tually that of a spectral computation, although simple quadratic spline functions
with local support are used instead of spectral basis functions. Results obtained
with strongly and weakly imposed no-slip conditions practically coincide, which is
consistent with the fact that the weak boundary condition formulation reduces to
the strong one in the limit of vanishing mesh size. The newly proposed formulation
that incorporates wall modeling gives slightly more accurate stream-wise velocity
fluctuations than the other formulations.

In contrast, on the uniform mesh, the methods perform differently (see Figure
3). Placing the first knot aty+ ≈ 23, we intentionally sacrifice the resolution of
the boundary layer. This leads to a gross overestimation of the mean flow for the
strongly enforced Dirichlet boundary condition formulation. Note that, on the other
hand, the mean velocity for both weak formulations agrees very well with the DNS
result. This shows that weak boundary conditions are capable of alleviating the
gross inaccuracy induced by insufficient near-wall resolution. This superior robust-
ness despite “poor” mesh design makes the new method attractive for industrial
applications. We also note that the wall function formulation is slightly more accu-
rate for mean flow velocity than the original weak boundary condition formulation.
Despite the large difference in the mean flow, the secondary statistics in the core of
the channel for the uniform mesh cases are very similar for all formulations consid-
ered. In the near wall region, the differences in the fluctuations obtained with the
various methods are more pronounced.

Comparing the results obtained on stretched and on uniform meshes, we observe
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Fig. 2. Turbulent channel flow atReτ = 395 computed on astretchedmesh.Top: Mean
stream-wise velocity plotted versus wall distance in wall units. Bottom: Stream-wise,
wall-normal and span-wise velocity fluctuations plotted versus wall distance in wall units.
Formulation with no-slip boundary conditions enforced strongly (�), weakly according to
original methodology (8) (△), and weakly based on the wall function (17) (+).

that the secondary statistics for the uniform mesh simulations are not quite as ac-
curate as those for the stretched grid case, although the quality of the results is
still good. One may thus conclude that in the core of the channel the effect of the
mesh design on the fluctuations is more pronounced than the effect of the boundary
conditions.
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Fig. 3. Turbulent channel flow atReτ = 395 computed on auniform mesh.Top: Mean
stream-wise velocity plotted versus wall distance in wall units. Bottom: Stream-wise,
wall-normal and span-wise velocity fluctuations plotted versus wall distance in wall units.
Formulation with no-slip boundary conditions enforced strongly (�), weakly according to
original methodology (8) (△), and weakly based on the wall function (17) (+).

Figure 4 shows the stream-wise velocity contours at an instant in time, computed
on a uniform mesh with weak boundary conditions employing the wall function
formulation. Note the presence of velocity fluctuations of considerable magnitude
at the “no-slip” wall (top surface of the box).
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Fig. 4. Turbulent channel flow atReτ = 395. Snapshot of stream-wise velocity contours.

4.3 Turbulent channel flow atReτ = 950

For the computations atReτ = 950, a mesh of643 elements is used with 64
basis functions in the homogeneous directions and 66 basis function in the wall-
normal direction due to an open knot vector construction. The domain size is4π, 2,
and4/3π in the stream-wise, wall-normal and span-wise directions,respectively.
The corresponding DNS used a domain size of8π × 2 × 3π with a resolution of
3072 × 385 × 2304 spectral functions in the stream-wise, wall-normal and span-
wise directions. Note that our resolution per unit domain length is a factor of about
25 coarser in the stream-wise direction, a factor of 6 coarser in the wall-normal
direction, and a factor of 24 coarser in the span-wise direction. Hence, the adopted
discretization is significantly coarser than what is typically used for an LES-type
computation.

Figures 5 and 6 show statistics of the computations on stretched and uniform meshes,
respectively.

On a stretched mesh, the differences between the weak and thestrong boundary-
condition formulations are negligible due to the small near-wall mesh size in the
wall-normal direction (see Figure 5). All methods fail to accurately represent the
mean flow velocity. Moreover, the stream-wise velocity fluctuations are inaccurate
in the near-wall region but are quite accurate in the core of the channel. The ve-
locity fluctuations in the remaining directions are in very good agreement with the
DNS. The good agreement of the velocity fluctuations with theDNS despite the
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Fig. 5. Turbulent channel flow atReτ = 950 computed on astretchedmesh.Top: Mean
stream-wise velocity plotted versus wall distance in wall units. Bottom: Stream-wise,
wall-normal and span-wise velocity fluctuations plotted versus wall distance in wall units.
Formulation with no-slip boundary conditions enforced strongly (�), weakly according to
original methodology (8) (△), and weakly based on the wall function (17) (+).

discrepancy in the mean flow velocity is somewhat surprising. The inability to ac-
curately capture the mean velocity illustrates the limitations of the strong boundary-
condition method for high Reynolds number wall-bounded flows.

On the uniform mesh, with the first knot aty+ ≈ 30, the strong boundary condition
formulation gives an even greater over-prediction of the mean velocity than for
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Fig. 6. Turbulent channel flow atReτ = 950 computed on auniform mesh.Top: Mean
stream-wise velocity plotted versus wall distance in wall units. Bottom: Stream-wise,
wall-normal and span-wise velocity fluctuations plotted versus wall distance in wall units.
Formulation with no-slip boundary conditions enforced strongly (�), weakly according to
original methodology (8) (△), and weakly based on the wall function (17) (+).

the stretched mesh computations; compare Figures 5 and 6. Incontrast, both weak
boundary-condition formulations deliver a result of reasonable accuracy for such
a coarse discretization, similar to the case ofReτ = 395. The mean flow is only
slightly over-predicted when compared to the DNS. Also notethat the uniform
discretization does not exhibit as severe an overshoot in the stream-wise velocity
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fluctuations near the wall as for the stretched mesh. However, away from the wall,
the fluctuations are slightly less accurate on the uniform mesh than on the stretched
mesh. This is consistent with the results for theReτ = 395 case.

Figure 7 shows the stream-wise velocity contours at an instant in time, computed
on a uniform mesh with weak boundary conditions employing the wall function
formulation. Note the presence of velocity fluctuations of considerable magnitude
at the “no-slip” wall (top surface of the box). Also note thatthe turbulent structures
for theReτ = 950 channel are more fine-grained than the ones for theReτ = 395
channel due to the increased Reynolds number (compare Figures 4 and 7).

Fig. 7. Turbulent channel flow atReτ = 950. Snapshot of stream-wise velocity contours.

5 Conclusions

In this work, we proposed a new variational formulation of the incompressible
Navier-Stokes equations that enforces Dirichlet no-slip boundary conditions weakly.
Motivated by the observation that weak imposition of Dirichlet boundary condi-
tions generally seems to behave like a wall function, the proposed formulation is
based on the so-called law of the wall. We combined the weak boundary condi-
tion formulation with residual-based turbulence modeling. We compared the per-
formance of the different boundary condition formulationsbased on numerical re-
sults for turbulent channel flow at medium-to-high Reynoldsnumber. We found
that the weakly imposed boundary condition formulation that incorporates the law
of the wall provides an improvement over the original weak boundary condition
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formulation. In the limit of vanishing mesh size in the wall-normal direction, both
weak boundary condition formulations act like a strong formulation. Accordingly,
weak and strong boundary condition formulations give essentially identical results
on stretched meshes that are designed to better capture the boundary layer. How-
ever, on coarse, uniform meshes, weakly imposed boundary conditions deliver a
significantly more accurate mean flow velocity than their strong counterpart. In
this respect, the combination of residual-based turbulence modeling and weak im-
position of the no-slip condition acts like a RANS-type model in the sense that
it produces accurate mean flow quantities on meshes that are too coarse for con-
ventional LES simulations. This result makes weakly imposed Dirichlet boundary
condition formulations attractive for computing flows of industrial interest, avoid-
ing the costly resolution of boundary layers without compromising the accuracy of
large-scale flow features. Given that the weak boundary condition formulation be-
haves like its strong counterpart on fine meshes and deliverssuperior accuracy on
coarse meshes, this suggests the use of this method as a general strategy for enforc-
ing wall boundary conditions in finite-element flow computations. The additional
cost due to weak enforcement of the boundary conditions is negligible because the
corresponding integrals are evaluated only over the Dirichlet portion of the domain
boundary.

Regarding the role of weak versus strong boundary conditionformulation in the
context of residual-based turbulence modeling, our results for theReτ = 395 chan-
nel flow showed that the residual based formulation with standard strongly im-
posed boundary conditions gives remarkably accurate results for a well designed,
stretched mesh with a resolution that is typical of LES. However, for flows at higher
Reynolds number, such asReτ = 950 computed on a stretched mesh with a resolu-
tion corresponding to coarse LES / fine RANS, the accuracy of the residual-based
approach deteriorates. The lack of accuracy in predicting the mean flow velocity
derives from the inability to resolve the turbulent-boundary-layer flow structures
on a mesh that is insufficiently fine. Our results demonstrated that this difficulty
can be elegantly circumvented by combining the residual-based formulation with a
weakly enforced no-slip boundary condition.
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