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Abstract

Weakly enforced Dirichlet boundary conditions are compared with strongly enforced
conditions for boundary layer solutions of the advection-diffusion equation and incom-
pressible Navier-Stokes equations. It is found that weakly enforced conditions are effective
and superior to strongly enforced conditions. The numerical tests involve low-order finite
elements and a quadratic NURBS basis utilized in the Isogeometric Analysis approach. The
convergence of the mean velocity profile for a turbulent channel flow suggests that weakly
no-slip conditions behave very much like a wall function model, although the design of
the boundary condition is based purely on numerical, rather than physical or empirical,
conditions.
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1 Introduction

Dirichlet boundary condition specification in computational fluid dynamics, such
as the no-slip wall boundary condition for the Navier-Stokes equations, is rarely
discussed. It seems so simple and unambiguous. Just set the variables to their pre-
scribed values. But what precisely does that mean? In formulations in which contin-
uous representations of the fields are employed, such as traditional finite element
methods employing C° nodal interpolations, the nodal values are specified. This
amounts to so-called “strong satisfaction” of the boundary conditions. “Strong”
sounds good but certain deficiencies may arise. For example, if the boundary data
is discontinuous, C° interpolation with higher-order Lagrange polynomial finite
elements will result in oscillations rather than a crisp resolution of the data. In ad-
dition, it has been repeatedly noted over the years that strongly enforced outflow
boundary conditions give rise to spurious oscillations even for methods with other-
wise good stability properties. So maybe strong satisfaction is not such a good idea.
What is the alternative? There is the possibility of “weak satisfaction” in which the
functions representing the discrete solution are not required to satisfy the Dirich-



let conditions but rather terms are added to the variational equations to enforce
them weakly as Euler-Lagrange conditions. A methodology which does this is the
Discontinuous Galerkin (DG) method in which discontinuous solution spaces are
employed and all continuity and boundary conditions are satisfied weakly. The DG
method has its strengths and weaknesses but these will not be discussed here. See
[18, 49, 26, 1, 42, 10, 6, 2, 34, 45, 22, 52, 15, 44, 4, 40] for recent works on the
DG method. Despite the large and growing literature on the DG method, we are not
aware of any study comparing the weak satisfaction of Dirichlet conditions with
more traditional and common strong satisfaction. It is the purpose of this paper to
perform a comparison in the context of stabilized, continuous Galerkin (CG) fi-
nite element formulations of the advection-diffusion equation and incompressible
Navier-Stokes equations.

In Section 2 we describe the strong and weak formulations of the continuous prob-
lem for the advection-diffusion equation, and a stabilized Galerkin method with
weakly enforced Dirichlet boundary conditions. We also describe a method to ac-
curately calculate the diffusive flux which attains conservation. Numerical tests are
performed in Section 3 for boundary layer problems in one, two and three dimen-
sions. Linear and bilinear finite elements are used in the one- and two-dimensional
examples, and quadratic NURBS are used in the three-dimensional case. In the lat-
ter case, we are able to constructs an exact geometric model of a hollow cylinder
through the use of the Isogeometric Analysis approach [32]. The weak Dirichlet
boundary conditions perform well and are able to mitigate or entirely eliminate os-
cillations about unresolved boundary layers. This also appears to improve the accu-
racy in the domain away from the layers. In Section 4 we describe the stabilized for-
mulation for the incompressible Navier-Stokes equations. We compare strong and
weak treatment of no-slip boundary conditions. In both cases we strongly satisfy
the wall-normal velocity boundary condition. As a basis for comparison, we con-
sider an equilibrium turbulent channel flow at a friction-velocity Reynolds number
of 180 simulated with trilinear hexahedral finite elements. Based on mean velocity
profiles, we conclude that weak no-slip boundary conditions provide significant in-
creases in accuracy over strong for coarse meshes. For fine meshes, results converge
toward the DNS benchmark solution of Kim, Moin and Moser [37]. It is noted that
the approach utilized may be viewed as somewhere between a coarse DNS and
an LES in that the stabilization terms model the cross-stress contributions to en-
ergy transfer. Nevertheless, a surprisingly good result is obtained for a medium
mesh with weakly enforced no-slip boundary conditions. It seems weak enforce-
ment behaves somewnhat like a wall function model although no turbulence physics
or empiricism is incorporated in its design. In Section 5 we draw conclusions.



2 TheAdvection-Diffusion Equation

2.1 Strong and weak formulations of the continuous problem

Let ©2 be an open, connected, bounded subset of R?, d = 2 or 3, with piecewise
smooth boundary I' = 0f). Q2 represents the fixed spatial domain of the problem.
Let f : Q — R be the given source; a : Q — R? is the spatially varying velocity
vector, assumed solenoidal; k : QO — R?*? is the diffusivity tensor, assumed sym-
metric, positive-definite; and ¢ : I' — R is the prescribed Dirichlet boundary data.
LetI';,, be asubsetof I' onwhicha-n <0andI',,; =I' —I';,, the inflow and the
outflow boundary, respectively. The boundary value problem consists of solving the
following equations for u : QO — R:

Lu=f inQ (1)
u=g onl 2)

where
Lu=V"-(au)—V-(kVu)=a -Vu—V-(kVu), (3)

the last equality holding true due to the divergence-free condition on the velocity
field. Defining the solution and the weighting spaces as

H;(Q) ={u|uecH(Q), u=g onT}, 4)
Hy(Q)={u | ue H(Q), u=0 onT}, (5)

respectively, the variational counterpart of (1) is:
Find u € H(Q) such that Vw € Hg(Q),

(_vwa au — kVU)Q - (w> f)ﬂ =0 (6)
where (-, -)q denotes the L?-inner product on €.
Remark

For simplicity of exposition we consider all of I" to be the Dirichlet boundary. The
methods presented herein extend in a straightforward fashion to cases where other
boundary conditions are prescribed on parts of I".

2.2 Finite element formulation of the advection-diffusion equation with Dirichlet
boundary conditions imposed weakly

Consider a finite element partition of the physical domain §2 into n.; elements



Q:UQe e=1...ng @)

which induces a partition of the boundary into n., segments as

F:UFbﬂF bzlneb (8)
b

Typical finite element approximation spaces are subspaces of

Vi={u | ueC*Q)NP(Q) Ve=1...ny} (9)

where k is the degree of continuity of the functions on interelement boundaries
and [ is the polynomial order of the functions on element interiors. In most cases,
k = 0and ! = 1, namely a piecewise linear, C°-continuous basis is employed. It
is standard practice to impose Dirichlet boundary conditions strongly. That is, the
finite element trial solution and weighting spaces are required to be subsets of (4)
and (5), respectively. In this work, no such constraints are imposed on V", instead
Dirichlet boundary conditions are built into the variational formulation weakly, as
described in what follows.

Remark

For all but one case considered in this paper, the polynomial order of the basis func-
tions is equal to one. The exception is an application of the Isogeometric Analysis
approach proposed by Hughes, Cottrell and Bazilevs [32].

Given the approximation space V", our method is stated as follows:
Find u" € V" such that Vu" € V",

el
(=Vu", au" — kVu")q — (0", o+ (Lw'r, Lu" — f)q

e=1

(10)

e
Neb

+ Z(wh, —kVu" -n+a-nu")par
b=1

Neb

+3 (—ykVu" -n —a-nuw" u" — g)r,qr,,
b=1

Neb

+ Z(—kawh "M, uh - g)rbmrout
b=1

Neb CI k
T
b=1 b

where n is the unit outward normal vector to T, (-, -)p defines the I?-inner product
on D = Q,Q,, etc., and v and C{ are non-dimensional constants.



Remarks

(1)

(2)

(3)

(4)

The stabilized methods SUPG, GLS and MS are obtained by appropriate se-
lection of IL. See Hughes, Scovazzi and Franca [30] for elaboration. The in-
trinsic element time scale, 7, is also described in [30] and references therein.
In the numerical calculations, we use SUPG in which

Luw" = a - Vu". (11)
The definition of the intrinsic time scale is taken to be

— Pe) (12)

where Pe, the element Peclet number, is defined as

lalh,
Pe =
“T ok

(13)

ha is the element size in the direction of the flow, and p is the polynomial
order of the basis. For a summary of the early literature on SUPG see Brooks
and Hughes [12]. Recent work on stabilized methods is presented in [21, 38,
48, 19, 20, 13, 24, 9, 23, 8, 3, 41].

The fourth term of (10) is the so-called consistency term. In obtaining the
Euler-Lagrange equations corresponding to (10), integration-by-parts produces
a term that is cancelled by the consistency term. The remaining terms are
precisely the desired ones, namely, the weak form of the advection-diffusion
equation and appropriate boundary conditions.

The last three terms of (10) are responsible for the enforcement of the Dirich-
let boundary conditions. Note the difference in the treatment of inflow and
outflow boundaries. As long as some diffusion is present, it is permissible to
set Dirichlet boundary conditions on the entire domain boundary I". On the
other hand, in the case of no diffusion, one can only set the values of the so-
lution on the inflow part of the boundary, namely I" ;,,. Hence, our treatment
of outflow and inflow is different. We make both advection and diffusion re-
sponsible for enforcing the inflow Dirichlet boundary conditions by including
advective and diffusive parts of the total flux operator acting on the weighting
function w". The outflow boundary integral only sees the diffusive part of the
total flux operator acting on w . The mathematical structure of these terms
puts more weight on the Dirichlet boundary condition at the inflow than at
the outflow in the advection dominated case. In addition, it forces the outflow
Dirichlet boundary condition to vanish in the advective limit. Note that, in
the limit of zero diffusion, a correct discrete variational formulation for pure
advection is obtained.

In this work, we assume v = 1 or —1. Both choices yield consistent methods.
At first glance, one might consider v+ = —1 a better choice because it leads



to better stability of the bilinear form when diffusion is significant. Unfortu-
nately, this renders the formulation adjoint-inconsistent, which, in turn, may
lead to suboptimal convergence in lower-order norms, such as L? (see Arnold
et al. [5].) There is some evidence of this in our first numerical example. In
addition, v = —1 produces non-monotone behavior in boundary layers where
advection is non-negligible. It is worth noting that solutions for v = 1, the
adjoint-consistent case, are monotone for all discretizations and converge at
optimal rate in L2. The last term in (10) is penalty-like. It renders the formula-
tion non-singular in the absence of advection as well as produces a stabilizing
effect necessary for the v = 1 case. The inverse power of h is necessary for
optimal rate of convergence. The element-wise constant C{ is not arbitrary.
For the v = 1 case, C/ has to be greater than some C' which, in turn, comes
from the local boundary inverse estimate

C
| V' - m |2, < oy | w" |2,y V' € V. (14)

C is dependent on the order of interpolation used and the element type (see
Ciarlet [17]), and is, in principle, computable for any discretization. For the
case when v = —1, C/ just has to be strictly greater than zero to ensure
stability. Note also that the last term in (10) scales with k&, which means that
it becomes less important when advection dominates and vanishes completely
in the advective limit.

(5) One can obtain formulation (10), without interior stabilization (i.e., the L
term), from a variety of Discontinuous Galerkin (DG) methods. For exam-
ple, the case of v = —1,C{ = 0 corresponds to the method of Baumann and
Oden [7]; v = —1,C% > 0 is the Non-symmetric Interior Penalty Galerkin
(NIPG) method [43]; and v = 1,C% > 0 is the Symmetric Interior Penalty
Galerkin (SIPG) method [50].

2.3 Computation of the diffusive flux

Diffusive flux, namely
" = kVu - n, (15)

IS a very important quantity in engineering analysis. In the presence of unresolved
boundary layers, a direct evaluation of the normal gradient of the discrete solution,
as suggested by the above definition, generally leads to inaccurate results. In this
section we give a definition of the diffusive flux which is based on the idea of
global conservation (see Hughes et al. [33] and Brezzi, Hughes, and Sli [11] for
background). The structure of formulation (10) is such that no additional processing
needs to be done to determine a conserved quantity.



We restate the boundary value problem (6) as follows (see Hughes et al. [33]): Find
u e H;(Q),q € H/2(T) such that Vw € H'(Q),

(—=Vw,au — kVu)g— <w,q>r —(w, f)g =0 (16)
where < -,- >p denotes a duality pairing between H'/2(T") and H~/?(I) . Let
B(Q) be a complement of H}(Q) in the space H'(£2). Then problem (16) splits
into

(—Vwy, au — kVu)q — (w, fla=0 Ywy € HY(Q), (17)
and

(=Vwy, au — kVu)g— < wy,q >r —(wp, fla =0 Vw, € B(Q). (18)

Applying Green’s Identity to (18) and using the fact that (1) holds in L?(Q) (apply
standard distribution theory arguments to (17)) yields:

— <wp,a-nu—kVu-n>r — <w,q>r=0 VYuw, € B(Q) (19)
which, in turn, implies
¢q=kVu-n—a-nu in H %), (20)
Setting w = 1 in (16) also shows that ¢ is globally conservative, that is,
Relation (21) implies that whatever is generated in the interior of the domain 2
by the source f is taken out through its boundary I by the flux ¢. The flux ¢ is
composed of two parts, ¢°® and ¢%//f, the advective and diffusive fluxes. The ad-
vective flux is prescribed through the Dirichlet boundary condition (i.e., u = g on

I" implies ¢*¥® = —a - ng on I'). We proceed by defining ¢/ as

¢ =g — ¢ =g+a-ng onT. (22)

Remark

Note that our definition coincides with the conventional one, namely (15), but we
arrive at it using conservation ideas. The diffusive flux is viewed as the difference

between the quantity which is globally conservative and the quantity which is exact.
This idea proves very useful in the discrete setting.

We treat the discrete case analogously. Introducing w" = 1 into (10) yields the



following discrete conservation law:

Neb

—(1,f) +Z (Cylk|/ho) (" = g))r, (23)

— Z(l, kVu' - n—a- ng)r,nr;,
b=1

Neb

> (L,kVY" - n—a-nu")r,ar,, =0
b=1

where the last three terms on represent the globally conserved total flux. Applying
definition (22) gives a globally conservative diffusive flux in the discrete setting:

¢ = kVu" - — (Clk|/hy)(u" — g)  onTi,NT, (24)
qd’bff — kvuh -n — ((Obl|k|/hb) +a - n)(uh - g) on Fout N Fb'

Remarks

(1) Equations (24) indicate that the diffusive flux should be computed differently
for inflow and outflow boundaries. Both incorporate the error in the Dirichlet
boundary condition scaled by the parameter C{|k|/hs. The expression for the
outflow diffusive flux also incorporates the error in the advective flux. In cases
of small diffusion, the latter contribution becomes dominant.

(2) Expressions (24) are well defined on boundary element edges in two dimen-
sions and boundary element faces in three dimensions.

3 Advection-Diffusion Numerical Tests

In the examples, k is isotropic, that is k = kI, where & > 0 is a scalar diffusivity
and I is the identity tensor. In this case |k| = k.

3.1 One-dimensional outflow boundary layer

In this example we consider the outflow boundary layer problem posed on a one-
dimensional domain of length 1. The advective velocity a = 1, which renders z = 0
an inflow boundary and = = 1 an outflow boundary. The diffusivity ~ is 0.01. The
boundary conditions are u(x = 0) = 1 and u(x = 1) = 0, the latter responsible for
a thin outflow layer. The problem setup is depicted in Figure 1.

Both v = 1 and v = —1 are considered, and C{ = 4. The solution was com-
puted using uniform meshes of 8, 18, 32, 64, 128, 256, and 512 C° piecewise



Solution profile

T

a=1,k=001,L=1

=0 r=1
Fig. 1. Setup for a one-dimensional outflow boundary layer problem.

linear finite elements. Figure 2 shows the comparison between the computed so-
lutions for v+ = 1 and v = —1. The adjoint-inconsistent formulation produces a
non-monotone result, while the adjoint-consistent solution is monotone for all dis-
cretizations. The latter property is of great importance in many CFD applications.
Note that the non-monotone behavior is most pronounced for the 32 element mesh,
which corresponds to the element Peclet number of about 1.5. This is a regime in
which both advection and diffusion are equally important.

Figures 3 and 4 show convergence of the error in the H* seminorm and L? norm,
respectively. In contrast with observations about the monotonicity of the computed
solution, based on the error plots one might conclude that the v = —1 case is
performing slightly better, at least on coarser meshes. However, the inability of the
adjoint-inconsistent formulation to converge at optimal order in the L2 norm in the
diffusive limit can be seen in Figure 4.

3.2 Advection-diffusion in an annular region

This three-dimensional example deals with an advection-diffusion problem posed
over an annular region. Problem geometry and parameters are given in Figure 5.
The analytical solution, given here for completeness, varies logarithmically in the
radial direction and exponentially in the direction of the flow:

(eaz/n _ eaL/n) lOg(’f’)

(1= ) log(2) =

u(r, z) =

In this example (and all subsequent examples in this paper), v = 1 was employed.
For this case, C{ = 8. This problem was solved with the Isogeometric Analysis
approach proposed by Hughes, Cottrell and Bazilevs [32]. Four meshes, composed
of 32, 256, 2048 and 16,384 elements were used. The first three are shown in Figure
6. The meshes are “biased” toward the outflow boundary where there is a thin layer.

10
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Fig. 2. One-dimensional outflow boundary layer problem. Computed solution profiles.
The adjoint-consistent formulation (v = 1) gives rise to monotone solutions. The ad-

1
0.75 0.8 0.85 0.9 0.95 1
T

v=-1

joint-inconsistent case (v = —1) does not.

A quadratic NURBS basis is employed in all three parametric directions enabling us
to construct an exact isoparametric geometric model. The diffusivity «, set to 0.025,
produces a solution than can be fairly well resolved on meshes 2-4. Axisymmetry
was not assumed, yet a pointwise axisymmetric response was obtained in all cases.
Figures 7 and 8 are illustrative. Figure 9 shows the solution as a function of the

11
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10"

10° 107 10"

Fig. 3. One-dimensional outflow boundary layer problem. Convergence in the H' semi-
norm.

10

10°F

lw— g2

10°F

10"

Fig. 4. One-dimensional outflow boundary layer problem. Convergence in the L2 norm.

axial variable for two fixed values of the radial coordinate, namely » = 1.5 and
r = 2.0. Note the stability of the solution and the degree to which the Dirichlet
boundary conditions are satisfied. Finally, the 72 norm and H! seminorm of the
error are presented in Figure 10. Optimal convergence rates are attained.

12
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Fig. 5. Advection-diffusion in an annular region. Problem setup.

Fig. 6. Advection-diffusion in an annular region. Meshes 1-3.

3.3 Advection skew to the mesh with outflow Dirichlet boundary conditions

The problem setup is given in Figure 11. The presence of unresolved interior and
boundary layers causes difficulties for most existing techniques. Oscillations are

13
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- 07
— 048
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— 03

0.2

0.1

-4.64e—05

Solution on the whole domain

Solution
1

09
— 08
- 07
— 0.8

| B 04

Detail of the outflow boundary layer

Fig. 7. Advection-diffusion in an annular region. Solution contours on the finest mesh.

typically seen in the vicinities of the layers. In this example, the angle of advection
is chosen to be approximately 63.4° so as to avoid any symmetries in the solution
with respect to the 20 x 20 mesh of square bilinear finite elements. ¢ = 4. Figure
12 shows the SUPG solution obtained with strongly imposed Dirichlet boundary

14
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Fig. 8. Advection-diffusion in an annular region. Solution contours on the finest mesh.
Axisymmetry is evident from the contours at various angular positions.
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X
u(z,r = 1.5) u(z,r = 2.0)

Fig. 9. Advection-diffusion in an annular region. Line plots of solution as a function of the
axial coordinate at two radial positions. Solutions are monotone and the boundary condi-
tions are well approximated.

conditions. Very poor behavior is seen at the outflow where the overshoot in the
computed solution exceeds 50% of the exact solution. The interior layer is also not
perfect but appears to be somewhat under control. Figure 13 shows the solution
for weakly imposed Dirichlet boundary conditions obtained with (10). The inflow
boundary condition is captured fairly well but a slight oscillation is observed in
the region of the discontinuity. On the other hand, the method completely ignores
the outflow Dirichlet boundary condition. This is not surprising, as the degree to
which an outflow boundary condition is satisfied depends on the magnitude of the

15



H'! seminorm

h

Fig. 10. Advection-diffusion in an annular region. Convergence to the exact solution.

Boundary layers

Internal layer

a= (cosf,sinh)

Hij:Ii(sz’j
u=1 k=10"9L=1
u=1

Fig. 11. Advection skew to mesh. Problem description and data.

diffusion, which is practically zero in this case. In fact, for such a crude mesh,
the problem is almost like pure advection and the method automatically adjusts
the boundary conditions accordingly. To avoid oscillations at the inflow, one might
choose to set the inflow boundary condition strongly but maintain weak imposi-
tion of the outflow Dirichlet boundary condition. This result is shown in Figure 14,
where the solution is very similar to the all-weak case with the exception of the

16



inflow, which is interpolated and thus monotone for linear elements. This device
would not work for higher-order finite elements because interpolation creates oscil-
lations. See Hughes, Cottrell, and Bazilevs [32] for a discussion and an alternative
approach utilizing NURBS. Figure 15 shows a comparison of the all-strong solu-
tion with the strong inflow—weak outflow solution in which the prescribed Dirichlet
boundary condition is inserted a posteriori (i.e., computed values of the solution
were overwritten with their prescribed counterparts). A “perfect” outflow layer for
the computational mesh is obtained in this case.

Inflow view Outflow view

Fig. 12. Advection skew to the mesh. All strong Dirichlet boundary conditions.

0.6

0.8

Inflow view Outflow view

Fig. 13. Advection skew to the mesh. All weak Dirichlet boundary conditions.

4 Incompressible Navier-Stokes Equations

In this section we consider viscous incompressible flow in a bounded domain with
no-slip conditions imposed on the boundary. This is the setting for wall-bounded
flows where, in the high Reynolds number regime, turbulent boundary layers oc-
cur. in order to accurately solve these flows, one needs to resolve the boundary

17
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Fig. 14. Advection skew to the mesh. Strong inflow—weak outflow Dirichlet BC solution.

-0.24
0

0.2

0.6 0.4

0.8

1

All strong Strong inflow—weak outflow

Fig. 15. Advection skew to the mesh. Comparison of all strong and strong inflow—weak out-
flow solutions. The latter was postprocessed to account for the prescribed Dirichlet bound-
ary conditions, a technique often employed in commercial finite volume codes [51].

layers, which is prohibitively expensive. In this work we are hoping to demonstrate
that the computational cost associated with boundary layer computations can be re-
duced, without compromising the accuracy of the solution, by imposing the no-slip
condition weakly. The advection-diffusion calculations are an indication that errors
associated with under-resolving boundary layers are reduced away from the lay-
ers when Dirichlet boundary conditions are imposed weakly. The same observation
was made by Layton [39], who examined weak imposition of boundary conditions
for the case of the Stokes equations.

We begin by considering a weak formulation of the Incompressible Navier-Stokes
(INS) equations. Let V' denote the trial solution and weighting function spaces,
which are assumed to be same. We also assume w = 0 on I"and [, p(¢) d2 = 0 for
all t € |0, T'[. The variational formulation is stated as follows:

18



Find U = {u,p} € Vsuchthat YW = {w, ¢} € V,

B(W,U) = (W, F) (26)
where
9
Bw.0) = (w0.5¢) = (Vw.usuly @5 w (Vv @)
Q
+ (Viw, 2vV°u), ,
and

(W, F) = (w, f)a. (28)

The Euler-Lagrange equations of this formulation are the momentum equations
and the incompressibility constraint. We approximate (26)-(28) by the following
variational problem over the finite element spaces:

Find U" = {u" p"} € V" wu"-n = 0onT such that YW" = {w" ¢"} ¢
Vi w' -m=0onT,

oul
('w e )Q—(Vw u' @ u )Q+(qh,V-uh)Q—(V-wh,ph)Q (29)

Nel
+ (Vo' 20Viu")g — (w", fo + D (LW"r, 2U" — F)q,
e=1
Tep

— Z('wh, IAVAL TN n)r,Ar

b=1
Neb
— Z(VZVVSwh ‘n,u" — 0)p,qr
b=1
Neb C v
—l—Zw L u O)Fbmp:().

In the numerical calculations we used the stabilized formulation of Tejada-Martinez
and Jansen [47] in which

(LWh‘r, LUt — F)q, = ({uh V" +u"- (th)T + th}m, LU — a.

+ (V- whre, V- uM)g,, (30)
N cu”
LU" = (0 (31)
V-u
and
h ou” ul h s, h
LU :thv ( )+ Vp' =V - 20Viu". (32)

19



Remarks

(1) For further details of stabilized formulations of INS, see Taylor, Hughes, and
Zarins [46] and Jansen, Whiting, and Hulbert [36]. In particular, these refer-
ences may be consulted for definitions of 7, and 7.

(2) We chose to enforce the normal component (i.e., no-penetration condition) of
the no-slip boundary condition strongly on the trial and the weighting spaces.

(3) The third from last term of (29) is the consistency term. Notice that the no-
penetration condition on the trial and the weighting spaces leaves only a vis-
cous contribution in this term.

(4) The last two terms of (29) are responsible for the enforcement of the Dirichlet
boundary conditions on the remaining components of the velocity vector. The
construction of these terms was motivated in the section on the advection-
diffusion equation. The constants ~ and C{ retain their previous meaning.

4.1 Turbulent channel flow at Re, = 180

Formulation (29) was tested on the Re, = 180 turbulent channel flow (see Kim,

Moin, and Moser [37]) and compared with the strong imposition of the no-slip
condition. In the case when the no-slip condition is imposed strongly, the last three
terms of (29) vanish yielding a standard stabilized method for INS. The domain size
is 4, 2, and 4/37 in the stream-wise, wall-normal, and span-wise directions, re-
spectively. Periodic boundary conditions are imposed in the stream-wise and span-
wise directions, while a homogeneous Dirichlet boundary condition is set in the
wall-normal direction. Figure 16 shows the schematic of the computational setup.
Uniform meshes of 8 x 16 x &8, 16 x 32 x 16, and 32 x 64 x 32 trilinear finite
elements were used in the computation. The discrete equations were advanced in
time using the Generalized-a method (see Chung and Hulbert [16] for details). The
adjoint-consistent (v = 1) form was used in the case of weak boundary conditions.
C! was set equal to 4. Figure 17 shows the stream-wise velocity contours at an
instant in time for the finest simulation employing weak boundary conditions. Note
the presence of turbulent structures on the no-slip wall.

Mean flow statistics were computed by averaging the solution in time as well as in
the homogeneous directions, namely stream-wise and span-wise. Figure 18a shows
convergence of the mean flow to the reference DNS computation of Kim, Moin,
and Moser [37] for the case of strongly enforced boundary conditions. The coars-
est mesh gives a significant over-prediction of the mean flow, the medium mesh
gives a better result, yet the solution is still noticeably in error compared with the
benchmark, while the finest mesh, which is still significantly coarser than the DNS
resolution, gives a result very close to it. The same quantity was computed and plot-
ted for the weak boundary condition formulation (see Figure 18b). The mean flow
is still over-predicted on the coarsest mesh but the result is closer to the DNS than
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Fig. 16. Turbulent channel flow. Problem setup.
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Fig. 17. Turbulent channel flow. Stream-wise velocity contours.

its strong counterpart. The medium mesh result is remarkable in that the mean flow
is in very close agreement with the DNS, and much better than the corresponding
strong boundary condition computation. The fine mesh results are almost identical
to the medium mesh results.

Some deviation is seen in the core of the channel for all methods presented here.
One needs to keep in mind that formulation (29) is not a bona fide turbulence model,
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although the stabilization terms represent a model of the cross-stress terms. Conse-
quently, the calculations may be thought of as being somewhere between a coarse
DNS and LES. Presumably, a Variational Multiscale LES Formulation would lead
to better results (see Hughes, Scovazzi and Franca [30], Hughes, Mazzei, and
Jansen [27], Hughes et al. [28], Hughes, Oberai, and Mazzei [29], Holmen et al.
[25], Hughes, Wells, and Wray [35], Hughes, Calo, and Scovazzi [31], and Calo
[14]). Figure 19 shows results in the boundary layer region. Weak boundary con-
dition calculations appear to be much more accurate on coarse meshes than their
strong counterparts.

5 Conclusions

We have developed stabilized formulations of the advection-diffusion and incom-
pressible Navier-Stokes equations incorporating weak enforcement of Dirichlet
boundary conditions. In the case of the Navier-Stokes equations, this amounts to
the weak treatment of the no-slip condition. We compared weakly and strongly en-
forced Dirichlet boundary conditions on problems involving unresolved boundary
layers and we found weak treatment to be superior to strong. In the case of a turbu-
lent channel flow, weak treatment seemed to behave like a wall function although
the design of the boundary condition was based on numerical considerations rather
then physical or empirical turbulence concepts. Convergence of the mean flow was
much more rapid in the weakly enforced case than in the strongly enforced case.
These results are intriguing and warrant further investigation.

We believe our study has provided some interesting and practically useful results.
However, it has only scratched the surface of the topic. In order to more fully under-
stand the behavior of weak treatment of Dirichlet conditions we need to evaluate the
conservative formulation for the calculation of diffusive flux derived herein but not

yet tested. Furthermore, to fully assess the possibilities in turbulence simulations, a
bona fide LES turbulence model should be tested. Our intent is to utilized residual-
based models based on the Variational Multiscale Formulation for this purpose. In
addition to mean flow quantities, we also need to study higher-order statistics.
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