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Abstract
The finite element method is classically based on nodal Lagrange basis functions defined on conforming
meshes. In this context, total reaction forces are commonly computed from the so-called “nodal forces”,
yielding higher accuracy and convergence rates than reactions obtained from the differentiated primal
solution (“direct” method). The finite cell method (FCM) and isogeometric analysis (IGA) promise to
improve the interoperability of computer-aided design (CAD) and computer-aided engineering (CAE),
enabling a direct approach to the numerical simulation of trimmed geometries. However, body-unfitted
meshes preclude the use of classic nodal reaction algorithms.
This work shows that the direct method can perform particularly poorly for immersed methods. Instead,
conservative reactions can be obtained from equilibrium expressions given by the weak problem formula-
tion, yielding superior accuracy and convergence rates typical of nodal reactions. This approach is also
extended to non-interpolatory basis functions, such as the (truncated) hierarchical B-splines.

1 Introduction
In many applications, the goal of finite-element analyses is to approximate specific physical quantities
of interest. These data are often derived from the primal solution, such as in the case of total reaction
forces or fluxes. Such quantities are often the most relevant data in engineering design and analysis.

The evaluation of fluxes and forces derived from the primal finite-element solution has been investi-
gated for conforming meshes in several literature contributions. For example, in Akira [1986]; Barrett
and Elliott [1987]; Brezzi et al. [2001]; Carey [1982]; Carey et al. [1985]; Gresho et al. [1987]; Hughes
et al. [1987]; Hughes [2000]; Hughes et al. [2000]; Oshima et al. [1998] the flux is obtained through a
modified variational problem with an additional auxiliary field corresponding to the normal flux over the
Dirichlet boundary. Such an approach amounts to a mere post-processing step, and the resulting flux
fulfills equilibrium in a global or local sense. This technique, referred to as conservative or consistent,
is proven in the above references to be more accurate and achieve higher convergence orders than the
“direct” approach of differentiating the primal solution. In Melbø and Kvamsdal [2003], reactions on mesh
boundaries (subject to strong boundary conditions) are obtained for the Stokes flow through a variational
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2 2 MOTIVATION

interpretation similar to the one discussed in this work. In van Brummelen et al. [2011], similar formulas
for the reactions on (conforming) mesh boundaries are studied, focusing on coupled problems. In the
mentioned publications, the reactions are computed on Dirichlet-boundaries of meshes conforming to the
computational domain. In Bazilevs and Hughes [2007], this approach is extended to computing reactions
on (conforming) mesh boundaries subject to weak boundary conditions. In Bazilevs et al. [2012]; Ka-
mensky et al. [2017]; Kamensky [2016]; Wu et al. [2017], consistent forces on immersed boundaries are
considered on the fluid–structure coupling interface based on an augmented Lagrangian formulation.

In this work, the conservative reactions are first reviewed for conforming meshes subject to strong
Dirichlet boundary conditions. This approach is then extended to non-conforming trimmed meshes, where
the boundary of the geometry does not match the element boundaries. In particular, the total reaction
flux is computed on boundaries subject to weak boundary conditions, such as the penalty [Babuška, 1973]
and the symmetric Nitsche’s [Nitsche, 1971] methods. The computation of the total fluxes for conforming
meshes is viewed as testing a variational form with specific test functions, serving as “extraction functions”
in the framework of Babuška and Miller [1984]. Namely, the reactions are obtained by the expression of
equilibrium given by the weak form, yielding a total flux in global equilibrium with the other fluxes and
data of the problem. Reactions are observed to converge with rates two times higher than the energy-
norm error for Nitsche’s method on a trimmed two-dimensional benchmark problem with a smooth
solution. This phenomenon is often referred to as superconvergence [Babuška and Miller, 1984; Hughes
et al., 2000; Szabó and Babuška, 2011; Wahlbin, 1995]. The same convergence rates are obtained for the
penalty method, provided that the penalization parameter is suitably scaled.

Moreover, it is shown how this approach can be generalized to bases that do not form a partition of
unity and are not based on the concept of “nodes”. For example, this approach is valid for hierarchical
B-splines (HB) [Forsey and Bartels, 1988; Vuong et al., 2011], one promising approach to local refinement
for isogeometric analysis [Hughes et al., 2005].

The structure of the paper is as follows. Section 2 motivates the conservative approach for computing
the reactions. A three-dimensional trimmed example with a complex geometry defined by a Standard
Triangle Language (STL) file is considered, showing that the direct method can perform particularly
poorly for immersed meshes, as the weak boundary conditions indirectly constrain also the gradient of the
solution. Section 6 explains how the standard way to compute the reactions can be interpreted as testing
a variational form with specific test functions. This point of view serves as a basis to compute conservative
reactions on trimmed bases not forming a partition of unity in Sections 7 and 8. In Section 9, it is shown
that the method is superconvergent and approximates the total flux in a smooth two-dimensional problem
with higher accuracy for both penalty and Nitsche’s methods. In Section 10, the method is shown to give
consistent results for both penalty and Nitsche’s methods in the considered three-dimensional trimmed
example. Finally, Section 11 shows how this approach can be applied to compute reaction tractions for
isogeometric analysis of trimmed Kirchhoff-Love shells.

2 Motivation
Consider the portion of the façade element [Mungenast, 2017b] shown in Figure 1a. Its design takes
advantage of the production freedom offered by additive manufacturing technologies to combine the
aesthetics of wavy surfaces with functionalities such as insulation, ventilation, load transfer, and shading
(cf. Mungenast [2017a,b]). These functionalities lead to a geometry featuring a complex internal structure
and detailed external surfaces (cf. Figure 1b). The geometry is described by a fine STL file (courtesy of
Dr. Moritz Mungenast), as displayed in Figure 1c. Note that the STL file does not define a computational
geometry directly suitable for traditional methods based on conforming meshes.

The objective is to compute the total heat flux across the structure induced by a temperature difference
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(a) Outer surface. (b) Internal structure.

(c) STL file describing the geometry. (d) Non-conforming computational mesh.

Figure 1: Portion of façade element [Mungenast, 2017b].

on two opposite faces. The following Laplace’s equation and boundary conditions serve as a model problem

−∇ · (κ∇u) = 0 in Ω, (1)
u = 0 on Γ0, (2)
u = 1 on Γ1, (3)

κ∇u · n = 0 on ∂Ω \ (Γ0 ∪ Γ1). (4)

Here, Ω ⊂ R3 denotes the domain defined by the façade element, Γ0 ⊂ ∂Ω, and Γ1 ⊂ ∂Ω, Γ0 ∩ Γ1 = ∅,
denote the left and right boundaries highlighted in Figure 2a, κ ∈ R3×3 denotes the conductivity tensor,
and n the outward unit boundary normal. Following the finite cell approach [Düster et al., 2017; Parvizian
et al., 2007; Schillinger et al., 2012a], a simulation model is constructed without the need to build a
conforming mesh, a potentially time-consuming step in the total simulation pipeline [Cottrell et al.,
2009; Hughes et al., 2005]. The geometry Ω is immersed in a larger rectangular cuboid Ωfict that can
be straightforwardly meshed by a Cartesian element grid. As approximation, trivariate B-splines are
used, rendering the immersed approach a trimmed trivariate Isogeometric Analysis. Figure 1d shows an
example of elements intersecting the physical domain Ω. Since the boundaries Γ0 and Γ1, in general, do
not coincide with a subset of element faces, but they are immersed in the elements, a strong imposition
of the temperature boundary conditions would significantly deteriorate the accuracy. Instead, these
boundary conditions are imposed weakly (cf., e.g., Ruess et al. [2013]; Schillinger et al. [2012b]), as
explained in detail in Section 5. Figures 2b and 2c show the temperature and heat flux obtained with
B-spline basis functions of order p = 2 and κ being the identity matrix. The boundary conditions are
applied using Nitsche’s method with stabilization parameter γ = 10(p + 1)2/h (cf. Equation (17) and
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(a) Boundary conditions: u = 0 on
the blue surface (Γ0) and u = 1 on
the red surface (Γ1).

(b) Temperature. (c) Heat-flux magnitude on the
cross-section.

Figure 2: Boundary conditions and solution example for the façade element.

Antolin et al. [2019]; Johansson et al. [2019]), where h denotes the mesh size, as explained in Section 5.

A question now arises about the way to accurately compute the total flux from the trimmed discrete
solution. Once a numerical solution uh for the problem of Equations (1)–(4) is obtained, the conventional
way for conforming finite elements with Lagrange shape functions and subject to strong boundary condi-
tions can be summarized as in Table 1. It is yet not immediately clear how this conventional procedure

Let η(Γ0) be the set of nodes on Γ0.

1. For each node A ∈ η(Γ0) associated with the nodal shape function NA,
compute the internal nodal flux

qA =
∫
Ω

∇NA ·
(
κ∇uh

)
dΩ,

and the external nodal flux

qe
A =

∫
Ω

NAf dΩ +
∫

Γh

NAh dΓ.

2. The reaction r on Γ0 is obtained by summing the nodal fluxes of
all nodes located on Γ0, minus the known external fluxes

r =
∑

A ∈ η(Γ0)

qA − qe
A.

Table 1: The traditional algorithm for computing the reactions on conforming meshes of nodal partition-
of-unity finite elements [Bathe, 2007; De Borst et al., 2012; Hughes, 2000; Hughes et al., 2000; Kohnke,
2009; Siemens PLM Software Inc, 2014].

can be used for trimmed meshes with non-nodal shape functions, as there are no nodes and the boundary
is immersed in the element domains.
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(a) Total flux obtained by numerical integration.
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(b) Internal energy.
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(c) Equilibrium error (cf. Equation (5)).

Figure 3: Flux across the Dirichlet boundary Γ1, internal energy, and equilibrium for a sequence of
bisected meshes.

Since the numerical solution uh defines a numerical flux κ∇uh for every spatial location x ∈ Ω (uh is
assumed to be at least continuous), it is, in principle, possible to integrate numerically κ∇uh · n over Γ1.
However, total fluxes computed in this way can have poor accuracy. Figure 3a shows that different total
fluxes are obtained for Nitsche’s method with stabilization parameter γ = 10(p+1)2/h (cf. Equation (17)
and Antolin et al. [2019]; Johansson et al. [2019]) and the penalty method with penalization parameter
β = 102/hp (cf. Equation (15)), where h denotes the mesh size, as explained in Section 5. Although the
two methods yield different total fluxes, Figure 3b shows that the internal energy converges to the same
value.

Moreover, if the numerical flux is integrated over Γ0 and Γ1, the obtained values are similar but not
in perfect equilibrium. Such a difference is displayed in Figure 3c, where the relative error between the
two fluxes is computed as

e(qh
0 , qh

1 ) =
∣∣∣∣1 − qh

0
−qh

1

∣∣∣∣ , (5)

where qh
0 and qh

1 represent the integrated flux κ∇uh · n defined by the numerical solution uh over Γ0 and
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Γ1, respectively. Namely,

qh
i =

∫
Γi

κ∇uh · n dΓ, i ∈ {0, 1}. (6)

This example indicates that integrating the numerical flux does not use all information contained
in the finite element solution. Indeed, the underlying variational principle finds a solution that fulfills
equilibrium in a global and local (element) sense [Bathe, 2007; Hughes et al., 2000]. Therefore, this
information is contained in the solution. The rest of the paper is devoted to the development of a
strategy to accurately extract it.

To this end, the article lays out an explanation for computing the total flux and reaction forces based
on equilibrium considerations, generalizing the traditional approach to

• non-nodal basis functions that do not necessarily form a partition of unity,
• trimmed meshes.

Moreover, the proposed approach seems robust concerning the different methods for imposing the
weak boundary conditions, in the sense that penalty and Nitsche’s methods will converge to the same
total-flux value.

3 The strong form of the model problem
Let Ω ⊂ RD be a bounded Lipschitz domain with disjoint Dirichlet and Neumann boundaries Γg, Γh,
respectively, such that Γg ∪ Γh = ∂Ω, Γg ∩ Γh = ∅. The strong form of the heat conduction problem
reads

−∇ · (κ ∇u) = f in Ω, (7)
u = g on Γg, (8)

κ ∇u · n = h on Γh, (9)

where κ ∈ RD×D is the thermal-conductivity tensor, h : Γh → R is the prescribed flux, g : Γg → R is the
prescribed temperature, f : Ω → R is the volumetric heat supply, and n ∈ RD is the vector normal to
the boundary.

4 The weak form for strong boundary conditions
Given the set of trial functions Sg,Γg

(Ω) and the test space W0,Γg
(Ω),

Sg,Γg
(Ω) = {u ∈ H1(Ω) | u = g on Γg}, (10)

W0,Γg
(Ω) = {w ∈ H1(Ω) | w = 0 on Γg}, (11)

the weak form of the problem reads

find u ∈ Sg,Γg
(Ω)

such that a(w, u) = l(w) ∀w ∈ W0,Γg (Ω). (W)

Here, a(w, u) and l(w) denote the classic bilinear and linear forms

a(w, u) = (∇w, κ∇u)Ω, (12)
l(w) = (w, f)Ω + (w, h)Γh

, (13)
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4.1 The Galerkin form
Problem (W) can be rewritten with homogeneous Dirichlet boundary conditions by lifting g to Ω. In
particular, let gΩ ∈ H1(Ω) be such that gΩ|Γg

= g. Then, u0 = u − gΩ belongs to W0,Γg
(Ω) and

Problem (W) can be stated as

find u0 ∈ W0,Γg (Ω)
such that a(w, u0) = l(w) − a(w, gΩ) ∀w ∈ W0,Γg (Ω).

The Galerkin form of Problem (W) with a finite-dimensional subspace Wh
0,Γg

(Ω) ⊂ W0,Γg (Ω) and an
approximation gh to gΩ reads

find uh ∈ Wh
0,Γg

(Ω) ⊂ W0,Γg (Ω),
such that a(wh, uh) = l(wh) − a(wh, gh), ∀wh ∈ Wh

0,Γg
(Ω). (G)

5 The weak form for weak boundary conditions
In case the temperature boundary conditions are applied weakly, these are not incorporated in the solution
and test spaces. Instead, an additional term aw(·, ·) associated with the energy of the constraint violation
is added as follows

find u ∈ H1(Ω)
such that a(w, u) + aw(w, u) = l(w) ∀w ∈ H1(Ω). (w)

The term aw(w, u) can assume different forms depending on the weak-boundary approach. For the
penalty method [Babuška, 1973] with a penalty parameter β ∈ R, aw(w, u) = aβ(w, u) will be defined
as

aβ(w, u) = (w, β(u − g))Γg̃ . (14)

Typically, when using finite-element shape functions of polynomial order p, β is a mesh-dependent pa-
rameter scaled with hp to retain the expected convergence rates [Utku and Carey, 1982]

β = β̄
1
hp

, (15)

where β̄ ∈ R is a user-specified parameter, often dependent on the material parameters.

For the symmetric Nitsche’s method [Nitsche, 1971] with stabilization parameter γ ∈ R, aw(w, u) =
aγ(w, u) is defined as

aγ(w, u) = −(κ∇w · n, u − g)Γg − (w, κ∇u · n)Γg + (w, γ(u − g̃))Γg . (16)

In this work, γ is scaled as in the original publication Nitsche [1971]

γ = γ̄
1
h

. (17)

For immersed methods, better estimates for γ can be obtained by solving a global or element-local
generalized eigenvalue problem (cf., e.g., de Prenter et al. [2018]; Griebel and Schweitzer [2003]). Similar
estimates through generalized eigenvalue problems are also employed for variationally-consistent patch
coupling (cf., e.g., Apostolatos et al. [2014]; Embar et al. [2010]; Hansbo [2005]; Harari and Grosu [2015];
Hu et al. [2018]; Jiang et al. [2015]; Nguyena et al. [2013]; Ruess et al. [2014]).
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5.1 The trimmed-domain Galerkin form
The finite-dimensional spaces for trimmed analysis can be defined using a fictitious domain Ωfict containing
the physical domain Ω ⊂ Ωfict. The domain Ωfict can be chosen of a shape that can be trivially meshed.
For example in two dimensions, Ωfict can be rectangular and discretized by a Cartesian grid of elements.
A finite-dimensional subspace Wh(Ωfict) ⊂ H1(Ωfict) is defined on such a mesh. For example, Wh(Ωfict)
can be spanned by a finite number of B-splines or piecewise polynomials defined on a parameter space
Ω̂fict combined with the geometrical mapping Ωfict = F (Ω̂fict) (cf., e.g., Hughes [2000]; Hughes et al.
[2005]). It is assumed that the functions in Wh(Ωfict) have non-empty support on Ω, namely

supp
(
wh

)
∩ Ω 6= ∅, ∀wh ∈ Wh(Ωfict). (18)

A discrete space for Problem (w) can be defined as

Wh(Ω) = span
{

wh
∣∣
Ω : wh ∈ Wh(Ωfict)

}
. (19)

The trimmed Galerkin form of Problem (w) can be formulated as

find uh ∈ Wh(Ω),
such that a(wh, uh) + aw(wh, uh) = l(wh), ∀wh ∈ Wh(Ω). (g)

Note that the bilinear and linear forms are still defined as in Equations (12) and (13). Specifically, the
integrals are computed on the physical domain Ω and not on Ωfict. However, from the implementation
point of view, it can be convenient to express the integrals over Ω as integrals over Ωfict through the
domain-indicator function α : Ωfict → [0, 1]

α(x) =
{

1 if x ∈ Ω,

0 otherwise.

In particular, for uh, wh ∈ Wh(Ωfict), it holds

a(wh, uh) = (∇wh, κ∇uh)Ω, (20)
= (∇wh, (α κ) ∇uh)Ωfict , (21)

l(wh) = (wh, f)Ω + (wh, h)Γh
(22)

= (wh, α f)Ωfict + (wh, h)Γh
, (23)

where the domain of κ and f can be extended onto Ωfict. The domain-indicator function α penalizes the
material outside the physical domain, recovering the physics of the problem. However, a discontinuity
is introduced in the integrands, requiring non-standard integration rules to retain accuracy (cf., e.g.,
Abedian et al. [2013]; Breitenberger et al. [2015]; Hubrich et al. [2017]; Joulaian et al. [2016]; Kudela
et al. [2015, 2016]; Marussig and Hughes [2018]; Müller et al. [2013]; Parvizian et al. [2007]; Rank et al.
[2012]). See Marussig and Hughes [2018] for a comprehensive review.

6 Conservative reactions to strong boundary conditions
In this section, the traditional way to compute the reactions is interpreted as testing a weak problem
with specific test functions. This point of view will allow generalizing the computation of the reactions
to trimmed domains and to bases that do not form a partition of unity. This interpretation is inspired by
Brezzi et al. [2001]; Hughes et al. [2000] and similar to the argumentation therein. However, in this work,
the focus is on obtaining the (integrated) total reaction flux instead of a “pointwise” approximation of
the normal flux by a function defined on the boundary.

A conservative way to compute the reactions can be derived by considering a problem compatible
with the mixed problem in Equations (7)–(9). Namely, other than the temperature boundary condition
u = g on Γg, the compatible reaction flux r is assumed to exist and is prescribed on Γg. The flux r
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is such that the condition u = g is retained on Γg. The remaining data of the problem κ, f , and h
are unchanged. For elastic problems, this corresponds to prescribing the forces that would enforce the
displacement conditions.

In particular, let us consider the following boundary-value problem with compatible conditions on Γg

−∇ · (κ ∇u) = f in Ω, (24)
u = g on Γg, (25)

κ ∇u · n = r on Γg, (26)
κ ∇u · n = h on Γh. (27)

For simplicity, the data κ, f , r, g, h, and the boundary ∂Ω are assumed to be “smooth enough” for
the following manipulations to hold. Given a solution u∗ ∈ H2(Ω) for the mixed problem of Equa-
tions (7)–(9), it will also be a solution for the problem of Equations (24)–(27) with r = (κ ∇u∗ · n)|Γg

.
Indeed, u∗ satisfies Equations (24), (25), and (27), as they are the same as Equations (7)–(9). Moreover,
Equation (26) is trivially satisfied by the definition r = (κ ∇u∗ · n)|Γg

.

Following standard variational arguments, one can formulate a weak form by multiplying Equa-
tion (24) by a test function w belonging to a test space chosen to be W = H1(Ω) and integrating
over Ω. This yields the following weak form

find u ∈ Sg,Γg
(Ω),

such that a(w, u) = l(w) + (w, r)Γg
, ∀w ∈ W = H1(Ω). (R)

Note that the test space consists of the whole H1(Ω) function space, not requiring the test functions to
be zero on any part of the boundary. In particular, the boundedness of Ω ensures that the constant w = 1
belongs to the test space W = H1(Ω). Testing Problem (R) with w = 1 assures global equilibrium

0 =
∫
Ω

f dx +
∫

Γh

h dx +
∫
Γg

r dx. (28)

A solution u∗ ∈ H2(Ω) for the original weak Problem (W) will also solve the strong form in Equa-
tions (24)–(27) and the compatible Problem (R).

Moreover, since W0,Γg
(Ω) is a closed subspace of H1(Ω), then H1(Ω) admits the direct-sum represen-

tation [Rudin, 1991; Salsa, 2016]

H1(Ω) = W0,Γg (Ω) ⊕ W0,Γg (Ω)⊥.

Namely, each w ∈ H1(Ω) admits a (unique) representation w0 + wg, with w0 ∈ W0,Γg (Ω) and wg ∈
W0,Γg (Ω)⊥. Following Bazilevs and Hughes [2007]; Hughes [2000]; Hughes et al. [2000], the arbitrariness
of w0 + wg = w ∈ H1(Ω) in Problem (R) implies the arbitrariness of w0 and wg, allowing to reformulate
the problem as

find u ∈ Sg,Γg
(Ω)

such that a(w0, u) = l(w0), ∀w0 ∈ W0,Γg
(Ω), and (29)

a(wg, u) = l(wg) + (wg, r)Γg
, ∀wg ∈ W0,Γg

(Ω)⊥. (30)

Equation (29) is precisely the original variational form for strong boundary conditions in Problem (W).
Therefore, if the compatible weak Problem (R) has a solution, this will also be the solution of the original
Problem (W). Assuming the latter problem to have a unique solution in Sg,Γg (Ω), this will identify the
solution to the former problem.

Consequently, given an appropriate reaction flux r that makes the variational form in Problem (R)
compatible with the original weak form in Problem (W), the conventional way to compute the reactions
for conforming meshes can be interpreted as testing the variational form in Problem (R) with appropriate
test functions. The total flux computed in this way will naturally satisfy the equilibrium expression given
by the variational form. Specifically,
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1. given a solution u∗ ∈ Sg,Γg (Ω) for the original weak Problem (W),
2. assume that there exists an r ∈ L2(Γg) such that the variational form in Problem (R) holds for

u = u∗.
3. Then, the unknown total flux

∫
Γg

r dΓ is obtained by testing the compatible variational form in
Problem (R) with a function wg ∈ H1 such that wg|Γg

= 1.
4. The obtained total flux

∫
Γg

r dΓ will be in global equilibrium with the other fluxes, as the compatible
variational form in Problem (R) also holds for w = 1 ∈ H1, yielding the global equilibrium in the
sense of Equation (28).

Indeed, inserting wg in Problem (R) yields∫
Γg

r dΓ = (wg, r)Γg

= a(wg, u∗) − l(wg), (31)

where the term a(wg, u∗) − l(wg) can be evaluated for known wg and u∗.

The test function wg defines the linear functional Rwg (u) associated with the reactions and defined
as

Rwg (u) = a(wg, u) − l(wg). (32)

Note that such a functional is defined not only when r ∈ L2(Γg), but it is continuous for any u ∈ H1(Ω),
and l belongs to H1(Ω)∗, the dual space of H1(Ω).

Similarly, the reactions on multiple disjoint Dirichlet boundaries {Γi
g}i=1...nb

, such that

Γg =
nb⋃

i=1
Γi

g, (33)

can be computed by means of test functions wi
g such that wi

g

∣∣
Γi

g

= 1, wi
g

∣∣
Γj

g
= 0 for i 6= j.

6.1 Reactions for the Galerkin form
Employing the classical nodal finite element method (cf., e.g., Bathe [2007]; Hughes [2000]; Hughes
et al. [2000]; Strang [1973]), the space Wh

0,Γg
(Ω) in the Galerkin Problem (G) is commonly based on a

discretization that partitions Ω into a finite number of elements {Ωe}e=1..ne

Ω =
ne⋃

e=1
Ωe.

Following Hughes [2000]; Hughes et al. [2000], let η = {1, 2, . . . , nd} be the set of indices of the associated
nodes N = {xA}A∈η ⊂ Ω and ηg = {A : xA ∈ Γg} ⊂ η be the subset containing indices of nodes lying
on Γg. Given the linear-independent nodal shape functions {NA}A∈η, where NA is associated with node
xA, the space spanned by {NA}A∈η admits the direct-sum decomposition

span{NA}A∈η = span{NA}A∈η\ηg︸ ︷︷ ︸
Wh

0,Γg
(Ω)

⊕ span{NA}A∈ηg
. (34)

The functions {NA}A∈η\ηg
are a basis for the space Wh

0,Γg
(Ω), while {NA}A∈ηg

are commonly used to
define gh

gh =
∑

A∈ηg

gh
ANA. (35)
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The discrete linear system of equations takes the form

Kd = F , (36)

where

KAB = a(NA, NB), A, B ∈ η,

FA = l(NA), A ∈ η.

Equation (36) can be partitioned into the blocks associated with the nodes identified by η \ ηg and ηg[
K00 K0g

K>
0g Kgg

][
d0

dg

]
=

[
F 0

F g

]
,

where

[K00]AB = a(NA, NB), A, B ∈ η \ ηg,

[K0g]AB = a(NA, NB), A ∈ η \ ηg, B ∈ ηg,

[Kgg]AB = a(NA, NB), A, B ∈ ηg.

The upper blocks yield the traditional problem for d0 with strong boundary conditions corresponding to
Problem (G)

K00d0 = F 0 − K0gdg. (37)

The lower blocks correspond to the nodal forces associated with the reactions.

The computation of the reactions viewed as testing the variational form as in Equation (31), corre-
sponds in the discrete case to testing the Galerkin form in Problem (G) with a wh

g ∈ span{NA}A∈ηg
such

that wh
g

∣∣
Γg

= 1. For the discrete matrix system of equations, this corresponds to a left-multiplication by a
coefficient vector representing the coordinates of wh

g in the basis {NA}A∈ηg
. In the case of the considered

nodal partition-of-unity basis {NA}, this takes the form

[
0...0 1...1

]{[
K00 K0g

K>
0g Kgg

][
d0

dg

]
−

[
F 0

F g

]}
=

[
0...0 1...1

] [0
r

]
, (38)

where the top block vanishes, as d0 solves Equation (37), and r represents the nodal reactions. Similarly,
given a boundary portion Γ0 ⊂ Γg, if it is possible to construct a test function wh

g,0 ∈ span{NA}A∈ηg
such

that wh
g,0

∣∣
Γ0

= 1 and wh
g,0

∣∣
Γg\Γ0

= 0, then the reaction can be obtained by multiplication with a vector
composed of the coordinates wh

g,0 in the basis {NA}A∈ηg . This corresponds to the traditional algorithm
in Table 1, as summarized in Table 2.

Continuous (Equation (31)) a(wg, u) − l(wg)

Discrete (Equation (38))
[
0...0 1...1

]
K00 K0g

K>
0g Kgg


d0

dg

 −

F 0

F g




Algorithm (Table 1)
∑

A∈ηg

∫
Ω

∇NA ·
(
κ∇uh

)
− NAf dΩ −

∫
Γh

NAh dΓ

Table 2: Traditional algorithm to compute the reactions viewed as testing the weak and Galerkin form
with a specific test function.
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7 Conservative reactions for trimmed meshes
Interpreting the total reaction as testing the weak form with specific test functions serves as a basis
to obtain total conservative reactions for trimmed meshes. In the case of weak boundary conditions,
the test space in Problem (w) naturally consists of the whole H1(Ω), containing elements w such that
w|Γg

= 1. Therefore, it is not necessary to consider a compatible problem including the reactions. Instead,
motivated by the principle of virtual work in Problem (w), the weak boundary condition term represents
the normal flux action on the test functions with trace on Γg. In particular, given a wg ∈ H1 such that
wg|Γg

= 1, the total flux can be computed by evaluating either side of

a(wg, u) − l(wg) = −aw(wg, u). (39)

Note that the total flux computed as in Equation (39) is in the form of the extraction expressions
studied in Babuška and Miller [1984]. For the Nitsche’s method in Equation (16), this is further sup-
ported by the fact that it is variationally consistent. Namely, assuming enough regularity, integrating
by parts, and using the arbitrariness of the test functions, the original strong form in Equations (7)–(9)
is recovered. Therefore, a weak solution u∗ ∈ H2 for Problem (w), with the weak boundary-condition
term as in Equation (16), will also solve both the compatible strong form in Equations (24)–(27) with
r = (κ ∇u∗ · n)|Γg

and the associated weak form in Problem (R). The reactions can be computed as in
Equation (31).

For the penalty method [Babuška, 1973], the weak form in Problem (w), with the weak boundary-
condition term as in Equation (14), corresponds to the following perturbed strong form

−∇ · (κ ∇u) = f in Ω, (40)
κ ∇u · n + β(u − g) = 0 on Γg, (41)

κ ∇u · n = h on Γh. (42)

From Equation (41), it follows that (1, κ ∇u · n)Γg
= −(1, β(u − g))Γg

= −aβ(wg, u) = a(wg, u) − l(wg)
is a natural approximation to the flux on Γg.

7.1 Reactions for the Galerkin form
In order to compute the total flux on a disjoint portion of the boundary Γ0 ⊂ Γg for partition-of-unity
bases on trimmed domains, one strategy can be to define a function wh ∈ Wh(Ω) that is one in a
neighborhood of Γ0, and has zero trace on Γg \ Γ0. In particular, the function wh, such that wh

∣∣
Ωe

= 1
for each element Ωe cut by Γ0, will also be such that wh

∣∣
Γ0

= 1, even for a complex boundary Γ0 that
cannot be interpolated exactly by the shape functions.

Algorithmically, the only necessary modification to the procedure in Table 1 is to sum the fluxes qA

associated with functions NA with non-zero trace on Γ0 and zero trace on Γg \Γ0. An example is shown in
Figure 4, where standard reactions for nodal linear shape functions are visually compared to the trimmed-
mesh reactions with linear and quadratic B-splines shape functions (cf. Hughes et al. [2005]). Note that
in Figure 4c the first two columns of control points are needed to compute the reactions, as these are
the linear functions with support on the constrained boundary. In Figure 4d the first three columns of
control points have to be considered for computing the reaction, as the basis functions’ support grows
with the order. This procedure can be summarized as in Table 3.

8 Conservative reactions for bases not forming a partition of
unity

Equations (31) and (39) are already in a general form, suitable for bases that do not form a partition of
unity. Using the same ideas as in Section 7, the strategy is to define a test function wh that is one on each
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Given the shape functions {NA}, let η̃(Γ0) = {A : NA|Γ0
6= 0} be the set of indices

of shape functions with non-zero trace on Γ0. It is assumed NA|Γg\Γ0
= 0 ∀A ∈ η̃(Γ0).

1. For each A ∈ η̃(Γ0), compute the discrete fluxes

qA =
∫
Ω

∇NA ·
(
κ∇uh

)
dΩ, qe

A =
∫
Ω

NAf dΩ −
∫

Γh

NAh dΓ.

2. The reaction r on Γ0 is obtained by summing the fluxes of
shape functions with non-zero trace on Γ0

r =
∑

A ∈ η̃(Γ0)

qA − qe
A.

Table 3: Algorithm for computing the reactions on trimmed meshes with partition-of-unity shape func-
tions.

Given the shape functions {NA}, let η̃(Γ0) = {A | NA|Γ0
6= 0} be the set of indices

of shape functions with non-zero trace on Γ0. It is assumed NA|Γg\Γ0
= 0 ∀A ∈ η̃(Γ0).

Let {cA} ⊂ R be the coordinates of 1 in the basis {NA}, as in Equation (43).

1. For each A ∈ η̃(Γ0), compute the discrete fluxes

qA =
∫
Ω

∇NA ·
(
κ∇uh

)
dΩ, qe

A =
∫
Ω

NAf dΩ −
∫

Γh

NAh dΓ

2. The reaction r on Γ0 is obtained by a weighted sum of fluxes associated with
shape functions with non-zero trace on Γ0

r =
∑

A ∈ η̃(Γ0)

cA (qA − qe
A).

Table 4: Algorithm for computing the reactions on trimmed meshes. The basis functions do not need to
form a partition of unity.

cut element. With the reasonable assumption that the basis functions {NA} can represent constants, let
cA ∈ R be the coefficient associated with the shape function NA, such that∑

A

cANA = 1 on Ω. (43)

The computation of the reactions are summarized as in Table 4, where the sum in Table 3 is generalized
to a weighted sum of fluxes associated with basis functions with non-zero trace on Γ0. Note that for
partition-of-unity bases, it holds cA = 1 for any A. In this case, the procedure in Table 4 is the same as
the one in Table 3.

8.1 Reactions for hierarchical B-splines
For hierarchical B-splines (HB), the coefficients {cA} can be obtained by projecting onto the hierarchical
mesh the coefficients representing the function one on the base level. Since the standard B-splines form
a partition of unity [Piegl and Tiller, 1995], the base-level coefficients are all equal to one. Let ce be
the vector of coefficients {cA} associated with functions with support on the element Ωe, then ce can be
obtained as follows

ce = Ce1, (44)
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Γg

g = 0
Γh

h = y

x

y 1

1

(a) Geometry description. (b) Strong boundary conditions, linear
elements.

(c) Nitsche’s method, linear elements,
stabilization parameter γ = 100.

(d) Nitsche’s method, quadratic B-
splines, stabilization parameter γ =
100.

Figure 4: Solution field, mesh, and reactions for trimmed meshes. The reactions are depicted as red
arrows in the x-direction located at the control points.

where 1 is a vector of ones and Ce is the element hierarchical extraction operator (see D’Angella et al.
[2018]; Lorenzo et al. [2017]; Scott et al. [2014]). Algorithmically, this projection can be performed as
described in D’Angella and Reali [2020]. See Figure 5a for an example of values for the coefficients {CA}.

8.2 Reactions for integrated Legendre polynomials
The basis functions used in the p-version of the finite element method do not form a partition of unity.
Given an order p, such a univariate basis is defined in the interval [−1, 1] as [Szabó and Babuška, 1991]

ξ̂1(r) = 1
2 (1 + r) (45)

ξ̂2(r) = 1
2 (1 − r) (46)

ξ̂i(r) = Pi−1(r) i = 2, 3, . . . , p + 1, (47)
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1 1 1 1 10.51

0.5

(a) Coefficients for a hierarchical B-spline basis (HB).

1 1

0

0

(b) Coefficients for the integrated-
Legendre basis [Szabó and Babuška,
1991] of order p = 3.

Figure 5: Example of coefficients (circled numbers) for computing the reactions with bases that do not
form a partition of unity.

where ξ̂1(r) and ξ̂2(r) are the classical linear shape functions, while Pi−1 is defined by an integral expres-
sion of the Legendre polynomials Li

Pi(r) =
√

2i − 1
2

r∫
−1

Li−1(t) dt = 1√
4i − 2

(Li(r) − Li−2(r)) i = 2, 3, . . . .

Since the linear shape functions form a partition of unity ξ̂1 + ξ̂2 = 1 on [−1, 1], the remaining high-order
functions ξ̂i, i ≥ 3, will have a zero coefficient. See Figure 5b for an example. Similarly, for a basis
obtained by the tensor product of the univariate basis in Equations (45)–(47), the coefficients will be
the tensor product of the univariate coefficients. Namely, the linear shape functions will have coefficient
one, while the remaining high-order functions will have a zero coefficient. In the case of a boundary-
conforming mesh, this section agrees with the extraction of nodal forces presented in Babuška and Miller
[1984]; Szabó and Babuška [2011]. However, this result is also valid for the more general case of trimmed
meshes.

9 2D benchmark
In this section, a smooth problem involving a flux induced by a temperature difference on a curved
geometry is considered. In two dimensions, a simple benchmark can be formulated on a quarter of
annulus Ω with inner and outer radii r1 and r2, respectively (cf. Figure 6a). In particular, let us consider

−∇ · (κ ∇u) = 0 in Ω =
{

x ∈ (0, r2)2 : r1 < ‖x‖ < r2
}

,

u = 2 ln (r1) on Γ0 = {x ∈ ∂Ω : ‖x‖ = r1},

u = 2 ln (r2) on Γ1 = {x ∈ ∂Ω : ‖x‖ = r2},

κ ∇u · n = 0 on ∂Ω \ (Γ0 ∪ Γ1),

where κ is the identity matrix. The analytical solution of the problem is the harmonic function (cf.
Figures 6b and 6c)

u = 2 ln ‖x‖.

Note that the data of the problem do not specify any external flux. The global equilibrium only assures
that the flux across the Dirichlet boundary Γ0 balances the flux across Γ1. However, such total flux
cannot be obtained directly from the source term or the boundary conditions.

The domain Ω is immersed in a Cartesian mesh of the bounding box Ωfict = (0, r2)2. One mesh
example is shown in Figure 6d. The discontinuity in the integrands is resolved by reparameterized
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integration-domains conforming to the physical domain Ω, as explained in Kudela et al. [2015, 2016].
The problem is solved with both Nitsche’s and penalty methods, as in Equations (14) and (16), with
parameters β̄ = 102 (cf. Equation (15)) and γ̄ = 10(p+1)2 (cf. Equation (17)), similarly to Antolin et al.
[2019]; Johansson et al. [2019]. The immersed B-splines analysis is compared to the solution obtained by
a conforming NURBS mesh with similar element size h and strong Dirichlet boundary conditions.

The energy error of the numerical solution uh is computed with respect to the bilinear form a(·, ·) of
the original problem without weak boundary conditions. In particular, the error

e(uh) =
√

1
2 a(u − uh, u − uh) (48)

for the conforming mesh is shown in Figure 7a to have a similar convergence behavior for both Nitsche’s
and penalty methods. The conservative fluxes qc

0, qc
1 are computed on the boundaries Γ0 and Γ1 according

to Table 3. The direct fluxes are numerically integrated as follows

qh
i =

∫
Γi

κ∇uh · n dΓ, i ∈ {0, 1}. (49)

Figures 7c and 7d show the relative flux error

ei(q) =

∣∣∣∣∣∣∣1 − q∫
Γi

κ∇u · n dΓ

∣∣∣∣∣∣∣ . (50)

for both the direct fluxes ei(qh) (dashed lines) and for the conservative ones ei(qc) (solid lines). Note
that the conservative reactions yield more accurate results than the direct approach and show an ap-
parent convergence to the analytical total flux. Nitsche’s method yields convergence rates that are two
times higher than the strain-energy error rates, similar to those obtained with the conforming mesh (cf.
Figures 7b and 7d). This phenomenon is often referred to as superconvergence [Babuška and Miller,
1984; Hughes et al., 2000; Szabó and Babuška, 2011; Wahlbin, 1995]. These rates of convergence are not
attained by the penalty method, as shown in Figure 7c. Indeed, the penalty method accurately computes
the reactions of a perturbed problem, and the penalty parameter is scaled with hp. Instead, if the penalty
parameter is scaled as β = β̄/h2p, the same rates of convergence as the conforming mesh and Nitsche’s
method are attained, as shown in Figure 8a.

The equilibrium error

e(q0, q1) =
∣∣∣∣1 − q0

−q1

∣∣∣∣ (51)

is shown in Figure 8b for both direct fluxes e(qh
0 , qh

1 ) (dashed lines) and conservative fluxes e(qc
0, qc

1)
(solid lines). Note that the conservative fluxes are in equilibrium up to small numerical inaccuracies that
grow as the condition number with order O(h−2). The direct-flux equilibrium error is several orders of
magnitude higher than the one for the conservative fluxes.

10 Façade element
The model problem for the façade element introduced in Section 2 is solved with trivariate B-splines.
The obtained conservative reactions yield a total flux converging to the same value for both Nitsche’s
and penalty methods. This behavior does not seem to hold for the direct approach: compare Figures 9a
and 9b to Figures 3a and 3c.
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Ωfict

Γg2

Γg1

r1

r2

x

y

r1 = 1
4

r2 = 1

(a) Geometry description. (b) Analytical solution u.

(c) x-component u,x of the analyt-
ical flux.

(d) Example of computational
mesh.

Figure 6: 2D benchmark. Geometry, analytical solution, and mesh example.

11 Trimmed Kirchhoff-Love shell example
The presented reaction computation can be extended to the following weak form of the Kirchhoff-Love
shell problem with weak boundary conditions (cf., e.g., Apostolatos et al. [2015]; Cirak [2006]; Coradello
et al. [2020b]; Guo and Ruess [2015]; Herrema et al. [2019]; Kiendl et al. [2009])

find u ∈ H2(Ω),
such that a(w, u) + bdisp(w, u) + brot(w, u) = l(w), ∀w ∈ H2(Ω), (52)

where a(w, u) is the bilinear form representing the internal work

a(w, u) =
∫
Ω

ε(w) : N(u) dΩ +
∫
Ω

κ(w) : M(u) dΩ.

The symbols ε and κ denote the membrane and bending strain tensors, respectively, while N and M are
the in-plane stress and bending moment. The term l(w) is the linear functional representing the external
work of a volumetric body load f and the traction t over the boundary Γt ⊂ ∂Ω

l(w) =
∫
Ω

w · f dΩ +
∫
Γt

w · t dΓ.
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(c) Penalty method: total flux error.
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(d) Nitsche’s method: total flux error.

Figure 7: 2D benchmark. Energy error and flux errors for direct fluxes (dashed lines) and conservative
fluxes (solid lines).

For simplicity, only zero external bending moments are considered. The term bdisp(w, u) penalizes a
displacement different than g on the boundary Γg ⊂ ∂Ω

bdisp(w, u) =
∫
Γg

βdisp w · (u − g) dΓ,

where βdisp ∈ R is a user-defined penalty parameter. Finally, the term brot(w, u) penalizes the normal
rotations on the boundary Γθ ⊂ ∂Ω

brot(w, u) =
∫
Γθ

βrot (n · Φ(w)) (Φ(u) · n) dΓ,

where βrot ∈ R is a user-defined penalty parameter, the symbol n represents the outward in-plane normal
to the boundary Γθ, and Φ(u) = a3(u)−A3 denotes the angle between the shell normal in its undeformed
A3 configuration and deformed a3(u) configuration after applying the deformation u. See Guo and Ruess
[2015]; Herrema et al. [2019] for a detailed review. Following Herrema et al. [2019], given the Young’s
modulus E, the Poisson’s ratio ν, the thickness t, and the size h of the smallest element, the penalty
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(a) Penalty method: total flux error with penalty pa-
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Figure 8: 2D benchmark. Equilibrium error and improved convergence in the flux error obtained by the
penalty method.

parameters are scaled as

βdisp = β̄
Et

h(1 − ν2)

βrot = β̄
Et3

12h(1 − ν2) ,

where the common parameter β̄ ∈ R is user-defined. In the following, the value β̄ = 103 is used, since in
Herrema et al. [2019] this value is shown to be suitable for various examples in the context of multi-patch
penalty coupling.

Following the reasoning of the previous sections, the ith reaction component, ri, corresponding to
the traction on Γg is computed by testing the variational form with a test function wg,i ∈ H2 such that
wg,i

i

∣∣∣
Γg

= 1, wg,i
j

∣∣∣
Γg

= 0 for j 6= i and such that (Φ(wg,i) · n)
∣∣
Γθ

= 0. In particular, given a known

displacement field u∗ ∈ H2, the ith component of the total reaction can be computed by evaluating
either side of the following equation

a(wg,i, u∗) − l(wg,i) = −bdisp(wg,i, u∗). (53)

The same strategy as in Sections 7 and 8 can be applied to the present case to evaluate the reactions on
trimmed geometries with bases that do not form a partition of unity. The global equilibrium is confirmed
in the example shown in Figure 10a. The edges of the circular hole on the left (blue curves) are clamped,
while a traction t = (0, 0, 1)> is applied on the straight boundary marked in Figure 10a (red arrows).

The geometry is described by a B-spline patch stored in a STandard for the Exchange of Product
model data (STEP) file format [ISO 10303-11:1994, 1994]. A (trimmed) computational mesh is obtained
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Figure 9: Façade element example. Total flux and equilibrium error for the direct fluxes (dashed lines)
and conservative fluxes (solid lines).

for numerical analysis by k-refinement on the geometric patch, as described in Cottrell et al. [2009];
Hughes et al. [2005]. The STEP file also contains the trimming curves in the parametric space of the B-
spline patch, allowing to define accurate shell integration rules following Kudela et al. [2015], as explained
in Coradello et al. [2020b]; Rank et al. [2011].

The problem is solved with an initial (trimmed) B-spline patch of uniform degree p = 3. The elements
intersecting the physical domain Ω are shown in Figure 10a. Figure 10b shows the displacement magnitude
on the deformed geometry. The problem is also solved with hierarchical B-splines [Forsey and Bartels,
1988; Vuong et al., 2011] with several refinement levels. The elements cut by the clamped boundary are
recursively refined up to a refinement level l. Additionally, some elements totally outside the physical
domain are refined to ensure that the finest-level hierarchical functions are activated, as explained in
Coradello et al. [2020a]. Specifically, for each cut-element Ωe marked for refinement, it is also marked
for refinement each element Ω̃e ∈ Ωfict \ Ω contained in the support of basis functions of element Ωe. See
Coradello et al. [2020a] for details. A graded mesh is obtained by enforcing a mesh-admissibility class
equal to one [Bracco et al., 2019; Buffa and Giannelli, 2016]. Namely, each element can have active basis
functions belonging to at most two consecutive levels. Details can be found in Bracco et al. [2019]; Buffa
and Giannelli [2016]; Carraturo et al. [2019]. Figure 10c shows the mesh obtained after l = 5 recursive
refinements, along with the von Mises stress around the clamped hole.

The basis functions having non-zero trace on the clamped edge belong to the hierarchical-refinement
levels l and l−1. These functions do not form a partition of unity, and the reaction tractions are computed
as described in Section 8.1. The mesh and discrete reactions for l ∈ {0, 2, 5} are shown in Figures 10e–10g.
Figure 10d shows the relative equilibrium error of the reaction traction r on the clamped edge with the
applied external traction t computed as follows

e(r, t) = ‖r − t‖2

‖t‖2
. (54)

12 Conclusions
In this work, we formulated and investigated a conservative approach for computing reaction forces and
fluxes based on the expression of global equilibrium given by the weak form. The discussed approach is
suitable for trimmed meshes and non-interpolatory basis functions. We showed that the direct method
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consisting of integrating the differentiated primal solution could perform particularly poorly for immersed
methods. Instead, the conservative approach yields convergence rates two times higher than the energy-
norm error for a two-dimensional benchmark with a smooth solution and weak boundary conditions. The
approach is generalized to bases not forming a partition of unity, such as the hierarchical B-splines and
the integrated Legendre polynomials.

In conclusion, this work aims at providing an accurate formulation for computing reaction forces and
fluxes suitable for trimmed discretizations based on (locally-refined) non-interpolatory basis functions.
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E = 2.069e8
ν = 0.0, t = 2.0
t = (0, 0, 1)>

(a) Initial mesh, and boundary conditions: clamped
edges (blue curves) and distributed traction (red
arrows).

(b) Displacement magnitude.

(c) Von Mises stress around clamped hole.
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(d) Equilibrium error.

(e) Reaction tractions on initial
mesh.

(f) Reaction tractions with 2 re-
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Figure 10: Trimmed Kirchhoff-Love shell example.
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