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ABSTRACT 

This work unifies the analysis of various randomized methods for solving linear and nonlinear in­verse problems by framing the problem in a stochastic optimization setting. By doing so, we show that many randomized methods are variants of a sample average approximation. More importantly, we are able to prove a single theoretical result that guarantees the asymptotic convergence for a variety of randomized methods. Additionally, viewing randomized methods as a sample average ap­proximation enables us to prove, for the first time, a single non-asymptotic error result that holds for randomized methods under consideration. Another important consequence of our unified framework is that it allows us to discover new randomization methods. We present various nume.rical results for linear, nonlinear, algebraic, and PDE-constrained inverse problems that verify the theoretical convergence results and provide a discussion on the apparently different convergence rates and the behavior for various randomized methods. 
Keywords Randomization, Bayesian Inversion, Ensemble Kalman Filter, randomized maximum a posteriori 
1 Introduction 

Solving large-scale ill-posed inverse problems that are governed by partial differential equations (PDEs), though tremendously challenging, is of great practical importance in science and engineering. Classical deterministic in­verse methodologies, which provide point estimates of the solution, are not capable of accounting for the uncertainty in the inverse solution in a principled way. The Bayesian formulation provides a systematic quantification of uncer­tainty by posing the inverse problem as one of statistical inference. The Bayesian framework for inverse problems proceeds as follows: given observational data d E IRk and their uncertainty, the governing forward problem and its uncertainty, and a prior probability density function describing uncertainty in the parameters u E IRn , the solution of the inverse problems is the posterior probability distribution 1r (uld) over the parameters. Bayes' Theorem explicitly 
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7f (uld) CX: 1flike (dlu) X 1fprior (u) 
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which updates the prior knowledge 1fprior (u) using the likelihood 7riike (dlu). The prior encodes any knowledge or assumptions about the parameter space that we may wish to impose before any data are observed, while the likelihood explicitly represents the probability that a given set of parameters u might give rise to the observed data d. Even when the prior and noise probability distributions are Gaussian, the posterior need not be Gaussian, due to pos­sible nonlinearity embedded in the likelihood. For large-scale inverse problems, exploring non-Gaussian posteriors in high dimensions to compute statistics is a grand challenge since evaluating the posterior at each point in the parameter space requires a solution of the parameter-to-observable map, including a potentially expensive forward model solve. Using numerical quadrature to compute the mean and covariance matrix, for example, is generally infeasible in high dimensions. Usually the method of choice for computing statistics is Markov chain Monte Carlo (MCMC), which judiciously samples the posterior distribution, so that sample statistics can be used to approximate the exact ones. 
The Metropolis-Hastings (MH) algorithm, first developed by Metropolis et al. [!] and then generalized by Hastings [2], is perhaps the most popular MCMC method. Its popularity and attractiveness come from the ease of implementation and minimal requirements on the target density and the proposal density [3, 4]. The problem, however, is that standard MCMC methods often require millions of samples for convergence; since each sample requires an evaluation of the parameter-to-observable map, this could entail millions of expensive forward PDE simulations-a prohibitive proposition. On one hand, with the rapid development of parallel computing, parallel MCMC methods [5, 6, 7, 8, 9] are studied to accelerate the computation. While parallelization allows MCMC algorithms to produce more samples in a shorter time with multiple processors, such accelerations typically do not improve the mixing and convergence of MCMC algorithms. More sophisticated MCMC methods that exploit the gradient and higher derivatives of the log posterior (and hence the parameter-to-observable map) [IO, II, 12, 13, 14, 15, 16, 17, 18, 19] can, on the other hand, improve the mixing, acceptance rate, and convergence of MCMC. Another sample-based family of approaches that provide uncertainty quantification and are well-suited for parallelization on large clusters is the various forms of Stein variational gradient descent [20, 21, 22, 23]. Of related interest are particle filter methods such as those found in [24, 25, 26, 27] that evolve particles through a dynamical system over time, updating both an estimate of the state and uncertainty. 
One approach to addressing the computational challenge in high-dimensional statistical inverse problems pose is to 
use randomization, either to reduce the dimension of the optimization problem used in estimating the maximum a posteriori (MAP) point [28], or to aid in sampling from the posterior distribution [29]. Several methods have been proposed which utilize randomization to accelerate the solution of inverse problems [28, 29, 30, 31, 32, 33]. As the 
main contribution of this paper, we derive unified results of randomized inverse approaches that apply to a broad class of linear and nonlinear inverse problems not only in the asymptotic regime, but also for the non-asymptotic setting. The asymptotic convergence and a non-asymptotic error bound of various existing methods follows immediately as special cases of the general result. 
2 A unified analysis of randomized inverse problems through a sample average 

approximation lens 

For the remainder of this paper, we will use lower case letters for scalar quantities (a), boldface lower case letters for vectors (u) and boldface upper case letters for matrices (A). Further, we will use superscript lower case letters to denote sample index and subscript uppercase letters to denote the total number of samples, i.e. _xi is the ith sample and UN is a �antity depending on N samples. Lastly, descriptions or method names will be in uppercase superscripts,such as u AP which is u at the MAP point, for example. This should be clear from the context. Therefore, let u, uo E !Rn . The posterior measure v in this case has the density 1r (uld) with respect to the Lebesgue measure: 7f (uld) ex: 7riike (dlu) X 1fprior (u), (1) 
where the likelihood is given by 1r1ike (dlu) ex: exp (-<P (u, d)) = exp(-½ lid -F (u)lli-t) and the prior by 
1fprior ex: exp(-½ llu -uoll�-•). Here, F (u) is known as the parameter-to-observable (PtO) map, an evaluation of which typically requires a solution of the forward model (e.g. partial differential equations) governing the underlying physics. The maximum a posteriori (MAP) problem reads 

uMAP := arg m,,in :1 (u; uo, d) := � lid -F (u)lli-• + � llu -uall�-• , (2) 
2 
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where r E IRnxn is the prior covariance matrix and E E IRkxk is the noise covariance matrix.To the end of the paper, we denote by [ the expectation with subscript as the random variable with respect to which the expectation is taken. When the random variable is clear from the context we simply omit the subscript for brevity. Let u, e:, o, and A be finite dimensional independent random variables with bounded second moments such that: 
(3) 

Let us define e = [u, E:, o, Ar E s  with joint probability distribution 7r = 'lru X 'Ir£ X 7rcS X 'Ir)_. Consider the followingstochastic cost function: 
j (u; uo , d , {) :=� lle:T (d + u -F (u)) II� + � IIAT (u -uo - 0)11:

1 T T =
2
(d + u-F (u)) e:e: (d + u-F(u))  (4) 

Define 
1 T T +-(u-uo-o) AA (u-uo-o) . 2 

/ (u; uo , d) := [,r [J (u; uo , d , {)] ,and the sample average approximation (SAA) of / to be 
1 N -/N := N LJ (u;uo , d , e')

j=l 

where {i are i.i.d. samples from 1r. Assume that both .7 and/ N have a minimum and let us define 
uMAP := arg min.7, andu� := arg min/N ·

u u Below we study asymptotic and non-asymptotic convergence of i,,� to uMAP_
2.1 Asymptotic convergence analysis for inverse problems 

(5) 

(6) 

Theorem I (Asymptotic convergence of randomized nonlinear inverse problems). Assume that F (u) is such that j 
is a convex, twice continuously differentiable function in u for almost every{, and measurable 1 • Then the following 
hold true: 

i) Minimizing / is equivalent to minimizing .J in the sense: arg min.,, .7 = arg minu / .
ii) U�AP � UMAP. N➔ 

Proof For the first assertion, consider only the first term of/ as the second term follows analogously. We have 
�[,r [(d + u -F(u){ e:e:T (d + u -F(u))]

= �[,ra x ,r, [ (d+u-F(u){ uT (d + u-F(u))]
= �[,ra [(d + u -F(u)f [,r, [e:e:T] (d + u -F(u))]
= �[,ra [(d + u-F(u)fE-1(d + u-F(u))]
= � (d -F(u){ 1;-1 (d -F(u)) + £,ra [uT :E-1u]. (7) 

The final term in (7) is constant with respect to u and can be ignored, leaving only the first term of .7. Applying the same procedure to the second term of / shows that minimizing/ is equivalent to minimizing .7. We invoke [34, Theorem 5.4] to prove the second assertion. It is sufficient to verify the following conditions: 
1 Here, measurable is with respect to the the o--algebra given by the product o--algebras of the deterministic (u,ua,d) and

random variables {. 
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(i) j ( u; Uo' d, e) is random lower semicontinuous,
(ii) for almost every e E S, j ( u; uo, d, e) is convex in u,

(iii) / (u; u0, d) is lower semicontinuous in u and there exists a point u E Rn such that/ (u; u0, d) < oo for allu in a neighborhood of u;
(iv) the set of optimal solutions of the true problem is nonempty and bounded; and
(v) the law of large numbers (LLN) [35, 36] holds pointwise for / N.

Clearly, j is a continuous function for every e, thus random lower semicontinuous as well. By assumption, j isalso convex for almost every €- Due to the boundedness assumptions (3) and the fact that :T is a continuous andconvex function, / is also a continuous and convex function. Furthermore, taking, for example, u = u1 in (17) it isstraightforward to see that/ (u; uo, d) < oo for any ball with finite radius centered at u. The last two conditions are clear. □ 

An important special case of this theorem occurs when we consider an inverse problem with a linear parameter-to­observable map. When the forward map F ( u) is linear, the convexity and continuous differentiability assumptions are satisfied. While requiring convexity is a strong assumption in general, this is not an insurmountable issue for regularized inverse problems. Note that the Hessian of :T is given by 
V!:T = V!F (u) E-1 (F (u) -d) + V.,F (u{ E-1V.,F (u) + r-1.

Thus the prior covariance matrix can be chosen such that V!:T is semi-positive definite. Indeed, this is the major role that the prior covariance plays in regularizing the ill-posed inverse problem. 
Lastly, note that instead of treating all of the random variables u, e:, .X, and 8 as a single random variable, sampling them together as in (5), we could have chosen to approximate each random variable separately, applying [34, Theorem 5.4] four times to complete the asymptotic proof. 

(8) 
This flexibility in deciding how samples will be drawn will aid in both non-asymptotic convergence analysis and will provide great freedom in designing a variety of randomized methods to solve inverse problems in section 5. To alleviate some notational burden, let us define a few new quantities. 

N l
°"' . ·r SN:= N �e:'(e:') ,i=l 

l N 
UN:= N Lu', i=l Written in terms of norms, equation (8) becomes 

N LN := � L _xi (_xif'
i=l - 1 N . oN := N I:o'.

i=l 

u�AP = arg:Un �lid+ a-N - F (u) II�"' + � llu - uo - JNll�N

(9a) 
(9b) 

(10) 
Note that (10) is equivalent to (5) when at most one of e and u are randomized and at most one of A and 8 are randomized. This is because the only difference between the two cost functions is how samples of e interact with samples of u and likewise, how samples of A interact with samples of 8. 
2.2 Non-asymptotic error analysis for nonlinear inverse problems 

In addition to proving a general asymptotic convergence of randomized inverse problems, it is also possible to derive a general non-asymptotic error bound with the slightly stronger assumption that the random variables are subgaussian [37]. The general form of this non-asymptotic bound is useful in that it is easy to identify the key components that go into forming the bound - giving insight into the performance of various methods by enabling easy simplification in the case that certain quantities are not randomized. The derived bound gives a probabilistic worst-case for finite sample 
4 
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size N when all of the above randomizations are implemented at the same time. By fixing some of the quantities, the given bound can be simplified in a straightforward manner - yielding a more insightful bound. Additionally, we follow the standard vector norm convention of llull := max (lu1 I , . . .  , !un i) and llull 1 := 
I::7=1 ju;j for a vector u E Rn . Matrix norms are understood to be induced norms [38]. Due to the equivalenceof norms in finite dimensional spaces, all the results are also valid for other norms, albeit with different constants that possibly depend on the dimension. We use w.p. as the abbreviation for with probability. 

Proposition 2 (Convergence of mean-zero subgaussian random vector). Let oi , for i = 1, . . .  , N, be independent
subgaussian random vectors in Rn such that [ [oi] = 0, [ [o\oiV] = r, and [ [(oi )T o i ] < 00. Denote the
empirical mean 3 := ¼ I::� 1 oi _ Further, let ( (N, /3) := exp (-c/32 N) for some /3 > 0 and c is a constant possibly
depending on the dimension n but not on N. Then 

IIJ II � /3 llr½ II 00 
w.p. at least 1 -( (N, /3) . (11) 

Proof Define oi = r½'Ti, where 'T i ~ N (0, I). Thus, T = ¼ L� 1 'Ti ~ N (o, Ji). First from2 [39, Theorem 1]we have 
IP [IITll 00 > /31 ] � IP [IITll1 > /31] � exp (-:1) ,

where c is an absolute positive constant. Therefore, abusing notation to consolidate the constant terms, we have 
> A] � exp ( -c/3?),IN 

since N • 'r has identity covariance. Next, set /3 = -&1v and note that
IP [IF5l\00 � /3 llr½ IIJ 2 IP [llrll 00 � /3] 2 1 -exp (-c/32 N) ,

and this concludes the proof. □ 
Proposition 3 (Convergence of subgaussian random vector outer product). Let w i be a subgaussian random vector 
in Rn such that [ [w•(w i ) T J = r for i = 1, . . .  , N. Define ON to be the random matrix formed by stacking wi in the 
columns and scaling by 1/./N. It follows that 

11nNni - r11 � /3 llfll oo w.p. at least 1 -2( (N, /3),

where c is a constant depending on n but not on N. 

Proof This result follows from straightforward algebraic manipulation of [37, Theorem 4.6.1]. 
(12) 

□ 
An additional fact needed to prove a non-asymptotic bound is that the product of three subgaussian random variables is o-subexponential with a= 2/3. The following discussion on o-subexponential random variables is based on [40]. For a more compete treatment of the topic, [ 40] can be consulted. It has been established that the product of two subgaussian random variables is subexponential [37, Lemma 2.7.7]. A centered random variable X is said to be o-subexponential ( or sub-Weibull [ 41, 42]) if it satisfies 

IP[IXI 2 /3] � 2 exp (-cf3(i) ,
for any /3 > 0, a E (0, 2], and some positive constant c. To show that a random variable satisfies this condition, it is sufficient to show that the following Orlicz (quasi-) norm [ 40, 37] is finite: 

IIXll ,µ0 

:= inf [/3 > 0 : [ exp ((IXI //3t) � 2] < oo. (13) 
When a < 1, this is a quasi-norm since it does not satisfy the triangle inequality. 
Proposition 4 (o-subexponential from product of three subgaussian random variables). Let X1 , X2 , X3 be subgaus­
sian random variables. Then Y = X1X2X3 is an a-subexponential random variable with a= 2/3. 

2While [39, Theorem 1] is derived for Gaussian random matrices, it also applies to subgaussian random matrices because
subgaussian random variables have the same bound for the expected value of their moment generating function (see [37, Proposition 
2.5.2] for the details). 
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Proof It suffices to show that [ exp ( ( JY l )213) ::; 2. Without Joss of generality, assume I I  Xi II 1, 1. Then[ exp (X?) '.S 2 and we have 

[ exp ( C JY l/13) = [ exp ( ( IX1 1 213 IX2 1 213 IX3 1 213))
(x/ xl X3

2 ) :S [ exp -3- + -3- + -3- (Young's inequality for 3 variables [43])
= [ exp ( x;2) exp ( x;2) exp ( x;2) 

1 ::; [3 [exp (X1 2) + exp (Xl) + exp (X3
2) ] (Young's inequality again)

::; 2. 
D 

Corollary 5. Let o E Rn be a zero-mean random vector such that [[ooT] = r with et -subexponential entries. Define
(0 (N, (3) : =  exp (- c/3° N°12). Then

(14) 
Note that while inequality (14) has the dimension n in front of the exponential, this is fixed and the probability of committing an error greater than some tolerance still decreases exponentially in the number of samples N. Though the decaying is at the slower rate ex exp (-Naf2) compared to the subgaussian error rate exp (-N), it is not surprisingbecause subgaussian is a special case of et-subexponential when Ci = 2 [40]. These results can be combined to derive a probabilistic non-asymptotic error bound for nonlinear inverse problems. 
Lemma 6 (Non-asymptotic error analysis for randomized nonlinear inverse problems). Let vec (E-1) denote a vec­
torization of a matrix E-1. Define

P := [vec (E-1) ; vec (r-1) ; e; z]
as a vector concatenating all four vectors vec (E-1) , vec (r- 1) , e and z, where E E Rk x k ,  r E Rn xn , e E Rk ,
and z E R". Define the function 

g (P; u) : =  v't.F (u) [E- 1 (F (u) - d) - e] + r-1 (u - u0 ) - z.
Assume that the problem g (P; u) = 0, with P as parameters and u as solution, is Lipschitz well-posed [44) with
Lipschitz constant L, and we define g (P) as the solution u. Let 

pMAP : =  [vec (E-1) ; vec (r-1) ; O; OJ ,
PN : =  [vec (SN ) ; vec (LN) ; SNiJN; LNJN] ,
PN :=  [vec (SN) ; vec (LN) ; ! tc:i (c:i)T u\ ! t >.i (>.;( oi] ,

where [[uuT] = E and [[ooT] = r. Then

l l uMAP - u�AP I I :S f3L ( I I E-1 I I + l l r-1 1 1 + (I + /3) I I I:- ½ 1 100 
+ (1 + /3) l l r- ½ I IJ ( l S)

w.p. at least 1 - 10( (N, (3) ,
and 

J l uMAP - u�APt ::;  (3L ( I I E-1 1 1 00 + l l r-1 I L,o + 1 1 :E- ½ t + I J r- ½ I I )
w.p. at least 1 -4( (N, (3) -2k(2;3 (N, (3) -2n(2;3 (N, (3) .

6 
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Proof Noting that uMAP = g (PMAP) and u = g ( P N) , we have by the Lipschitz well-posedness assumption,
lluMAP -u�I I = I lg (PMAP) -g (PN ) lie,, S £ IIP-PNII
s £ ( I IE-1 -SN I I + 1 1 r-1 -£NI I + II SNa-NII + I I LNJNIL,J .

We can bound SN u N ( and similar! y for L NJ N) as follows
IISNii-Nll oo = 1 1E-½ (E ½ SNE ½ - I + I) E-½ a-Nlla0 

s 1 1E-½ (E½ SNE½ - -r)II 11E-½a-Nt + 11E-½ II 1 1E-½a-NII O() ·
Note that E-2 a-N is the sample average of a mean-zero subgaussian random variable with identity covariance and
[ [E ½ SNE ½ ] = I. Therefore, applying Proposition 3 to I I E ½ SNE ½ - Il l "" and Proposition 2 to 1 1E- ½ a-N I I "" along with the union bound, we obtain 

II SNa-N II S (/32 + /3) 11E-½ II w.p. at least 1 -3( (N, (3) .

The proof of the bound I I L NJ N I I S (/32 + /3) 1 1 r-½ II w.p. at least 1 -3( (N, (3) follows analogously. ApplyingProposition 3 to the terms I I SN -E-1 1 1  and I I LN -r-1 1 1 along with the union bound, inequality (15) followsimmediately. "" 
To prove the bound in (16) for lluMAP -u�I I= • it is sufficient to bound ll ell and llzll according to the defini­
tion of P N since the bounds for 1 1 S N - E-1 1 1 "" and I I LN - r-1 1 J "" 

have already been proven. By Proposition 4,gi ( e:i) T ui is a zero-mean, 2/3-subexponential random variable with covariance E-1. Then by Corollary 5,

Similarly, applying Corollary 5 to ll zll yields 
IP [ll zll "" S (3 llr-½ II ] 2': 1 -2n(2;3 (N, (3) .

Using the union bound to combine the bounds on ll ell "" and ll zll with the bounds previously 1 1 S N -E-11 1 and
I ILN - r-1 I I , inequality (16) follows. □ 
Lemma 6 provides a general strategy for analyzing the convergence of various randomized methods. When a variable is not randomized, we simply drop the corresponding terms in equations (15) and (16), and adjust the probability accordingly. Additionally, as will be discussed later, the Lipschitz constant may be affected by the choice of ran­domization strategy. By choosing to randomize only some variables, the inverse solution may have lower worst-case sensitivity (Lipschitz constant). Note that since we are mainly concerned with small deviations, it is sufficient to consider well-posed inverse problems where the solution depends continuously on d everywhere and depends on P in a locally Lipschitz manner in a neighborhood of [vec (E-1) ; vec (r-1) ; O ; O]. Note that it is unlikely for thesolution to depend continuously on P everywhere since r-1 acts as regularization. Otherwise, the original problemwould not be ill-posed. In particular, the regularizing role that r-1 plays may cause the solution of the inverse problemto be especially sensitive to perturbations of r-1, greatly increasing the (local) Lipschitz constant compared to thecase where r-1 is not randomized. This is clear from the linear case where the condition number of the problem takesthe place of the Lipschitz constant. It is well-known that the choice of r-1 has a significant impact on the conditionnumber [45, 46]. Lastly, note that in the linear case, standard perturbation theory for linear systems can be used to find an explicit bound for the relative error in terms of the condition number of ATE-1 A + r-1.
3 Rediscovery of randomized inverse methods 

In this section we derive several different known randomization schemes as special cases of the more general ran­domization scheme proposed in (4). For the rest of this section, we will explicitly write each of the random variables 
7 
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(subset of � = [u, e:, o ,  At) that the stochastic cost function depends on. To keep notation clean, we will use j torepresent the stochastic cost function for all randomization schemes, where the form of the cost function will be clear from the context. If u does not appear as an argument of J, we replace it with O in (4). Likewise, we replace e:e:T withi:-�, o with 0, and AA T with r-1 in (4) when the corresponding random variable does not appear as an argumentof :J. Additionally, we will present each method in the general nonlinear setting, but we will also explicitly write the sample average solution in the linear case as closed form solutions are available, yielding additional insights. To that end, we write two equivalent formulations of the MAP estimate for linear inverse problems. 
Proposition 7. When the PtO map is linear, i.e. F(u) = Au, the solution of the MAP problem (2) is given by either

u1 = (AT1:-1 A + r- 1 ) - 1 (AT1:-1
d + r-1uo) (17a) 

or 

Proof The first of these identities is derived directly from the optimality condition of (2). Specifically, 
v :J = (AT 1:-1 A +  r- 1 ) u - AT 1:-1

d - r- 1u0 = o .  (18) The second formulation can be derived from u1 using the Sherman-Morrison-Woodbury formula [47] under the con­ditions that r- 1 and 1:-1 are invertible. D
Remark 8. This last assumption concerning the invertibility of r- 1 , while seemingly trivial in light of the fact that
r- 1 is written as the inverse of a matrix, will be important in the following discussion of randomization.

Additionally, let us define new random variables:
di := d + (Ti and u� := Uo + oi , (19) 

where ui and oi are the first and the third components of t defined in Theorem I. These quantities will be useful inthe following discussion. By the LLN we have 
N � � di � d andN L.,;  N-+oo i=l 

3 .1 Randomized MAP approach 

N 1 � i a .s .  

N L..t u0 -----+ uo.
N-+oo 

i= l 

Assuming that the order of minimization and expectation can be interchanged3 , we can write 
arg�in [1Tv X1T8 [J (u; uo, d, u, o)] = [1Tv X1T8 [arg ... min J (u;uo, d, u, o)] . 

The sample average approximation of the RHS can then be written 
N u�AP := � I: arg min J (u;u0 , d, ui, o

i) .
i=l  u 

(20) 

(21) 
This randomization approach coincides with the randomized MAP approach [29] when ["v [uuT] :E and ["8 [ooT] = r (also known as the randomized maximum likelihood [49, 50, 51]). In the linear case, we can write

N RMAP _ � � ( RMAP) i
UN - N L.,;  u i=l where, thanks to Proposition 7, 

( uRMAP/ = (AT1:-1 A + r-1 )-1 [AT1:-1 ( d + ui) + r-1 ( uo + o;)]
= (AT 1:-1 A + r-1 )-1 [AT 1:-1

d; + r-1uh] .Since the sample average approximation (21) of the right hand side of (20) converges to its expectation, the analysis from Section 2 applies. We have the following result for nonlinear PtO map. 
3The conditions under which the interchange is valid can be consulted in (48, Theorem 14.60] . 
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Corollary 9 (Asymptotic convergence of RMAP). Suppose that the nonlinear PtO map F satisfies the assumptions 
of Theorem 1. Let ui ~ 7ra and oi ~ 1r0 with bounded covariances where ["a [u] = 0 and ["

6 
[r5] = 0. Then

u� �- uMAP as N ➔ oo.
Note that if only the MAP point uMAP is needed, then the randomized MAP approach is not useful: in fact very ex­pensive while only giving an approximate solution for uMAP. However, the approach could be appealing for Bayesian settings. Indeed, by choosi.ng ["a [uuTJ = :E and ["6 [ooT] = r, each solution (uRMAP/ is a bona fide sample
of the posterior distribution in the linear case. For nonlinear cases, ( uRMAP) i are biased samples of the posterior[29] , but can be corrected via Metropolization [52, 53] . Note that for linear inverse problems, the RMAP approachis the same as the randomize-then-optimize approach in [51] (see an explanation from [29]). This randomized MAPmethod is embarrassingly parallel and is well-suited for implementation on distributed computing systems. While wecould randomize the data and prior mean without exchanging expectation and optimization and convergence would be maintained, such a method would be of little use because we would obtain an inaccurate approximation of uMAP whilehaving the same cost.
3 .2 Randomized misfit approach (left sketching) 

In this section we show that the randomized misfit approach (RMA) [28] is a special case of our randomization in (4). Indeed, if we let e: ~ 1r,, where ["• [e:] = O and ["• [e:e:TJ = i;-1, then
uRMA : = argumin ["• [J (u; uo, d, e:)]

= argumin ["• [� l le:T (d-F(u)) II � + � llu-uoll�-, ] .
The SAA of uRMA can be written as 

where 

N 
RMA . 1 � - ( i)uN : = arg mm N D :T u; uo, d, e: 

u i=l l N l - .  - . 2 1 2 = arg min - � - lld• - F' (u) II + - llu - uoll r-1 ,
u N -8_ 2 2 2 

j; := c.;T F and di := e:;T d.

(24a) 
(24b) 

That is, the random samples, which can be combined into a random matrix, sketch the PtO map and the data from the left. Random sketching has been used extensively to reduce the cost of solving inverse problems [30, 54, 55]. The following is a direct consequence of Theorem 1. 
Corollary 10 (Asymptotic convergence of RMA). Let u'J_J'1A be as defined above. Then 

u'J_J'1A �- UMAP as N ➔ CX) .

Calculating the optimality condition in the linear case results in 
uRMA = (AT["• [e:e:T] A + r-1 )-1 (AT["• [e:e:T] d + r-1uo) .

By letting 
we can rewrite (25) as 

(25) 

If we combine the RMA and randomized MAP approaches into a single stochastic optimization problem, we dis­cover a new method which we will denote RMA+RMAP. Specifically, consider the problem directly arising from randomization of (4) and define the solution using the RMA+RMAP method to be 
9 
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URMA+RMAP : = arg:un [,,a X 7r, X 7r6 [J (u; Uo , d, u, E: ,  8)]
= argumin [,,a x 1r, x 1r6 [� l le:T (d + u - F(u)) II� + � llu - uo - 8 1 1�- , ] ,

and the corresponding SAA solution 
N RMA+RMAP . _ · 1 "" ;j ( . d i i d)uN . - arg rrun N L...., J u , uo , , u , e: , u u i=l 
N 

= arg:Un ! 8 [� l le:i T (d + ui -F(u)) 11: + � l lu -uo -8i l l �- 1 ]
The following result is immediate from Theorem 1. Corollary 1 1  (Asymptotic convergence of RMA+RMAP). Let u�A+RMAP be as defined above. Then 

u�+RMAP �- uMAP as N ➔ oo.
Allowing for the interchange of optimization and expectation as in the RMAP approach along with independent sample average approximations of each random variable, the following variant sequences also converge. 

u�A+RMAP , = ! t arg�nin [He:;T (d + ui -F(u)) 11: + � l lu -uo -8i l l �- , ] . (28) 
M N u��+RMAP2 = ! 8 arg�in ! ?; [� lle:j T (d + ui - F(u)) 11: + � l lu - uo - 8i l l �-l (29) 

We would like to point out (29) is perhaps the most intuitive way to combine RMA and RMAP. Randomization of the noise covariance matrix acts as a random projection (left sketching) while the randomized prior mean and data aid in sampling from the posterior. Note that (29) arises as a variant of the loss function defined in equation (10) by exchanging the opti.mization and expectation of only u and 8. On the other band, (28) would likely yield inaccurate results as it is the sum of solutions where the PtO map and data have been projected onto a one dimensional subspace: thus the prior dominates each solution. In the linear case, u��+RMAP2 can be written as 
u�•=•• - ! t ( ! t, (,if ,if + r-f ( ! t, (,if (,Y d' + r-'u;)

Clearly we also have convergence to the MAP point of other combinations, such as randomizing only one of the data or prior mean. To avoid a combinatorial explosion in the number of corollaries, we omit all the possibilities here. 
3.3 Randomized prior 
Here we propose a randomization scheme based on randomizing r-1 though .>. ~ 7r). where [,,,. [.>.][,,,. [.x.xr] = r- 1 . Let

RS_U I . - . . [ [ '7 ( . d ' )]u . - argum1n ,,,. J u , uo , , "" 
= argumin [,,,. [� lid -F(u) ll i:- 1 + � 11.xT (u -uo) 1 1 :] . 

0 and 
(30) 

The reason for designating this method "RS_U l"  is due to its relationship with the right sketching approach (see Section 4.1). Then the SAA reads 
N URS_U I . = arg min 2- "" '7 (u · u d ei)N . N L...., 

,J , 
o, , 

u i=l

l 
N 

l 2 1 • T 2 
= arg min N L 2 lld-F(u) IIE- ' + 2 ll (A') (u -uo) ll2 •u i=l  

10 

(31)
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Corollary 12 (Asymptotic convergence of randomized prior). Let u�; LU I be as defined above. Then 

u�_;LU J  �- uMAP as N ➔ oo.
In the linear case, the optimality condition yields the following solution 

URS_U l  = (AT E- 1 A + [.,..,. [ >.>. T] ) - 1 (ATE -ld  + [.,..,. [ >.>. T] uo) .

This approach can be thought of as sketching the prior from the left. 
4 Optimize, transform, then randomize 

A PREPR INT 

An important observation about the methods discussed so far is that the linear settings are solved using u1 given in (17a). That is, to show the equivalence of the solution of the randomized cost function to the solution of the corresponding method in the literature, one only needs to consider the optimal solution (17a). Additionally, the sample average approximation of the cost function is exactly the same as replacing the expectations in form u1 with their respective sample average approximations. The next methods require form u2 in (17b) to be used to see the equivalence of the randomized solution and the corresponding method given in the literature - where the Sherman­Morrison-Woodbury formula is applied to the optimality condition before making sample average approximations. As 
u2 is only equivalent to u1 in the linear case, we will restrict the following discussion to linear inverse problems. 

4.1 Right sketching and the Ensemble Kalman filter 

Since we are now considering schemes derived from randomizing u2, we introduce a new random variable, w, defined such that [.,..w [w] = 0 and [.,..w [wwT] = r. By taking advantage of the asymptotic convergence of the SAA of[.,..w [wwT J ,  we have 
N 

! L wi (Awi f 
N

a:.. [w [wwT AT] = r Ar , (32a) 
i=l 

N 

! L (Aw i ) (Awi f 
N

a:.. [w [AwwT AT] = Ar AT . (32b) 
i=l  Combining (17b) and (32) gives 

u� := u0 + ( � t w i (Awi{) ( E + � t (Aw;) (Aw;{ ) -\d - Au0) , (33) 
which is the same as sketching the PtO map A from the right or sketching the transpose of the PtO map from the left. 
Lemma 13 (Asymptotic convergence of right sketching). Let u� be defined in (33) and assume that [.,..,. [ >.>. T] 
(where >. is defined in Section 2) is invertible. Then 

u� �- uMAP as N ➔ oo.
Proof Beginning with equation (2) and randomizing only r-1 through >., the optimality condition is

u* = ( AE-1 A + [.,..,. [ >.>.T] ) - l ( AT E-1d + [.,..,. [>->-T] uo) .

Since [.,..,. [ >.>. T] is assumed to be invertible, this can be rewritten using the Sherman-Morrison-Woodbury formula in the form u2 as 

Before making a sample average approximation, note that 

11 
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Then, 
since matrix multiplication and matrix inversion are continuous functions, 
by the continuous mapping theorem [56, Theorem 2.3). □ 

The key step here is recognizing that, asymptotically, sampling from 7r.>. and solving using form u1 (17a) gives the same results as sampling from 1Tw and solving using form u2 (17b). However, Lemma 13 does not imply that uIJJ' is equivalent to sampling from 7r.>. and solving using form u1 for a finite N. Indeed, when N < dim (u ) ,  uIJJ' cannot be rewritten in the form u1 since 
rank ( ! t, w; (w! ) T) � N < dim (u) .

This implies that the sample average of [.,,.w [wwT J is not invertible, breaking an assumption of Lemma 13 and showing that uIJJ' does not satisfy the optimality condition of (2). Here, it is important that r-1 is invertible, otherwiseu1 =I u2 and the randomized schemes discussed here have no hope of converging to u•. If in addition to right sketching we use ( 19) to randomize d and u0 in (33), and define 
(uii/'�) ' - ,4 + U t, w! (Aw! ) T) ( >: + ! t, (Aw! ) (Aw! () _ ,  ( d" - Au\) , (34) 

we rediscover the well-known ensemble Kalman filter (EnKF) update formula for a si.ngle member of the ensemble [57). Notice here that the sketching of A from the right is fixed for each random sample di and ui .  In the language ofthe EnKF, the sample prior covariance matrix is fixed for all members of the ensemble. 
Corollary 14 (Asymptotic convergence of EnKF). Let 

Then 

1 M u�,ii : = M L  (uyJ<KF) ' .
i=l  

u�.� �- uMAP as M, N ➔ oo.
(35) 

Proof The result follows immediately from Theorem 1, Lemma 13, and the interchange of expectation and integration 
used in Corollary 9. □ 
As with right sketching, this result only bolds asymptotically, with special sensitivity to N, since the validity of ( uyJ<KF) i as an optimal solution of (2) requires N to be large enough to ensure invertibility of all matrices involved.It should be noted that the EnKF is often used as part of an iterative method for solving inverse problems rather than 
used directly [33). The reason for this can be understood by investigating what right sketching (and thus the EnKF) is doing to the prior covariance matrix and viewing this through the lens of regularization. 
4 .1 . 1  Right sketching from the left as randomized regularization 

Consider again the form u1 given in (17a): 
U1 = (ATE-1 A + r-1 r 1 (ATE-1d + r- 1uo) .While the randomized prior (31), right sketching (33) and ensemble Kalman filter (34) methods still fall under the asymptotic analysis given in Section 2.1 for linear inverse problems, a practical and theoretical issue arises due to the regularizing role that r-1 plays. The inverse of the prior covariance, r-1, can be considered to be a regularizationoperator when viewed through the lens of deterministic inverse problems and is indeed equivalent to a Tikbonov regu­larization strategy [58). In the deterministic setting, the role of regularization is often to "damp out" highly oscillatory modes caused by the rapidly decaying spectrum of A - modes that are highly polluted by noise. While asymptotic analysis (see Theorem 1) establishes the convergence of these aforementioned methods, it is incapable of explaining 
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why the e methods could fai l  for fin i te sample size . Thi i s  where non-asymptotic analysi s  h ines. indeed, Lemma 6 hows that the succe sful (smal l error) probabi l i ty requires qui te a large number of samples. According to Remark 4.7.2 of (37] .  the number of samples requ i red to accurately estimate the covariance matri x is proport ional to n/f]2 where n i s  the dimension of the matrix and f3 i s  the tolerance. Thi is not surpris ing from a regu larizat ion point  of v iew as the sample covariance needs to closely approx i mate the true covariance in order to adequately perform i t s  role as a regulari zer. 
As a concrete example, consider the s imple case where r- 1 = ciL with a > 0. Lett i ng :r; - ½ A = USVT be theSYD of the wh i tened PtO map, the first term of u1 can be wri tten 

( vs2 yT + r-J r l 
= (v (S2 + a•.I) yTr l 

= VDVT ,
where D i the d iagonal matri x wi th the i th d iagonal e lement g iven by Di; = 52 1+a ·  Comparing to the ca e of noregu larizat ion, we can see that the i nver e of the prior covariance sh ifts the spe��rum of AT :r;-1 A upward by thecon tant a. Furthem,ore, upon i nvert i ng, a > 0 en ure that the denominator of 82_1+0 

i not too c lo e to 0, keepingthe i nverse olut ion from blow ing up as S�; ➔ 0. Now, consider the RS_U I rando•,;,ization of r- 1 propo ed i n  (3 1 )- the ame randomizat ion as right ketch ing when v iewed i n  the u1 form (sketch i ng the prior from the left) :
r-1 = [7T,\ [,uT] ::::;  2. L (A; ) (A ir .

i= l A we saw before, th i  randomization converge as ➔ , but the convergence rate 0( 1 /  ./N) of a SAA i notoriously low. So how does th is s low convergence affect the regularization strategy? Clearly when < dim (u) , the regularization i not ful l  rank and there may be dim (u) - N modes of AT :r; - 1 A left unregularized, assuming therandom matri x has l i nearly i ndependent column . Even in the case when N 2: dim (u) , slow convergence of the SAA leaves mode underregularized lead ing to osc i l latory olut ions as seen in Figures 1 1  d and 1 1  e for the I D  deconvolution problem .  Thi s  can al o be seen expl ic i t ly in Figure I a where the pectrum of the ample average i nverse covariance i p loued agains t  the pectrum of the true prior i nverse covariance for variou ln Figure l a, we consider the ca e where r = .I and dim(u ) = 1000. Because randomizing the i nverse of the prior
5 

4 

3 

2 

0 

0 200 

Spectrum of sample inverse covariance >.>. r Identity prior 
5 x 10s Bilap lac i an  prior 

true C 1 

--+- N = 100 

N - 500 
c) ----+- N = 1000 

--+- N - 10000 3 

2 

0 

100 GOO 800 1000 0 200 100 600 

(a) (b)  

t r ue  C 1 

--+- N = 100 --- N - 500 -+- N = 1000 

--+- N - 10000 

00 1000 

Figure I :  Convergence of sCiectrum of the sample average approximation of the i nverse prior covariance for the casewhere r = .I E IR 1 000x i o 0 (a) and r is the B iLaplacian (b) .  When N = 1 00, there are fewer samples than thedimen ion of the parameter and ome mode are left completely unregulari zed. Even when there are more sample than the dimen ion of the parameter, thi doe not guarantee acceptable convergence for SAA. This  show that the sample average of the inverse prior covariance converges lowly to the true inverse prior covariance. However, when the spectrum of the inverse prior covariance decays, the sample average approximation more closely matches the true i nver e prior covari ance w i th fewer sample . 
covar iance re u l t  i n  a poor performing regu larizer solut ions us ing right sketch ing or a s ingle tep of the ensemble 
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Kalman filter exhibit highly oscillatory behavior when choosing N to be of reasonable size, at least for the identity prior. In problems where a decaying prior spectrum is desirable, randomization of the prior has a less pronounced effect on the quality of the inverse solution. For example, the advection-diffusion PDE constrained inverse problem detailed in Section 5.3 with the BiLaplacian prior shows good results with right sketching. The similarity of the sample average spectrum to the spectrum of the true prior inverse covariance can be seen in Figure I b for the BiLaplacian prior. Additionally, problems where the PtO map has a slowly decaying spectrum as in the X-ray tomography problem (Section 5.2) may also be less sensitive to inaccurate approximations to r-1 .
5 Numerical results 

In this section we show numerical results for a variety of inverse problems demonstrating the asymptotic convergence of various methods. As the possible number of randomized variants would be unnecessarily burdensome to enumerate, 
we will focus on a few key methods: randomized misfit approach (24), randomized MAP (21), the combination of RMA and RMAP (29), right sketching (33), the ensemble Kalman filter (35), and randomizing everything (10) (listed as ALL). It is important to keep in mind that we are not advocating for or against the use of any particular method - this section is to serve as numerical validation of the asymptotic convergence of each method. Additionally wediscuss the differing convergence behavior of each method for different problems. In particular, we find empiricallythat methods randomizing r- 1 such as right sketching, the EnKF, and ALL generally have very poor performanceand require many more samples than the dimension of the problem in order to provide suitable results for several problems. The reason for this has been discussed at length in Section 4.1.1. These methods do however exhibit asymptotic convergence to the MAP solution as predicted by our theoretical results. To explore the performance and convergence of the various methods, we consider a variety of prototype problems with different characteristics. The ID deconvolution problem with scaled identity prior covariance is a relatively simple inverse problem that provides easily digestible visualizations of the convergence for each method. X-ray tomography is a mildly ill-posed two dimensional imaging problem with fewer observations than parameters. The fact that it is only mildly ill-posed exposes interesting effects in the context of randomization. We also show the convergence of each method for a linear time dependent PDE-constrained inverse problem with PDE-based prior covariance on a domain with a hole. Finally, we conclude with an example demonstrating convergence on a non-linear elliptic PDE-constrained inverse problem. In problems with more than one randomization, such as EnKF and RMA+RMAP, each expectation can be approxi­mated by a separate sample average. However, exploring the effect of choosing a different number of samples for each random variable is outside the scope of this paper and serves only to obscure the asymptotic convergence property that we aim to show in this section. Therefore, all methods assume that the number of random samples is the same for all random variables. To be more concrete, we set u�i = u"EJr1ff in (35). In addition, the relative errors presented arewith respect to uMAP, not the true solution, emphasi�ing the e�ors induced by randomization rather than errors due to other effects. This is due to the fact that the theory presented shows convergence to uMAP. 
5.1 ID Deconvolution problem 
Deconvolution, the inverse problem associated with the convolution process, finds enormous application in the signal and image processing domains [59, 60, 61]. For demonstration, we consider the ID deconvolution problem with a I-periodic function given by:

f(x) = sin(21TX) + cos(21rx) x E [0, 1). The domain is divided into n = 1000 sub-intervals. The kernel is constructed as [62]:
w (x) = Ca (x + a)2 (x -a)2 ,where a = 0.235 and the constant Ca is chosen to enforce the normalization condition [62]. Synthetic observations are generated with 5% additive Gaussian noise. We choose to randomize using the Achlioptas distribution [28, 63], an example of an I-percent sparse random variable with l = 2/3 and entries in { -1, 0, 1} with equal probability. The reconstructed functions obtained by different randomization approaches are shown in Figure 11 and the relative errors are given in Table 1. It can be seen that the right sketching and EnKF methods give the least accurate results as evidenced in Table 1. This is because randomizing the inverse of the prior covariance results in poor performance as a regularizer, providing numerical confirmation of the discussion in Section 4.1.1. Other methods perform reasonably well. While not all methods perform equally well, all methods converge as more samples are taken and this is consistent with our asymptotic convergence results. 
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Method 

Table 1 :  Relat ive error for variou randomized methods compared to tbe uMAP solution for I D  deconvolution. 
ID Deconvolution 
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Figure 2: Relative error plot for I D  Deconvolution problem w ith Ach l i optas random variable. 
5.2 X-ray tomography 

ln x-ray tomographic imaging, X-ray projections of an object are captured at mul t iple angles and the i nverse problem i to recover the i nternal structure of the object from the project ion data [62) . We con ider the canonical phantom image of s i ze 64 x 64 p ixe ls w i th 45 measurement angles uniformly div ided over the range [O, 1r] . With th i s  number of measuremen t angles, the PtO map has hape 64 x 45 by 642 resul t ing in fewer observat ions than parameters (pixels). A scaled identi ty prior covariance is once again considered. Measurement are corrupted with I %  additive Gaus ian noise. 

Table 2 :  Relative error for various randomized methods compared to the uMAP olution for the X-ray tomography problem. 

1 5  



  

16 of 29 1/3/23, 12:40 PM

10 1 

1 0 1 

1 0-2 

., 1 0- 5 

1 0-B 

1 0- 1 1
' vi  

1 0- 14 

0 

On Unifying Randomized Melhod for inverse Problems 
X-ray tomography
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Figure 3: Relative error plot for X-ray tomography problem. 
Spectrum of the PTO map for X-ray tomography 
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Figure 4 :  The singular val ues of the parameter-to-observable map for an X-ray tomography problem decay rapid ly at first and Lhen lowly unti l the last few singu lar vector . This hows Lhat Lhe effective rank of the PtO map i c lo e to the m in imum d imens ion .  
The resu l ts are shown i n  Figure 1 2  and Table 2 shows the re lative error for di fferent methods. Two observat ions are in order. F irst, re u l t  show asymptotic  convergence of a l l  methods, though convergence i s  noticeably s lower for RMA and RMA+RMAP than i n  previous problem . This occurs because X-ray tomography i s  only a mildly i l l -posed i nverse problem wi th the spectrum of the PtO map decaying s lowly after an i n it ial fast decay (Figure 4) . Thi s  means that the effective rank of the PtO map is clo e Lo the dimension of Lhe data in the ca e pre ented. Whi le mi ldly i J J-po ed problems are usually easier to work w ith, this can present a chal lenge for randomized methods, part icularly methods uch a RMA that randomize the mi fit term. Recal l that for any two matrice X and Y, rank(X Y )  � rank( X ). By projecting the misfit term onto a lower dimensional subspace, important i n formation is lost in the case where A is has effective rank clo e to the d imen ion of the data. Thi i ndicates that such a method i better su i ted for problem that are everely i ll-posed. 
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The second observation is that the error for randomized prior methods initially increases then decreases as the number of samples increases. In previous problems, we have used a direct linear solver to find the solution to the stochastic optimization problem. In this problem, we use an iterative conjugate gradient (CG) solver to showcase bow solver choice interacts with the randomized approaches. The main difference that can be seen here between a direct solver and an iterative solver such as CG is that a direct solver will invert possibly tiny eigenvalues of an ill-conditioned matrix while an iterative solver will often stop early, depending on the convergence parameters set, acting as an iterative regularizer [64, 65, 66]. This effect is particularly pronounced on the randomized prior methods such as RS and EnKF where the low rank randomized prior causes the iterative solver to stop earlier with fewer samples. This causes the error of RS and EnKF to increase initially until the regularization has sufficient rank, then the methods converge asymptotically to uMAP _ In the case of X-ray tomography, full-rank regularization is not needed due to the mildly ill-posed nature of the problem. 
5.3 Initial condition inversion in an advection-diffusion problem 
We now consider a linear inverse problem governed by a parabolic PDE based on the method used in [67]. The parameter to observable map (advection-diffusion equation) maps an initial condition u E £2 (0) to pointwise spatio­temporal observations of the concentration field y (  x, t). The advection-diffusion equation is given by: 

Yt - K-D.y + v · Vy = 0 in fl x (0, T),y(. , 0) = u in fl, K-Vy · n = 0 on an x (0, T) ,
(36) 

where, fl C IR
2 is a bounded domain, K. > 0 is the diffusion coefficient, T > 0 is the final time. The velocity field v is computed by solving the following steady-state Navier-Stokes equation with the side walls driving the flow: 

1 A - r7 - r, -- - uV + v q + v •  v v = O
Re 

V · v = O 
v = §

in fl, 
in fl, on ofl. 

(37) 
where q is the pressure, and Re is the Reynolds number. The Dirichlet boundary condition g E IR2 is prescribed as g = [0, l] on the left side of the domain, and g = [0, OJ elsewhere. Velocity boundary conditions are not prescribed on the right side of the boundary. The values of the forward solution y on a set of locations {x1, x2 , . .. , xm } at the final time T are extracted and used as the observation vector d E IRk for solving the initial condition inverse problem. Synthetic observations are generated by corrupting this observation vector with 1 % additive Gaussian noise. The observation data and the velocity profile used in the study are shown in Figure 5. Upon discretization, the operator A maps the initial condition u E IRn to the observation d E IRk. 
In addition, we define the prior covariance matrix to be the PDE-based BiLaplacian prior defined as: 

r = (of + ,V · (0V))-2 , (38) where, 8 governs the variance of the samples, while the ratio ;f governs the correlation length. 0 is a symmetric positive definite tensor to introduce anisotropy in the correlation length. Following [67], a mixed formulation employing P2 Lagrange elements for approximating the velocity field and Pl elements for pressure is adopted for solving (37) to obtain the velocity field. The computed velocity field is then used to solve the advection-diffusion equation, (36). Pl Lagrange elements are used for the variational formulation of the advection-diffusion equation. The observation vector d is computed at time t = 3s with m = 200 observation points. For this problem, there are n = 2868 degrees of freedom. The diffusion coefficient is K- = 0.001 and the parameters of the BiLaplacian prior (38) are 8 = 8, , = 1, and 8 = I. The MAP solution uMAP is shown in Figure 7. The condition number of r-1 is of the order of 106 . The results ofdifferent randomization schemes are shown in Figure 13 in the appendix. Table 3 gives the relative error with respect to uMAP. As expected, randomized MAP gives the most accurate results followed by left sketching and the randomized misfit approach. In contrast to the previous examples considered, the right sketching and EnKF approaches gives reasonably good results as evident from Table 3 and Figure 13 in the appendix. 
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Velocity profile Observation at T=3s 
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Figure 5: The vel c i ty profi le and ob ervation data used for i nver ion 

Table 3 :  Relative error for various randomized methods compared to the uMAP solution for 2D l i near advection­diffusion i n i t i al condi t ion i nverse problem. 
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Figure 6 :  Re lative error plot for 2D l i near advection-di:ffu ion in i t ia l  condition i nver ion. 
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True solution uMAP olution RS, = 100 

Figure 7: From left to right are true olution, uMAP solut ion and right ketch ing olution for l i near advection-di ffu ion i n i t ia l  condit ion i nverse problem. With only 100 random samples, right sketch ing can obta in a reasonably good i n i t ial condi l ion reconstrucl ion (26% re lalive e rror). This behav ior i ndicates the fast convergence of the randomly ampled prior i nver e covariance to the true prior i nverse covariance. 
This is due to Lhe faster convergence of the randomized prior covariance to the true prior covariance for the B iLaplacian prior. Thi al o poi nts to the fact that care hould be exerci ed when choo i ng a randomized method for a part icular problem. For inverse problems where a prior wi th a decaying pectrum is desirable, the EnKF or RS approach may perform wel I. 
5.4 onlinear parameter inversion in a steady-state heat equation 

To show Lhe convergence of various methods for nonlinear i nverse problems, we consider a nonl inear PDE con­strai ned parameter i nver i on problem. In the previous sect ion,  we considered an i n i tia l  cond i t ion problem where the data depended l i nearly on the parameter, eveo though the tatement of the problem i tse l f  was rather involved. ow we consider a simple to state but extremely i l l -posed non l inear i nver e problem . Given a steady-state temperature di tribution T (x ,  y) and boundary condit ions, i nvert for the conductivity everywhere i n  Lhe domain. The governing equat ion are given by v' · (e"v'T) = J i n n,
T (x, 0)  = 2 ( 1 - x) ,

T (x ,  1 )  = 2x .v'T · n = 0 on an \ { y = 0 y = 1 } .Wh i le Lh is  equation i l i near i n  the temperature distr ibution T, the (log-) thermal conduct iv i ty that we are i nvert i ng for, r;,, appears non - l inearly. That i s ,  the parameter-to-observable map i nonl inear. The heat equation make for an excellent te t problem for i nverse solvers since the dependence of  the teady- tate temperature d i stribut ion on the conductivi ty i s  rather weak. We aga in  follow a mixed formulat ion where the temperature d i stribmion i modeled us ing P2 Lagrange elements and Lhe parameter is modeled with Pl Lagrange elements. With a mesh s ize of 64 x 64 e lements, thi resul t s  in d i  crete variables y E IR 16 ,64 1 and r;, E IR4 ·225 . The B iLaplacian prior defined in (38) is a lso used here wi th t5 = 0 .5 , , = 0 . 1 ,and the a n i  otropic d iffus ion tensor 
0 = 1 Slll Q[ 0 . 2 (81 - 02 )  in o co o (0 1  - 02) sin o cos o]

02 cos2 o 
where 0 1 = 2.0, 02 = 0.5 and o = rr /4. La t ly, we consider an i nhomogeneous case where

J = 50 si 1? ( rrx) co 2 ( rry) .

A few remarks are i n  order to under tand the rather unimpres ive resul ts in Table 4. Fir t, recal l that the results hown here are for an extremely d ifficult problem. The i nverse of the d iffusion equation is notoriously i l l -posed, as i t  amounts LO the i nverse of a compact operator. That i s, mall perturbation in the data can lead to dra t ical ly d i fferent i nver ion re ult . indeed, we show an even more difficult problem where the task i s  to infer 4,225 parameters from only 1 00 measurements which are recorded i n  only ha lf  of the domai n  as hown in Figure . With o few measurements, adding noi e to Lhe data as in RMAP, RMA+RMAP, E KF, and ALL may not lead to desirable re u l t  . 
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1.5 Observations 
True Parameter 1 0 �------------� 2.00 
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Figure 8: The true log-conduct iv i ty (!i:)  and 1 00  sparse observations. Ob er i ng the temperature d istr ibut ion only i n  
the lower half  o f  t h e  domain make i nvert ing fo r  the log-conduct iv i ty i n  t h e  ent ire domain a more difficu l t  task. 

Table  4 :  Relative error of MAP solution for various randomization chemes compared 10 Lhe uMAP sol ut ion.  

10 1 

2D onlinear EIJiptic 

102 
103 

RMAP 

RMA 

RMA+RMAP 

RS 

E N KF 
ALL 

Figure 9 :  Relative error plot  for non l i near e l l ipt ic parameter i nver e problem.  
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Secondly, whi le there is st i l l  ~20% error for these methods, the MAP estimate for each of these is st i l l  reasonably 
good v i  ibly a seen in Figure I 0 .  The h igh relat ive error i s  in part due to the mal l norm of the u MAP solut ion .  S i mply 
sh i ft i ng the parameter up by a constant changes the norm of the denominator i n  the re l at ive error formula  

re lat ive error : = l l u tnc thod) - u M A P I I / l l uM A P I I -

In addi t ion to the numerical re lat ive error, i t  is i mportant to consider the "eyebal l norm". Figure J O  shows that the 
est imated sol ut ions are t i l l  qu i te c lose to the uMAP solut ion,  especia l ly  g iven Lhe extreme i l l -posedness. Despite thi 
shortcoming of data-randomization methods, reca l l  that the main advantage of addit ively randomizing Lhe data and 
prior mean is to aid in sampling from the posterior. In other words, we are most i n tere ted in accelerat i ng u ncertai nty 
quan t ification, not gelling the SAA MAP esti mate error down LO mach ine prec i ion. These randomization schemes 
may st i l l  find use in such appl ications. 

uMAP 

RMAP 
= 5000 

ALL 
= 5000 

Figure J O :  Solut ions to the non l inear d iffusion i nverse problem for two di fferent methods. Visual ly, these methods 
give nearly identical resu l ts  compared to the uMAP solution even though numerical ly, they have relat ive en·or ~20%. 

6 Conclusions 

By viewing the randomized sol ut ion of i nverse problem through the lens of stocha tic programming and Lhe ample 
average approxi mat ion,  we developed a un ified framework though which we can analyze the asymptotic convergence 
of randomized sol utions of l i near i nverse problems to the ol ution obtained with its determin i st ic counterpart. Thi 
framework a l lowed us to prove Lhe asymptotic and non-asymptotic convergence of Lhe minimizer of a general s tocha -
t ic cost function to the m i n i m izer  of the expected val ue of the stochastic cost funct ion .  Several wel l -known methods 
for i n troducing randomnes i nto l i near and non l inear i nver e problem were re overed a special  ca e of thi general 
framework. Viewing the solution to randomized i nverse problems through the lens of the ample average approxi ma­
tion also a l lowed us to prove a novel non-asymptotic error analysis that appl ies Lo al l randomized methods di cussed. 
We also show that wh i le  al l of the methods presented converge asymptotical l y, the resu l ts can be qu i te poor i f  an 
in u ffic ient  number of samples are drawn .  Whi le thi observation i eas i ly  understood through our non-asympl ti 
error analysis, i t  is  not possible from an a ymptotic v iew point .  In  particu lar, we howed that randomizing the prior 
covariance matrix may not be a good idea for certa in  priors due to the regulariz ing role  that the prior plays in the sol u­
tion of inver e problems.  Th is  is  due to the potent ia l ly  slow convergence of random matrice to the i r  expected value, 
depending on the spectrum of the expected value matri x .  The convergence of a l l  scheme was hown numerical ly  for 
a variety of l i near and nonl inear i nverse problems, inc luding ID and 2D problems governed by algebraic and PDE 
con tra in t  

7 Acknowledgements 

We would l i ke to Lhank Lhe Tex as Advanced Comput ing Center (TACC) at Lhe Univer ity of Texas at Aust in for 
providing HPC re. ource. that contributed to Lhe resu l ts  presented in Lh i s  work. U R L :  http ://www. tacc .utexa .edu 

2 1  



  

22 of 29 1/3/23, 12:40 PM

On Unifying Randomized Melhod for inverse Prob lem s A PR EPR I T 

A Figures 
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Figure 1 1 : Solu t ion Lo I D  deconvol ut ion problem wi th  mesh size n = 1 000 u i ng various randomizat ion chemes
wi th scaled identi ty prior. This prior works sufficiently wel l  for tho e randomization schemes that do not randomize 
the pri or covari ance (RMAP, RMA, R M A+RMAP), but pe rforms poorl y  for RS, E n K F, and ALL which randomi ze 
the pr ior covari ance . Random sampl i ng is performed v i a  an Achl ioptas (2/3- sparse ) random variab le 
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N =  10 N =  100 N = 1000 N = 50000 

Figure 12: Solutions for various randomization approaches for an x-ray tomography problem with Gaussian random variables. 
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Figure 1 3 : Solu t ions for variou randomization approaches for a l i near advection-d i ffusion in i t ia l  condit ion inverse 
problem wi lh Gaussian random variables. 
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N =  10 N =  100 N = 1000 N = 5000 

Figure 1 4: Solution for variou randomization approaches for a non J i near d iffu ion parameter i nver ion problem wi th Gaussian random variables. 
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N =  10  N = 100 N = 1 000 N = 1 0000 

Figure 1 5 : Reconstructed state for various randomization approaches for a non l inear d iffusion problem. Even for the right sketch ing method which d id not g ive good parameter reconstruct ions un t i l  N = 1 0000 samples, the state i n  the lower half of tbe domain ,  where the 1 00 measurements are taken, look s imi lar to aJJ the other methods. 
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