
An Anisotropic hp-Adaptation Framework

for Ultraweak Discontinuous Petrov–Galerkin Formulations

Ankit Chakraborty∗, Stefan Henneking, Leszek Demkowicz
Oden Institute, The University of Texas at Austin

August 29, 2023

Abstract: In this article, we present a three-dimensional anisotropic hp-mesh refinement strategy
for ultraweak discontinuous Petrov–Galerkin (DPG) formulations with optimal test functions. The
refinement strategy utilizes the built-in residual-based error estimator accompanying the DPG
discretization. The refinement strategy is a two-step process: (a) use the built-in error estimator to
mark and isotropically hp-refine elements of the (coarse) mesh to generate a finer mesh; (b) use the
reference solution on the finer mesh to compute optimal h- and p-refinements of the selected elements
in the coarse mesh. The process is repeated with coarse and fine mesh being generated in every
adaptation cycle, until a prescribed error tolerance is achieved. We demonstrate the performance of
the proposed refinement strategy using several numerical examples on hexahedral meshes.

Acknowledgments: We thank Jacob Badger for fruitful discussions. Ankit Chakraborty, Stefan
Henneking and Leszek Demkowicz were supported with NSF award 2103524. Ankit Chakraborty is
partially supported with the Peter O’Donnell Jr. Postdoctoral Fellowship. All numerical experiments
in this article were performed on Frontera’s Intel Cascade Lake (CLX) nodes located at the Texas
Advanced Computing Center [28] using DMS22025 allocation.

1 Introduction
Automatic hp-mesh refinement algorithms are powerful tools that aid finite element discretizations
in computing solutions of partial differential equations (PDEs) in an efficient and accurate manner.
They achieve this efficiency and accuracy by constructing meshes with optimally distributed element
size h and polynomial order of approximation p [8, 13]. Finite element meshes with optimal element
size and polynomial distribution are critical for resolving solution features such as boundary layers
in convection-dominated diffusion problems or point and edge singularities in problems with re-
entrant corners. In such problems, optimal hp-meshes are indispensable for achieving exponential
convergence [2, 1, 26, 27, 3]. Designing algorithms capable of generating a sequence of optimal
hp-meshes that deliver optimal convergence rates in a problem-agnostic manner has been a significant
challenge in finite element research over the past few decades [26, 24, 14, 25]. Typically, automatic
mesh refinement strategies are driven by computable error estimates. These error estimates are
computed using the approximate solution delivered by the discretization scheme. Therefore, the

∗Corresponding author: ankit.chakraborty@austin.utexas.edu

1

accuracy and stability of the underlying numerical discretization are paramount for the effectiveness
of the mesh refinement strategy.

The discontinuous Petrov–Galerkin (DPG) method with optimal test functions, first introduced
by Demkowicz and Gopalakrishnan in [10, 9, 11], has emerged as a critical technology in terms
of robustness and stability over the past decade. Given a stable variational formulation of an
underlying PDE and a trial approximation space, the DPG method computes a test space so that
the resulting discretization is inf–sup stable. The methodology delivers an orthogonal projection in
the so-called energy norm. Another significant advantage of the DPG methodology is the presence
of a built-in residual-based error estimator, also known as the energy error estimate. This makes
the DPG method an ideal candidate for automatic mesh optimization algorithms.

In this article, we focus on the ultraweak DPG finite element formulation with optimal test functions
and propose a problem-agnostic anisotropic hp-mesh refinement strategy. It is critical to mention
that, for the ultraweak DPG method, the energy norm is equivalent to the L2-error [30]. Consequently,
the method delivers essentially the L2-projection of the unknown solution.

The proposed refinement strategy consists of the following steps:

• Step 1: Solve the problem on the current coarse mesh.

• Step 2: Utilize the computed DPG residual to mark coarse mesh elements for refinements.

• Step 3: Isotropically hp-refine the marked elements to generate a fine mesh.

• Step 4: Solve the problem on the fine mesh to obtain the fine mesh solution u.

• Step 5: Use the fine mesh solution u as a reference solution to determine optimal (anisotropic)
hp-refinements of the selected coarse grid elements.

• Step 6: Restore the coarse mesh and execute the optimal hp-refinements.

We essentially use the hp-algorithm from [8, 13]. Optimizing the mesh in the L2-space greatly
simplifies the original procedure. There is no need for mesh optimization on edges and faces;
the Projection-Based Interpolation reduces to the L2-projection performed on elements only. The
optimal refinements of a coarse element K are determined by maximizing the rate (ehp) with which
the projection error decreases,

ehp := ∥u− Pcoarseu∥2 − ∥u− Poptu∥2

Nopt −Ncoarse
.

Here, Pcoarse denotes the L2-projection onto the coarse mesh, Popt is the projection onto the optimal
mesh to be determined, Nopt and Ncoarse denote the number of degrees-of-freedom (dof) of the
optimal and coarse grid elements, respectively. As the L2-projection onto discontinuous polynomial
spaces is a purely local operation, the mesh optimization can be trivially performed in parallel.

The article is organized as follows. Section 2 briefly introduces the ultraweak DPG finite element
discretization with optimal test functions. Section 3 provides the details of the mesh optimization
algorithm. In Section 4, numerical results demonstrate the efficacy of the proposed refinement
strategy. Finally, we conclude with a short discussion in Section 5.

2

2 DPG Methodology
The core idea behind the (ideal) DPG method is to automatically generate a stable discretization
for a given well-posed variational formulation and an approximate trial space. The method achieves
stability by computing an optimal discrete test space [9] corresponding to the approximate trial
space in such a way that the supremum over the continuous test space in the discrete inf–sup [4] is
automatically attained over the discrete test space. The optimal test space is obtained by inverting
the Riesz map corresponding to the test inner product over a discontinuous or broken1 test space.
Unfortunately, inverting the Riesz operator exactly is impossible due to the infinite-dimensional
nature of the continuous test space. Thus, in practical realizations of DPG methods, we approximate
the inverse of the Riesz operator by inverting the Gram matrix induced by the test norm on a larger,
but finite-dimensional enriched discontinuous test space.2 The use of broken test spaces enables
element-wise inversion of the Gram matrix, but it also introduces trace variables defined on the
mesh skeleton [6].

We consider a model Poisson problem. Let Ω ⊂ R3 be a bounded Lipschitz domain with boundary
Γ split into two disjoint parts: Γu and Γσ. The first-order formulation of the Poisson problem is
given by:


σ − ∇u = 0 in Ω,
−∇ · σ = f in Ω,

u = u0 on Γu,
σ · n = σ0 on Γσ,

(2.1)

where f ∈ L2(Ω) represents the source term and n denotes the outward normal. Before presenting
the ultraweak variational formulation, we briefly introduce the energy spaces used in this article.
We define the standard energy spaces as:

L2(Ω) = {u : Ω → R : ∥u∥ < ∞} ,

H1(Ω) =
{
v : Ω → R : v ∈ L2(Ω),∇v ∈

(
L2(Ω)

)3
}
, (2.2)

H(div,Ω) =
{

w : Ω → R3 : w ∈ (L2(Ω))3,∇ · w ∈ L2(Ω)
}
.

In the DPG method, discontinuous energy spaces are used for the test functions. Thus, we must
define broken equivalents of H1(Ω) and H(div,Ω) spaces for the finite element mesh (Ωh):

H1(Ωh) :=
{
v : Ω → R : v

∣∣
K

∈ H1(K) ∀K ∈ Ωh

}
,

H(div,Ωh) :=
{

w : Ω → R3 : w
∣∣
K

∈ H(div,K) ∀K ∈ Ωh

}
,

(2.3)

where K ∈ Ωh represents an element of the finite element mesh. Use of the broken test spaces [6]
leads to the introduction of additional trace unknowns on the mesh skeleton. The traces spaces are
defined as:

H1/2(Γh) :=
{
û : ∃u ∈ H1(Ω) such that û = γK(u

∣∣
K

) on ∂K ∀K ∈ Ωh

}
,

H−1/2(Γh) :=
{
σ̂n : ∃ σ ∈ H(div,Ω) such that σ̂n = γK

n (σ
∣∣
K

) on ∂K ∀K ∈ Ωh

}
,

(2.4)

where γK and γK
n represent continuous and normal trace operators, respectively [15].

1Hence the “D” in the DPG method.
2We then refer to it as the practical DPG method.

3

Ultraweak formulation. Let (U, Û) be the approximation trial space, V the test space, and V
′

the dual space of V . Then, the ultraweak DPG formulation of the Poisson problem can be stated
as: Given l ∈ V

′ , find u ∈ U and û ∈ Û satisfying:

b(u, v) + b̂(û, v) = l(v) ∀ v ∈ V, (2.5)

where

u = (u,σ) ∈ L2(Ω) × (L2(Ω))3,

û = (û, σ̂n) ∈ H1/2(Γh) ×H−1/2(Γh) : û = u0 on Γu, σ̂n = σ0 on Γσ,

v = (v, τ) ∈ H1(Ωh) × H(div,Ωh),
b(u, v) = (σ,∇v)Ωh

+ (σ, τ)Ωh
+ (u,∇ · τ)Ωh

,

b̂(û, v) = −⟨û, τ · n⟩Γh
− ⟨σ̂n, v⟩Γh

,

l(v) = (f, v)Ωh
.

(2.6)

In 2.6, ⟨·, ·⟩Γh
represents duality pairings defined over mesh skeleton Γh,

⟨û, τ · n⟩Γh
:=

∑
K∈Ωh

⟨û, τ · nK⟩∂K ,

⟨σ̂h, v⟩Γh
:=

∑
K∈Ωh

⟨σ̂h, v⟩∂K ,
(2.7)

and
(·, ·)Ωh

=
∑

K ∈ Ωh

(·, ·)L2(K) . (2.8)

The broken test space is equipped with the adjoint graph norm[17, 7]:

∥v∥2
V := ∥A⋆

hv∥2 + α∥v∥2 (2.9)

where α > 0 is a scaling constant, and A⋆
hv = (∇ · τ ,∇v + τ)Ωh

is the (formal) adjoint operator of
Ahu = (σ − ∇u,−∇ · σ)Ωh

computed element-wise. In this paper, all numerical experiments use
α = 1. Next, we briefly discuss the built-in error estimator. Let Vh(K) ⊂ V (K) be the enriched
finite-dimensional test space approximating the element test space V (K), and (Uh, Ûh) ⊂ (U, Û) the
finite-dimensional approximate trial space. The basis functions for Vh(K), Uh and Ûh are denoted
by φi, ψi and ψ̂i respectively. From 2.6, we construct the following matrices for an element K ∈ Ωh,

GK,lj = (φl, φj)V ,

BK,ij = bK(φi, ψj) ,

B̂k,ij = b̂K(φi, ψ̂j) ,

lK,i = lK(φi),

(2.10)

where GK,lj represents the element Gram matrix corresponding to the test inner product, BK,ij

represents the element stiffness matrix corresponding to the L2 variables, B̂k,ij represents the
element stiffness matrix corresponding to the trace variables, and lK,i is the element load vector.
As usual, bK(·, ·), b̂K(·, ·) and lK(·) denote element K contributions to bilinear forms b(u, v), b̂(û, v),

4

and linear form l(v), respectively. An in-depth exposition of the algebraic structure of the linear
system induced by DPG formulation for a diffusion problem can be found in [9, 29].

The built-in energy error estimate for a mesh element K in the finite element mesh (Ωh) is given by:

∥(u, û) − (uh, ûh)∥2
E,K := ∥RV

−1
(
lK(·) − bK(uh, ·) − b̂K(ûh, ·)

)
∥

2

V (K)
(2.11)

where
RV : V (K) → (V (K))′ (2.12)

is the Riesz operator corresponding to the test inner product. With the element test space V (K)
approximated by a finite-dimensional enriched subspace Vh(K), the element error indicators are
computed as:

ηK := ∥G−1(lK − BKuh − B̂K ûh)∥2
V (K) . (2.13)

3 Determining Optimal hp Refinements
The hp-algorithm described in this section is exactly the algorithm from [8, 13], but specialized
to the L2-energy space. The corresponding algorithms for the H1, H(curl), and H(div) energy
spaces, all based on minimizing the Projection-Based (PB) interpolation error, are significantly more
intricate and consist of several steps reflecting the nature of the particular energy space. For instance,
the algorithms for H1 and H(curl) spaces consist of three stages involving mesh optimization on
(interiors of) edges, faces and, finally, elements. The optimal mesh determined in each step serves as
a starting point for the optimization in the subsequent step.

In the case of the L2-energy space, there are no global conformity requirements; the PB interpolation
reduces to just the L2-projection, and the mesh optimization takes place over elements only. The
implementation of the algorithm is thus much simpler. The second difference between the presented
and the original hp-algorithm lies in the involved elements. In the original algorithm, the optimization
takes place over all elements, whereas here it only does for elements marked for refinement by the
DPG residual. The number of elements entering the mesh optimization is thus much smaller.3 The
fine mesh providing the reference solution for the mesh optimization is also much smaller than the
globally hp-refined mesh used in [8, 13]. Figure 1 illustrates a two-dimensional case of mesh elements
being marked by the DPG residual, followed by their isotropic hp-refinement4 to generate the fine
mesh.

The hp-algorithm consists of three steps: the first and third step are purely local (can be done
trivially in parallel) while the second step requires a global reduction over the elements preselected
for refinement by the DPG residual.

3.1 Step 1: Staging a Competition of Refinements

In the first step of the algorithm, we stage a competition between p- and various anisotropic
h-refinements, by computing the so-called guaranteed error reduction rate. The comparison between
the various candidate refinements is based on the error reduction rate (ehp) defined as:

ehp := ∥u− Poldu∥2 − ∥u− Pnewu∥2

Nnew −Nold
, (3.14)

3Dependent upon the parameter in the Dörfler strategy [18].
4For a three-dimensional hexahedral element, isotropic hp-refinement denotes an isotropic h8-refinement followed

by an isotropic p-refinement of order 1.

5

Coarse Mesh Fine Mesh

Figure 1: Isotropic hp-refinement of the marked elements: the elements marked for refinement are shaded
in red on the coarse mesh.

where u represents the reference solution obtained with the hp-refined mesh generated using the
DPG residual, Pold is the L2-projection onto the original coarse mesh element (space), Pnew is the
L2-projection onto a refined element (space), Nnew and Nold are the dimensions of the new and old
spaces (number of dofs), respectively, and ∥ · ∥ denotes the L2-norm over the considered element K.

The optimal element refinement is determined by staging a competition among various candidate
refinements. For hexahedral elements considered in this paper, there are eight possibilities: no h-
refinement (i.e. p-refinement only), three anisotropic h2-refinements, three anisotropic h4-refinements,
and the isotropic h8-refinement. Figure 2 illustrates all possible h-refinement candidates. Each of the
eight refinements is accompanied with the determination of the optimal distribution of polynomial
degrees. This leads to a catastrophically large number of possible cases for hp-refinement. With
px, py, pz ∈ {1, . . . , 10}, there are “only” 103 scenarios for the just p-refined element, but a staggering
total of 1024 cases for the h8-refined element. Clearly, a simple search through all possible cases is
not feasible. Instead we rely on the classical p-refinement strategy, see e.g. [12], based on increasing
the polynomial order in the subelement with the maximum error. This reduces the discrete search
to the so-called maximum error reduction path through the vast discrete space of potentially possible
refinements.

Maximum error reduction path for a p-refined element. We begin the discussion with the
simplest case: p-refinement only. Assuming that the polynomial order can only increase (by one
order), there are only a total of 23 − 1 = 7 possible scenarios. The direct search is then possible
but can be replaced with a slightly faster dynamic search, as illustrated in Figure 3. To choose the
optimal p-refinement, we traverse from (px, py, pz) to (px + 1, py + 1, pz + 1) by increasing the order
in directions that maximize ehp. For a hexahedral element, the path of traversal has two stages. The
first stage has three branches corresponding to px, py, and pz. The second stage has two branches
corresponding to the remaining directions, with the final configuration being (px + 1, py + 1, pz + 1).
In Figure 3, the arrows in red represent the branches corresponding to the highest values of ehp at
each stage, and the polynomial order marked in red indicates the polynomial order increased after
each stage.

Following the path, we select the p-refinement that delivers the largest error reduction rate. In
the case of an affine element, the element Jacobian (jac) is constant, and the L2-Piola transform
(pullback map) reduces to a scaling with the Jacobian:

ϕj(x) = 1
jac ϕ̂j(ξ), jac =

∣∣∣∣∣∂xi

∂ξj

∣∣∣∣∣ , (3.15)

6

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Various possible h-refinements for a hexahedral element, depicted in (a): (b–d) anisotropic
h2-refinements; (e–g) anisotropic h4-refinements; and (h) isotropic h8-refinement.

pypx

pz

pypx+1

pz

py+1px

pz

pypx

pz+1

pypx+1

pz+1

py+1px

pz+1

py+1px+1

pz+1

Figure 3: Maximum error reduction path for the p-refined element: traversing from (px, py, pz) to
(px + 1, py + 1, pz + 1) for a hexahedral element.

where ϕj is an element L2 shape function corresponding to a master element shape function ϕ̂j .
Consequently, the L2 mass matrix,

Mij :=
∫

K
ϕiϕj dx = 1

jac

∫
K̂
ϕ̂iϕ̂j dξ , (3.16)

is diagonal, and the evaluation of the L2 projection of a function u onto a subspace spanned by
functions ϕ1, . . . , ϕN , reduces to the evaluation of the load vector:

PNu =
N∑

j=1
ujϕj , uj = 1

Mjj

∫
K
uϕj dx . (3.17)

7

Raising the polynomial order in one direction amounts to adding extra orthogonal shape functions
ϕN+l with l = 1,, n. Consequently, evaluation of the error reduction rate reduces to:

∥u− PNu∥2 − ∥u− PN+1u∥2

n
= ∥PN+1u∥2 − ∥PNu∥2

n
(3.18)

= 1
n

n∑
l=1

|uN+l|2MN+l,N+l = 1
n

n∑
l=1

(∫
K uϕN+l dx

MN+l,N+l

)2

MN+l,N+l

= 1
n

n∑
l=1

M−1
N+l,N+l

(∫
K
uϕN+l dx

)2
.

In the case of a general curvilinear element, the L2 mass matrix is not diagonal, and we use the
telescopic solver based on the Cholesky decomposition described in [13, p. 140].

Maximum error reduction path for an h-refined element. Contrary to the pure p-refinement,
we always start with a trilinear element where px = py = pz = 1. The reference solution u is
projected onto the subelement mesh and, based on the distribution of the error, subelements are
selected for refinement using a greedy strategy with a 70% factor. Once the subelements have
been identified for p-refinement, the routine described above is employed to determine the optimal
p-refinement for each subelement.

Figure 4 shows the simple case of a 1D element K, starting with polynomial order pK = 4. The
subelements of the h-refined element K are denoted K1 and K2, and their respective polynomial
orders pK1 and pK2 . The maximum error reduction path for this case (illustrated in Figure 4c) leads
to the winning refinement (pK1 , pK2) = (4, 1) with the approximate solution shown in Figure 4b.

1

2

3

4

5

6

7

8

9

p

(a) Purely p-refined element:
pK = 5

ehp = 0.01952

1
2
3
4
5
6
7
8
9

p

(b) Winning h-refined element:
(pK1 , pK2) = (4, 1)

ehp = 0.23196

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Winning refinement

In
ve

st
m

en
t a

fte
r w

in
ni

ng

re
fin

em
en

t
(c) Refinement path of the

h-refined element

Figure 4: Staging a competition between the p-refined and h-refined element. The maximum error
reduction path for the h-refined element traverses from (pK1 , pK2) = (1, 1) to the winning refinement

(pK1 , pK2) = (4, 1).

The optimal refinement. The selection of the optimal refinement is carried out by comparing
the best error reduction rates delivered by the eight differently h-refined meshes. The highest error
reduction rate, delivered by the optimal refinement, is called the guaranteed error reduction rate
and denoted by e∗

hp.

8

3.2 Step 2: Determining Which Elements to Refine

We loop over all considered coarse mesh elements to determine the element with the best guaranteed
error reduction rate e∗

hp,max. In principle, one could then refine only this one element. However, to
accelerate the refinements (i.e. reduce the number of refinement steps), a greedy strategy is employed
selecting all elements that deliver a rate greater than or equal to 25% of the best guaranteed error
reduction rate. Note that this strategy implies that there may be elements initially marked for
refinement by the DPG residual which ultimately remain unrefined.

3.3 Step 3: Determining the Final Refinements

For each element selected for refinement in Step 2, we could simply execute the corresponding
optimal refinement determined in Step 1; and we do this indeed for the purely p-refined elements.
However, when performing h-refinements we typically choose to invest additional dofs by considering
the already-performed p-refinements that followed the optimal refinement while investigating error
reduction rates in Step 1.

In particular, in Step 1 we recorded the error reduction rates for all subelement meshes following
the maximum error reduction path. On this path, we select the maximum investment (in terms of
new dofs) that still delivers 25% of the best guaranteed error reduction rate (meaning it would still
satisfy the Step 2 criterion). The rational for doing so is to reduce the overall number of outer-loop
iterations (number of refinement steps) by maximizing the investment in each step as long as it
pays off sufficiently (delivering a sufficiently high error reduction rate, as determined by Step 2).

For example, in the 1D case illustrated in Figure 4, the refinement shown in Figure 4b won the
competition with the p-refinement (Figure 4a) but, dependent upon the threshold value used in the
greedy strategy, we may choose to invest additional dofs in one of the subelements.

Next, we consolidate Steps 1–3 and present the mesh optimization algorithm. In Algorithm 1, tol
denotes the user-provided tolerance value for the DPG residual.

3.4 Mesh Closure

The hp algorithm is implemented in hp3D, a general-purpose finite element code supporting
hybrid meshes consisting of elements of all shapes (hexas, tets, prisms, pyramids), conforming
discretizations of the exact-sequence spaces (H1-, H(curl)-, H(div)-, and L2-conforming elements),
solution of coupled multiphysics problems, and anisotropic hp-refinements [22, 23]. hp3D supports
MPI/OpenMP parallelism [21] and is available under BSD-3 license.5 In the code, any h-refinement
is executed in two steps. Given a list of elements to refine (along with the requested, possibly
anisotropic, h-refinement flags), we proceed as follows.

Closure step 1 (local): Refine the elements from the list in the provided order, enforcing two
rules:

• Compatibility with existing face refinements: upgrade the requested element
refinement flag to accommodate existing face refinements.

• One-irregularity rule for faces: employ the standard shelf or queue algorithm ([9,
p. 71]) to ensure that no face is refined unless the face6 is unconstrained.

5https://github.com/Oden-EAG/hp3d
6More precisely, the mid-face node.

9

https://github.com/Oden-EAG/hp3d

Algorithm 1 Mesh Optimization Algorithm
1: Start with an initial trial mesh
2: while ηΩh

> tol do
3: Solve the problem on the current mesh.
4: Compute the DPG residual for the current mesh: ηΩh

=
(∑

K∈Ωh
ηK

)1/2
.

5: Use the element residuals (ηk) to mark elements for refinements (Dörfler strategy).
6: Isotropically hp-refine marked elements to generate the fine mesh.
7: Compute the reference solution u using the fine mesh.
8: Step 1: For each refined element K:
9: Determine the best possible p-refinement using the maximum error reduction path.

10: Determine the best possible h-refinement using the maximum error reduction path.
11: Use error reduction rates to decide between p- and h-refinement.
12: Determine the element guaranteed error reduction rate (e∗

hp,K).
13: Step 2: Determine the best guaranteed error reduction rate (e∗

hp,max).
14: Unrefine the mesh.
15: Step 3: For each element K marked for refinement:
16: if e∗

hp,K ≥ 0.25 e∗
hp,max then

17: Perform the optimal hp-refinement.
18: end if
19: end while

If one of the element faces is constrained, the element is placed on the shelf, and a necessary
refinement of the neighbor across the face is executed, to eliminate the constraint. If the
one-irregularity rule for faces prohibits the refinement, the corresponding neighbor is placed
on the shelf and so on. Once the refinement of the processed element is possible, it is executed
and the process resumes with the last element from the shelf. The algorithm proceeds until
the shelf is empty. All mesh manipulations (refinements) are supported for meshes that satisfy
the one-irregularity rule for faces (not necessary for edges and vertices).

Closure step 2 (global): Loop through all elements and perform additional necessary refinements
to eliminate edges and vertices with multiple constraints.

We refer to [22] for a more formal exposition of the algorithms. In the end, in both steps, a
number of additional, unwanted refinements may be executed. These refinements can be isotropic
or anisotropic, reflecting minimal requirements to eliminate the nodes with multiple constraints.
In the ‘global’ hp-refinement driven by the DPG residual, all unwanted refinements are chosen to
be isotropic. This is motivated by the fact that an unwillingly refined element (in Step 1) may,
in fact, be on the DPG list of wanted refinements. However, once the optimal hp-refinements are
determined, all unwanted refinements are executed in a minimal, anisotropic way.

All unwillingly h-refined elements retain their respective polynomial order. In principle, one could
attempt to find the corresponding optimal distribution of polynomial orders, but this has been not
done in our current implementation. Hence, the presented meshes may be slightly overrefined.

10

4 Numerical Results

4.1 A Boundary Layer Problem

Sharp boundary layers are among the most commonly encountered flow features in computational
fluid dynamics. Our first numerical experiment demonstrates the proposed algorithm’s efficacy in
resolving such boundary layers. In this test case, we solve a Poisson problem with a manufactured
solution containing boundary layers. The manufactured solution is a three-dimensional extension of
the solution of the Egger-Schöberl problem [19]. In particular, we solve

−∇2u = f(x, y, z) in Ω := (0, 1)3,

u = 0 on Γu,

∇u · n = g(x, y, z) on Γσ,

(4.19)

where

Γu = ([0, 1) × [0, 1) × {0}) ∪ ([0, 1) × {0} × [0, 1)) ∪ ({0} × [0, 1) × [0, 1)) ,
Γσ = ([0, 1] × [0, 1] × {1}) ∪ ([0, 1] × {1} × [0, 1]) ∪ ({1} × [0, 1] × [0, 1]) .

(4.20)

In (4.19), n is the outward normal, and f and g are generated using the exact solution. The exact
solution is given by

u(x, y, z) =
(
x+ ex/ϵ − 1

1 − e1/ϵ

)(
y + ey/ϵ − 1

1 − e1/ϵ

)(
z + ez/ϵ − 1

1 − e1/ϵ

)
. (4.21)

The solution exhibits a boundary layer near x ≈ 1, y ≈ 1 and z ≈ 1. The strength of the boundary
layer is inversely proportional to ϵ. In this numerical experiment, ϵ = 0.005. The hp-adaptation is
initialized with a mesh comprising only eight elements with a constant polynomial order of (2, 2, 2).7

(a) Cross-section of the mesh at x = 0.95 (b) Contour plot of the solution at x = 0.95

Figure 5: Boundary layer problem: (a) cross-section of the mesh showing anisotropic elements required to
resolve the boundary layers; and (b) contour plot illustrating the boundary layers on the yz-plane. The

boundary layers are along right and top faces of the cross-section.

Figures 5a and 5b display the cross-section of an adapted mesh and the corresponding solution
contour, respectively. Figure 6 depicts the polynomial distribution around the boundary layers on

7In hp3D, we employ exact-sequence spaces [16]. Hence, an order of (px, py, pz) denotes L2 shape functions of
order (px − 1, py − 1, pz − 1).

11

an anisotropically adapted hp-mesh. Figure 7 presents the convergence results, comparing isotropic
h-adaptation and the proposed hp-refinement strategy. The Dörfler parameter for both isotropic
and hp-refinement is 0.75. In Figure 7, the depicted error is the combined relative error in all L2

variables.

(a) Polynomial order px (b) Polynomial order py (c) Polynomial order pz

Figure 6: Boundary layer problem: an adapted mesh with 855 532 dofs; coloring indicates the polynomial
distributions px, py, pz in x-, y-, z-direction, respectively. The algorithm prescribes higher-order polynomials

anisotropically corresponding to each boundary layer along the x-, y-, and z-axis.

Figure 6 clearly illustrates the strong anisotropy and grading in the element size and the polynomial
distribution. The anisotropy and the grading in element size are paramount for resolving strong
boundary layers efficiently. The algorithm also prescribes an anisotropic polynomial distribution in
the boundary layers instead of an isotropic one. This directional preference of prescribing polynomial
orders showcases a significant advantage of the proposed hp-refinement strategy: the ability to
complement an anisotropic h-refinement with an anisotropic p-refinement. This approach makes the
refinement strategy highly efficient in terms of allocating dofs when the solution exhibits strong
anisotropic features. The algorithm does not waste any dofs in directions where the solution variables
do not exhibit significant variations.

From Figure 7, it is evident that anisotropic hp-refinements outperform isotropic h-refinements by
orders of magnitude. The convergence plots show the error and the residual against 3√ndof (where
ndof represents the number of degrees of freedom), verifying exponential convergence. In Figure 7,
a reduction in the convergence rate for the hp-refinement can be observed. The slowdown in
convergence occurs due to the limiting of the highest polynomial order in the numerical experiments
to p = 6. The adaptation cycles are initially dominated by h-refinements. Once the boundary layers
are resolved, the algorithm starts preferring both p-refinements along with h-refinements. This
behavior is expected, since, increasing the polynomial order on coarse meshes while approximating
solutions with high gradients can induce spurious oscillations.

4.2 Fichera Cube Problem

To demonstrate the efficacy of the proposed refinement strategy in the presence of multiple singular-
ities, we solve the well-known Fichera cube problem and perform hp-adaptations using the proposed
refinement strategy. The variant of the Fichera cube problem being solved here is given by:

∇2u = 0 in Ω := (−1, 1)3 \ [0, 1]3,
u = 0 on Γu,

∇u · n = g(x, y, z) on Γσ.

(4.22)

12

50 100 150 20010−4

10−3

10−2

10−1

100

101

102

3
√

ndof

R
el

at
iv

e
L

2
er

ro
r

p = 2
p = 3
p = 4
hp

50 100 150 20010−4

10−3

10−2

10−1

100

101

102

3
√

ndof

R
es

id
ua

l

p = 2
p = 3
p = 4
hp

Figure 7: Boundary layer problem: convergence of relative L2 error and DPG residual. Even though there
is a marginal decrease in the rate of convergence for the hp-refinements, both the error and the residual are
2–3 orders of magnitude lower compared to the h-refinements for approximately the same number of dofs.

The domain is created by subdividing a large cube (−1, 1)3 into eight smaller cubes and then
removing one of the cubes. The Dirichlet data u = 0 is imposed on the three square faces aligned
with planes of coordinate axes, i.e.

Γu = ([0, 1] × [0, 1] × {0}) ∪ ([0, 1] × {0} × [0, 1]) ∪ ({0} × [0, 1] × [0, 1]) . (4.23)

The volumetric load for the problem is zero. The problem is driven by the Neumann boundary
condition on Γσ composed of the remaining faces of the cube. The data g correspond to the sum of
two-dimensional exact solutions of the L-shaped domain problem on xy-, yz-, and xz-planes. The
exact solution of the L-shaped domain problem is given by:

uη,ξ = r
2
3 cos(θ), r =

√
η2 + ξ2, θ = tan−1

(
ξ

η

)
, (4.24)

where (η, ξ) denote (x, y), (y, z), or (x, z) axes, respectively. These boundary conditions generate a
solution with features analogous to an L-shaped domain problem but comprising multiple edge and
vertex singularities. While the exact solution for the problem is unknown, the convergence of the
DPG residual is shown in Figure 12.

Figures 8 and 9 depict the solution contour and the corresponding adapted mesh, respectively.
Figures 10 and 11 illustrate the polynomial distribution associated with the adapted mesh. Figure 9
shows that the refinement algorithm performs highly anisotropic h-refinements along the edge
singularities, generating graded meshes. The anisotropic refinements propagate through the volume
to the opposing boundary faces on Γσ. The propagation of refinements happens in conjunction to the
singularities arising from the faces with Neumann boundary conditions. Figures 10 and 11 clearly
indicate that the algorithm chooses lowest order polynomials around the singularities. Moving
away from the singularities, the algorithm prescribes higher order polynomials underscoring the
smoothness of the solution variables. In Figure 12, one can observe the exponential convergence
of the residual on performing hp-refinements, whereas isotropic h-refinements suffer from a loss of
convergence due to the lack of required grading in size and polynomial distribution.

13

(a) Isometric view along (−1, −1, −1) (b) Isometric view along (1, 1, 1)

Figure 8: Fichera cube problem: solution contour. The problem is driven by the Neumann boundary
conditions on the L-shaped faces in (a) and the three visible square faces in (b). The faces aligned along the

coordinate planes in (a) have the Dirichlet boundary conditions.

(a) Isometric view along (−1, −1, −1) (b) Isometric view along (1, 1, 1)

Figure 9: Fichera cube problem: an anisotropically adapted hp-mesh with 1.3M dofs.

(a) Polynomial order px (b) Polynomial order py (c) Polynomial order pz

Figure 10: Fichera cube problem: polynomial distribution on the adapted hp-mesh. The algorithm
prescribes low-order polynomials anisotropically around each edge singularity along x-, y- and z-axis.

Figure 11 presents a magnified view of the polynomial distribution and anisotropic mesh elements around the
singularities.

14

(a) Adapted mesh (b) Polynomial order px

(c) Polynomial order py (d) Polynomial order pz

Figure 11: Fichera cube problem: magnified view of the mesh and the polynomial distribution near the
edge and vertex singularities.

20 40 60 80 100 120 140 160 18010−2

10−1

100

3
√

ndof

R
es

id
ua

l

p = 2
p = 3
p = 4
hp

Figure 12: Fichera cube problem: convergence of the DPG residual.

4.3 Eriksson–Johnson Problem

We consider a convection-dominated diffusion problem motivated by the Eriksson–Johnson model
problem [20]. Here, we extend the exact solution of the two-dimensional problem by multiplying it

15

with a sinusoidal term along z. In particular, we solve

∂u

∂x
− ϵ∇2u = f(x, y, z) in Ω := (0, 1)3,

u = 0 on Γua ,

u = sin(πy) sin(πz) on Γub
,

(4.25)

where

Γua = ∂Ω \ {0} × [0, 1] × [0, 1] and Γub
= {0} × [0, 1] × [0, 1]. (4.26)

The source f and the boundary conditions are computed using the exact solution given by

u(x, y, z) = es1(x−1) − es2(x−1)

es1 − es2
sin(πy) sin(πz), (4.27)

where
s1 = 1 +

√
1 + 4π2ϵ2

2ϵ and s2 = 1 −
√

1 + 4π2ϵ2

2ϵ . (4.28)

In this numerical experiments, ϵ = 0.01. Figure 13 depicts the cross-section of an adapted mesh and
the corresponding solution contour at z = 0.5. The solution exhibits a boundary layer along the
x-axis with sinusoidal variations along y and z. The variation in the solution is also reflected in the
hp-refinements executed by the algorithm. In order to capture the boundary layer, the algorithm
generates anisotropic elements parallel to the yz-plane and assigns the highest polynomial order
along the x-axis inside the boundary layer. Since the boundary layer is weighted with sinusoidal
variations in y and z, the majority of the h-refined elements in the boundary layer are positioned
near y = 0.5 and z = 0.5. Figure 14 illustrates the adapted mesh with the polynomial distribution
along the x-axis. Finally, Figure 15 presents the convergence plots for the relative L2 error and the
residual, demonstrating the efficacy of the proposed hp-refinement strategy for this problem.

(a) Cross-section of an adapted mesh at z = 0.5 (b) Solution contour at z = 0.5

Figure 13: Eriksson–Johnson problem: an adapted mesh and solution contour.

16

(a) Isometric view of the mesh. (b) Polynomial order along x direction: px

Figure 14: Eriksson–Johnson problem: an adapted mesh with 209 737 dofs; coloring indicates the
corresponding polynomial distribution along the x-axis.

50 100 150 20010−4

10−3

10−2

10−1

100

3
√

ndof

R
el

at
iv

e
L

2
er

ro
r

p = 2
p = 3
p = 4
hp

50 100 150 20010−4

10−3

10−2

10−1

100

3
√

ndof

R
es

id
ua

l

p = 2
p = 3
p = 4
hp

Figure 15: Eriksson–Johnson problem: convergence of relative L2 error and DPG residual.

5 Conclusion
The anisotropic hp-refinement strategy presented in this article utilizes the built-in DPG error-
estimator and L2 projection-based error estimates for the ultraweak variational formulation. The
efficacy of the proposed algorithm is demonstrated through numerical experiments containing
boundary layers and singularities. The algorithm is able to generate a sequence of meshes that
provide exponential convergence. Since we have capped the maximum polynomial order in our
numerical experiments to p = 6 for practical reasons, we observe a slight loss of optimal convergence
rate. Nonetheless, the accuracy of the solutions on the anisotropically refined hp-meshes remains
orders of magnitude better than that on isotropically refined meshes for nearly same number of
dof. The proposed hp-refinement strategy complements anisotropic h-refinements with anisotropic
p-refinements, which allows the algorithm to avoid any superfluous investment (in terms of dofs).

Future work. To accelerate the computation of the fine-grid solution and apply the hp-refinement
strategy to large-scale multiphysics problems, we intend to integrate the proposed hp-refinement
strategy with the scalable DPG-MG solver [5]. Additionally, we aim to extend the proposed

17

refinement strategy to other element types, such as tets, prisms, and pyramids, in order to leverage
hp3D’s capability to handle hybrid meshes.

References
[1] I. Babuška and W. Gui. “The h, p and hp-versions of the finite element method in 1 Dimension.

Part III. The adaptive hp-version”. In: Numerische Mathematik 49 (1986), pp. 659–684.
[2] I. Babuška and B.Q. Guo. “The h, p and hp-version of the finite element method; basis

theory and applications”. In: Advances in Engineering Software 15.3 (1992), pp. 159–174. issn:
0965-9978.

[3] I. Babuška, T. Strouboulis, and K. Copps. “hp Optimization of finite element approximations:
Analysis of the optimal mesh sequences in one dimension”. In: Computer Methods in Applied
Mechanics and Engineering 150.1 (1997), pp. 89–108.

[4] Ivo Babuška. “Error-bounds for finite element method”. In: Numerische Mathematik 16 (1971),
pp. 322–333.

[5] Jacob Badger et al. “Scalable DPG Multigrid Solver for Helmholtz Problems: A Study on
Convergence”. In: Computers & Mathematics with Applications 148 (2023), pp. 81–92.

[6] C. Carstensen, L. Demkowicz, and J. Gopalakrishnan. “Breaking spaces and forms for the
DPG method and applications including Maxwell equations”. In: Computers & Mathematics
with Applications 72.3 (2016), pp. 494–522.

[7] Jesse Chan et al. “A robust DPG method for convection-dominated diffusion problems II:
Adjoint boundary conditions and mesh-dependent test norms”. In: Computers & Mathematics
with Applications 67.4 (2014), pp. 771–795.

[8] L Demkowicz. Computing with hp-Adaptive Finite Elements. Vol. I: One and Two Dimensional
Elliptic and Maxwell Problems. Chapman and Hall/CRC, 2006.

[9] L. Demkowicz and J. Gopalakrishnan. “A class of discontinuous Petrov–Galerkin methods. II.
Optimal test functions”. In: Numerical Methods for Partial Differential Equations 27.1 (2011),
pp. 70–105.

[10] L. Demkowicz and J. Gopalakrishnan. “A class of discontinuous Petrov–Galerkin methods.
Part I: The transport equation”. In: Computer Methods in Applied Mechanics and Engineering
199.23 (2010), pp. 1558–1572.

[11] L. Demkowicz, J. Gopalakrishnan, and A.H. Niemi. “A class of discontinuous Petrov–Galerkin
methods. Part III: Adaptivity”. In: Applied Numerical Mathematics 62.4 (2012), pp. 396–427.

[12] L. Demkowicz, J. T. Oden, and T. Strouboulis. “Adaptive Finite Elements for Flow Problems
with Moving Boundaries. Part 1: Variational Principles and a Posteriori Estimates”. In:
Computer Methods in Applied Mechanics and Engineering 46 (1984), pp. 217–251.

[13] L Demkowicz et al. Computing with hp-Adaptive Finite Elements. Vol. II. Frontiers: Three
Dimensional Elliptic and Maxwell Problems with Applications. Chapman and Hall/CRC, 2007.

[14] L. Demkowicz et al. “Toward a universal hp adaptive finite element strategy. Part 1: con-
strained approximation and data structure”. In: Computer Methods in Applied Mechanics and
Engineering 77.1 (1989), pp. 79–112.

[15] Leszek Demkowicz. Energy Spaces. Lecture notes; The University of Texas at Austin. 2018.

18

[16] Leszek Demkowicz. Mathematical theory of finite elements. Lecture notes; The University of
Texas at Austin. 2023.

[17] Leszek Demkowicz and Norbert Heuer. “Robust DPG Method for Convection-Dominated
Diffusion Problems”. In: SIAM Journal on Numerical Analysis 51.5 (2013), pp. 2514–2537.

[18] Willy Dörfler. “A Convergent Adaptive Algorithm for Poisson’s Equation”. In: SIAM Journal
on Numerical Analysis 33.3 (1996), pp. 1106–1124. (Visited on 08/01/2023).

[19] Herbert Egger and Joachim Schöberl. “A hybrid mixed discontinuous Galerkin finite element
method for convection–diffusion problems”. In: IMA Journal of Numerical Analysis 30.4 (July
2009), pp. 1206–1234. issn: 0272-4979.

[20] Kenneth Eriksson and Claes Johnson. “Adaptive Streamline Diffusion Finite Element Methods
for Stationary Convection-Diffusion Problems”. In: Mathematics of Computation 60.201 (1993),
pp. 167–188. (Visited on 07/17/2023).

[21] Stefan Henneking. “A scalable hp-adaptive finite element software with applications in fiber
optics”. PhD thesis. The University of Texas at Austin, 2021.

[22] Stefan Henneking and Leszek Demkowicz. Computing with hp Finite Elements. III. Parallel
hp3D Code. In preparation, 2023.

[23] Stefan Henneking and Leszek Demkowicz. “hp3D User Manual”. In: arXiv:2207.12211 (2022).
[24] J.T. Oden et al. “Toward a universal hp adaptive finite element strategy. Part 2: a posteriori

error estimation”. In: Computer Methods in Applied Mechanics and Engineering 77.1 (1989),
pp. 113–180.

[25] W. Rachowicz, J.T. Oden, and L. Demkowicz. “Toward a universal hp adaptive finite element
strategy. Part 3: design of hp meshes”. In: Computer Methods in Applied Mechanics and
Engineering 77.1 (1989), pp. 181–212.

[26] W. Rachowicz, D. Pardo, and L. Demkowicz. “Fully automatic hp-adaptivity in three dimen-
sions”. In: Computer Methods in Applied Mechanics and Engineering 195.37 (2006), pp. 4816–
4842.

[27] Christoph Schwab. p- and hp-finite element methods: theory and applications in solid and
fluid mechanics. Clarendon press, 1998.

[28] Dan Stanzione et al. “Frontera: The Evolution of Leadership Computing at the National Science
Foundation”. In: Practice and Experience in Advanced Research Computing. Association for
Computing Machinery, 2020, pp. 106–111.

[29] Ali Vaziri Astaneh et al. “High-order polygonal discontinuous Petrov–Galerkin (PolyDPG)
methods using ultraweak formulations”. In: Computer Methods in Applied Mechanics and
Engineering 332 (2018), pp. 686–711.

[30] J. Zitelli et al. “A class of discontinuous Petrov–Galerkin methods. Part IV: the optimal test
norm and time-harmonic wave propagation in 1D”. In: Journal of Computational Physics
230.7 (2011), pp. 2406–2432.

19

	Introduction
	DPG Methodology
	Determining Optimal hp Refinements
	Step 1: Staging a Competition of Refinements
	Step 2: Determining Which Elements to Refine
	Step 3: Determining the Final Refinements
	Mesh Closure

	Numerical Results
	A Boundary Layer Problem
	Fichera Cube Problem
	Eriksson–Johnson Problem

	Conclusion

