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NEW HDG METHODS FOR THE STOKES AND OSEEN
EQUATIONS*

STEPHEN SHANNON' AND TAN BUI-THANHT'#

Abstract. In this work, we derive new hybridized discontinuous Galerkin methods for the Stokes
and Oseen equations. The schemes are based on the first order schemes defined using the velocity
gradient as an auxiliary variable. For the Stokes equations, through an upwind HDG methodology,
we define four HDG schemes, differing only in the definition of the numerical flux. One of the
schemes uses the velocity as the trace unknown, which is related to existing methods for the velocity-
pressure-gradient form of the Stokes equations. It is known that for these schemes, modifications
are required to so that the local solver uniquely defines the pressure. One modification requires
that the global trace system be solved iteratively, while the other modification introduces additional
elementwise constant global unknowns and renders the trace system a saddle point system. Of
our three new schemes, one scheme uses the tangential velocity and an additional scalar as trace
unknowns. This scheme has the unique advantage that the HDG local solver is well-posed without
modification. For the Oseen equations, we also define four upwind HDG schemes. Again, one is
related to existing schemes, while the other three are new, one with the advantage of having a well-
posed local solver without modification. For the advantageous schemes, we prove well-posedness,
demonstrate numerical convergence, and compare the results to those of the existing schemes.

Key words. zzzFILL, zzzTHIS, zzzIN

AMS subject classifications. zzzFILL, zzzTHIS, zzzIN

1. Introduction. In this paper we propose three new hybridized discontinuous
Galerkin (HDG) formulations for the Stokes equations and three new HDG formula-
tions for the Oseen equations. The hybridization technique and post-processing have
been proposed to reduce computational costs of saddle-point problems and to improve
the accuracy of numerical solutions [1]. HDG methods were developed by Cockburn,
coauthors, and others to mitigate the computational costs of classical discontinuous
Galerkin (DG) methods. They have been proposed for various types of PDEs in-
cluding, but not limited to, Poisson-type equations [7, 9, 15, 10], the Stokes equation
[6, 14], the Oseen equations [5], and the incompressible Navier-Stokes equations [16].

In HDG discretizations, the coupled unknowns are single-valued traces introduced
on the mesh skeleton, i.e., the faces, and for high order implicit systems the resulting
matrix is substantially smaller and sparser compared to standard DG approaches.
Once they are solved for, the volume DG unknowns can be recovered in an element-
by-element fashion, completely independent of one another. Therefore HDG methods
have an intrinsic structure for parallel computing which is essential for large scale
applications. Nevertheless, devising an HDG method for coupled PDE systems is
challenging because construction of a consistent and robust HDG flux is nontrivial. We
adopt the upwind HDG framework proposed in [2, 4, 3] since it provides a systematic
construction of HDG methods for a large class of PDEs.

In this section, we outline the basic concepts of HDG in the context of a general
class of PDEs and review the upwind HDG framework [2]. The reader can refer
to Appendix A for the common notation used throughout this work. Consider the
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2 S. SHANNON AND T. BUI-THANH

abstract first order system of PDEs

8Fl

(1.1) V-F(u)—l—Cu:—— Z +Cu=f inQ,

where the vector F; = Alu is the Ith component of the flux, w € R™ is the unknown
solution, and f is a forcing term. For simplicity, the matrices A! are assumed to be
continuous across {2.

Formally, multiplying (1.1) by an elementwise continuous test function, integrat-
ing over every element K of a finite element mesh 7, and integrating by parts, we
have

(1.2) = (F(u), Vo) + (Cu, v) e + (Flu) -1, 0) 55 = (F,0)

The boundary term F'(u) - n can be written as F(u) - n = Au, where

d
(1.3) A = ZAlnl.
=1

The treatment of this boundary term in the numerical scheme is what differentiates
HDG and traditional DG. Working now with discrete (polynomial) function spaces,
replacing the boundary term by a single-valued flux that depends on the solution wuy
on each side of the interface, F; = F7 (u; ,u;) gives a steady-state DG scheme

(1.4) = (F(un), Vo) i + (Cun, v) g + (Fj(uy , up) - m,v) 0 = ()

For steady-state problems and time-dependent problems with implicit time discretiza-
tion, the DG scheme (1.4) leads to a system where all the unknowns are globally cou-
pled. Instead, to construct an HDG scheme, we introduce the trace quantity uy, and
replace the flux on the boundary in (1.2) by a one sided HDG flux Fj, = Fh(uh ,Up),
which gives

(1.5) — (F(un), Vo) + (Cup, v) ¢ + <1A7‘h (up,up) - n, v>aK =(f,v)x

To close the system, we enforce that the normal flux is (weakly) continuous across
element interfaces,

(1.6) <ﬁh (un, @) - =0

)
AT\

for test functions ¥ that are continuous on each skeleton face (but are discontinuous
at skeleton face interfaces). The HDG scheme comprises the local solver (1.5), the
transmission or conservation conditions (1.6), and boundary conditions, which are
prescribed through the trace unknowns on the domain boundary. The main point of
the upwind HDG framework [2] is the definition of the HDG flux. The Godunov flux
is traditionally written as

(1.7) F* .~ = L [F(u) + Fu®)] -n~ + % Al (u™ —ut),

but can also be written in terms of the upwind state u* as

(1.8) F* - n=F(u) n+|A|(u—u").
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NEW HDG METHODS FOR THE STOKES AND OSEEN EQUATIONS 3

This one-sided expression of the Godunov flux leads naturally to the definition of the
HDG flux by treating the upwind state u* as an unknown u,

(1.9) F, -n=F(uy) -n+|A|(u, — ),

where we have assumed that A admits an eigendecomposition RDR™'. Here D is
a diagonal matrix of eigenvalues and |A| := R|D|R™! where |D| is D with each
entry replaced with its absolute value. Thus, the upwind HDG framework provides a
unified methodology by which to derive parameter-free HDG schemes by hybridizing
the Godunov flux. We refer the reader to [2] for more details. It may appear that
we have m trace variables that must be solved for, but we can reduce the number of
trace unknowns when we consider each PDE specifically, as will be demonstrated in
sections 2 and 3.

For linear systems, the HDG scheme (1.5) and (1.6) gives rise to the following
matrix equations, where U represents the vector degrees of freedom of u;, and U
represents the vector degrees of freedom of uy,

(1.10) {é g]*{%}:{g;}'

Here, the subscripts [ and g stand for local and global, respectively. Nonzero terms
in Fy may result, for example, depending on the boundary conditions and how they
are enforced.

The power of HDG comes from the following.

e The HDG flux is one-sided, i.e., for a given element, the flux depends only
on the solution in that element and the neighboring skeleton faces. Together
with the fact that the discontinuous basis functions are local to one element,
this implies that A is block diagonal.

e If the local solver (4, f) — wup given by (1.5) is well-posed, then A is invert-
ible.

A consequence of these two points is that we can easily eliminate U from (1.10) by a
static condensation procedure, and write

(1.11) U=A"" [Fl —IBI[AJ}.
The global system (1.10) then reduces to
(1.12) <]D)7C[A]_1IB%)I[AJ:]F9f(C[A}_lFl.
—_———
|
F

K

In practice, K and F are formed by a local assembly procedure, U is solved for from
the reduced global system (1.12), and then U is recovered in an element by element
fashion from (1.11).

2. Stokes Equations. In this section, we construct HDG methods for the Stokes
equations based on the upwind HDG framework proposed in [2]. The HDG methods
are based on the first order Stokes system defined through an auxiliary variable based
on the velocity gradient. Through the use of this framework, we derive four different
HDG schemes. One of the schemes is related to or is precisely the one defined in
[14, 2]. The other schemes are new in this work. We prove well-posedness of two
schemes that seem to be particularly useful, and present numerical results for these
two schemes, showing that they give practically identical results.

This manuscript is for review purposes only.



130
131
132

133

136
137
138
139
140
141
142
143

144
145

146
147
148
149
150
151

Ut
[N

—

(S} SN, G B |
~

oo

Ju—

161

162

6

165

166

4 S. SHANNON AND T. BUI-THANH

2.1. Construction of Upwind HDG Schemes. For notation used in this sec-
tion and throughout this work, see Appendix A. The Stokes equations in dimensionless
form read

1
2.1 ——A =
(2.1a) Relu+Vp=f,
(2.1b) V-u=0,

where Re := 2%l g the Reynolds number, p is the fluid density, ug is a characteristic
speed, [y is a characteristic length scale, and p is the dynamic viscosity of the fluid.
All parameters are assumed to be constant. We consider the boundary conditions

(2.2a) u=up on Ip,
b
Re

where 0Qp N OQN = 0 and O0p U 0Oy = ON. In the case that 90x = 0, the

compatibility condition on the Dirichlet boundary data | wp -n = 0 should be
o0
satisfied, and we have to impose an additional constraint on the pressure. We choose

this constraint to be the zero mean pressure f p = 0. For simplicity, we consider the

Q
case where 0Qp # 0.

Toward applying the upwind HDG framework outlined in [2], we first put (2.1)
into first order form through the definition of an auxiliary variable. We have multiple
choices as to how to define the auxiliary variable, leading to different HDG formula-
tions. In this work, we define the auxiliary variable L through the velocity gradient,
leading to a velocity-gradient-pressure formulation:

(2.2b) Vu-n+pn=Ffy ondQy,

(2.3a) ReL — Vu =0,
(2.3b) -V-L+Vp=f,
(2.3c) V-u=0.

To define a general HDG scheme for the Stokes equations, we multiply (2.3) by a test
function, integrate over the computational domain, integrate by parts, replace the
boundary terms with a not-necessarily-single-valued HDG flux, then weakly enforce
the single valuedness of the HDG flux. HDG schemes defined in this manner for (2.3)
will take a general form consisting of the local equations

(2.4a) Re (Lp, G), + (un, V- G)y — (u, @n,G)yr =0,

(2.4b) (L, V)7 = (pn, V- 0) 7, + (Lin +pin,v) oy = (f,0) 7,
(2.4c) —(un, Vq) 7, + (up, -m,q)p7, =0,

the conservation equations

(2.4d) <u7; o n, G>;m\an —0,

(2.4e) —(=Lin 4+ phn, 0) o700 = 0,

(2.4f) —(ug, -1 Qo700 = 0,

and the boundary conditions

(2.4g) <UZ7'LAU>89D = <uD7ib>(’)QD )

(2.4h) (-Lin+ p;n, ﬁ))aﬂN ={(fn ﬁJ)aﬂN .
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NEW HDG METHODS FOR THE STOKES AND OSEEN EQUATIONS 5

In all of the HDG schemes we will derive, the discontinuous polynomial spaces in
which we seek the volume unknowns (Ly,wp,pr) and to which their corresponding
test functions (G, v, q) belong are as follows:

(2.52) Gy = {G e LX) : Gk € Gh(K)},
(2.5b) V= {v e [L2()]" : vk € Vh(K)},
(2.5(}) Qh = {q S LQ(Q) : q|K S Qh(K)},

where G (K), Vi (K), Qn(K) are total-degree or tensor-product finite element spaces
defined on K that we assume to be of equal polynomial order k£ > 1.

The quantities wj and —Ljn + p;n are yet-to-be-defined, not-necessarily-single-
valued numerical fluxes, which are function of the volume unknowns (Ly,, wy, pr) and

trace variables (fh, up,, ﬁh) The trace variables reside in discontinuous polynomial

spaces defined on the mesh skeleton, as do the interior test functions (é,ﬁ, qA) and

boundary test function w. In what follows, we derive different choices for uj and
—Ljin 4 p;m and analyze schemes that result from some specific choices. The fluxes
we derive will have a minimal number of trace unknowns (d scalar unknowns) so that

not all of the trace unknowns (fh, up, ﬁh) (and their corresponding test functions)

will exist as unknowns (and test functions). Related to this is the fact that not all of
the conservation equations (2.4d)—(2.4f) must be explicitly enforced, as some will be
automatically satisfied depending on the choice of the numerical flux. Additionally,
the boundary test function w will have a natural association with the interior skeleton
test functions among (é, v, qA) that do exist in the scheme. These points will be made
clearer after we derive the HDG numerical fluxes.

The first order system (2.3) fits into the general framework (1.1), and is symmetric
hyperbolic. Indeed, choosing the ordering of unknowns as the column vector U :=
(vec (L) ; u;p), we have

0 —nRgl 0
(2.6) A=| nTegl 0 n
0 n' 0

We can perform the eigendecomposition A = RDR ™!, where D is a diagonal matrix
comprising the eigenvalues of A, and R is a matrix whose columns are the eigenvectors
corresponding those eigenvalues. Defining |D| by taking the absolute value of each
eigenvalue in D, we can define |A| := R|D|R™!. It can be shown that for the Stokes
system we have

N@g (%ST + %SN) 0 — 5 NOKN
(27) Al = 0 T + 75N 0 ,
_ 7-],.5 nT ®K’nT 0 7—ls
where 77 := 1 and 77 := V2. Later, we will consider more general parameters

7, and 7, than 77 and 77 which give the upwind flux. This allows us to gener-
alize the upwind scheme, to define simpler schemes, and to make connections to
existing HDG methods. We define the normal upwind flux F’, as a column vector
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6 S. SHANNON AND T. BUI-THANH

F; = (vec(—u* ®@n);—L*n + p*n;u* -n). Since there is a one-to-one correspon-
dence between vec (—u* ® n) and —u* ® n, we also identify F'; with the triple

—u*®n
(2.8) F;,=| -L*n+p*n
u*-n

In this way, we can write the exact upwind flux in its one-sided form, F';, = AU +
A[(U - U"), as

—u@n+ (ST+AN)(L-L)N- L (p-p)N
(2.9) F, = —Ln+pn+ (7T +75N) (u—u*)
u-n—Jsn-[(L-L)n]+ 5 (p-p)

At this point, we can eliminate “starred quantities” from the right side of (2.9) with
the aim of defining an HDG flux with minimal trace unknowns. It turns out that we
can do so in a way that naturally leads to four different forms of the upwind flux, each
with d scalar starred quantities. The key to reducing the number of trace unknowns
is the following relations between the upwind states.

LEMMA 2.1. The following relationships between the upwind states hold:
(2.10a) 72T (u —u*) =T (L - L") n,
(2.10b) PN(u—-u*)=-N[-(L-L)n+(p—p)n].

Proof. The claims follow directly from equating the tangential components of the
left and right sides of the second term of (2.9), and doing the same for the normal
components. 0

Note that we arrive at the same expressions by equating the left and right sides of
the first term of (2.9). Equating the third term gives the expression (2.10b). That is
to say that (2.10a) and (2.10b) are the only two relations we can discover from (2.9).

Using (2.10a) to eliminate either Tu* or TL*n, and using (2.10b) to eliminate
either Nu* or N (—L*n + p*n), we arrive at the following four forms of the upwind
flux.

The u* flux: The quantity —L*n 4 p*n can be eliminated from (2.9) so that
(2.9) can be written as

—u*®n
(2.11) F,=| -Ln+pn+ (7"T+ 7;N) (u — u*)
u*-n
The —L*n + p*n flux: The quantity u4* can be eliminated from (2.9) so that
(2.9) can be written as

—u®n+ (#T—F }SN) (L-L)N- L (p—p°)N
(2.12) F, = -L*n+p'n
u-n—sn-[(L-L)n]+ 5 (p—p*)
The (Tu*, f*) flux: The quantities TL*n and Nu* can be eliminated from
(2.9) so that (2.9) can be written as

~Nu@n—-Tu" @n— % (—n-[Ln]+p— f*)N
(2.13) F; = ~T(Ln)+ f*n+7°T (u —u*) ,
went 2 (—m - [Ln] +p— f)

This manuscript is for review purposes only.
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where f* := —n - [L*n] + p*.
The (Nu*,TL*n) flux: The quantities N (—L*n + p*n) and Tu* can be
eliminated from (2.9) so that (2.9) can be written as

fNu*®nfTu®nfT%T(fL+L*)N

(2.14) Fi=| (—n [Ln]+p)n+T(-L*n) + 75N (u — u*)
u*-n
Finally, in order to define numerical fluxes
—u; @n
(2.15) wn = | —Lin+pin
uyp - n
to be used in the HDG scheme (2.4), we append a subscript A to the terms in (2.11)—

(2.14) and replace the starred quantities on the right side of (2.11)—(2.14) with hatted
unknown quantities residing on the mesh skeleton. Additionally we replace 7;° and 7.7
with 73 and 7,,, which, from the well-posedness analysis, can be freely chosen positive

values. This gives the following numerical fluxes.

The u; flux:
—ﬁh XN
(2.16) nh = | “Lan+ppn+ (T + 7,N) (u — up)
ﬁh n
The f, flux (where f, approximates —L*f + p*#):
= (uh + (T%T + %N) (—Lhn +ppm — sgn?h)) @n |
(2.17) b = sgnf),

uh~n+%<fn-[Lhn]+ph—fh~ﬁ)

The (@), fh) flux (where fn approximates —m - [L*n] + p*):
a ((ﬁz +Nuh) + (_”' (Lan] + pn — fh) n) ®@n
(2.18) :17h = fhn —TLyn + 7 (uz — ﬁ;L)

Up 'nJr% (—n- [Lhn]erh—ﬁL)

ot ~t
The (uj, f;,) flux (where f,, approximates —TL*n):
S ~t
— (uZn +uj + = (—TLhn — Sgnfh>) @n
* e ~t s
(2.19) nh = | sgnf, + N (—=Lpn +phn~) + T (Nuh - uZn)
sgnuy
It can be shown that any of the fluxes (2.16)—(2.19) are suitable for use in the HDG
scheme (2.4), some being more practical than others. It should also be noted that
it is not necessary to use the same flux on all skeleton faces. It may be convenient

to use one flux on the skeleton faces that are on the interior of the computational
domain and a different flux for each part of the boundary corresponding to a different
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8 S. SHANNON AND T. BUI-THANH

boundary condition. For example, the uy, flux (2.16) can be used to directly prescribe
Dirichlet boundary conditions of type (2.2a), the f;, flux (2.17) can be used to directly

prescribe boundary conditions of type (2.2b), and the (u}, ?2) flux (2.19) can be used
to directly prescribe the conditions for “mirror” symmetry boundary conditions. If
it is possible to treat the boundary conditions in this manner, all boundary skeleton
unknowns decouple from the interior skeleton unknowns, thereby keeping the number
of coupled unknowns in the system to a minimum.

Recall that in order to realize one of the advantages of HDG, the volume unknowns
must be uniquely defined by the trace unknowns; that is, the local solver must be well
posed. It can be shown that, without modifications, schemes using (2.16) and (2.19)
only define the pressure py, up to a constant. Similarly, (2.17) only defines the velocity
Uy, up to constant. On the other hand, (2.18) defines the all of the volume unknowns
uniquely. In the following sections, we explicitly define schemes based on 4y, flux (2.16)
and modifications that ensure uniqueness of the local solver. This is the “standard”
flux for the velocity gradient based HDG scheme for the Stokes equations. We also
define a new scheme based on the flux (2.18) that requires no modifications for well-
posedness of the local solver. We do not pursue HDG schemes based on (2.17) and
(2.19), as they do not appear to offer benefits compared to the other schemes.

2.2. HDG Schemes Using the u; Flux. In this section, we define an upwind
HDG scheme based on (2.16), which recovers schemes developed in [6, 2]. For the sake
of this discussion, we use (2.16) on all skeleton faces. The discontinuous polynomial
space in which we seek the trace unknowns uy, is

~

(2.20) V= {6 e [L2(E)]" : Bl € f/h(e)},

where Vh(e) is a polynomial space defined on e that is assumed to be of the same
polynomial order k£ as the volume unknowns.

With the numerical flux (2.16), the enforcement of the Dirichlet boundary condi-
tion (2.4g) simplifies to an L? projection of the Dirichlet boundary data to the trace
unknown on J€p, thereby decoupling the trace unknowns on 9Q2p from the rest of
the unknowns. Then we can decompose the trace unknown

(2.21) U, =, + uy,
where ft,? is defined on 0 p as the L? projection of the boundary data,

(2.22) <a£,a>m — (up,B)yq, forall &€ Vy(e) for all e € Qp,
D

and @), is the trace unknown @y, restricted to £,\0Qp. Note that in writing (2.21)
we identify @), and @ with their extensions by zero to &,. Then @), resides in the
polynomial space

(2.23) v, = (e [L2@\000)]" + Bl € Vie)}.

With this in place, we write the HDG scheme as follows.

Formulation 2.2. Find (Ly, up, pp, ﬁ;) in Gp XV xQp X ‘72 such that the local
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equations

(2.240) Re (L, G), + (wn, V- G)yy — {fin, Gryy =0,
(2.24b) —(V - Ly, 'U)Th + (Vpp, ’U)Th + (S (up —up) 7v>8Th = (f, ’U)Th ,
(2'24C) - (uha VQ)Th + <'ah 'n, Q>g}7~h =0,

and the conservation equation and Neumann boundary condition

(2.24d) —(=Lpn+pan+ S (un — Un) ,0) o700, = — (FN: V),

hold for all (G, v,¢,3) in G x Vi x Qp x V', where
(2.25) S: =T+ 7N,

and @, is defined by (2.22). If 92y = 0, we additionally require the zero mean
pressure conditions for the uniqueness of the pressure

(2.26) (Phs 1), = 0.

Some comments are in order. First, using the flux (2.16), the conservation condi-
tions (2.4d) and (2.4f) are automatically satisfied, and so we do not need to explicitly
include these equations in the formulation. Second, the conservation condition (2.4e)
and the Neumann boundary condition (2.4h) (where we associate w with v) are com-
bined in (2.24d). Third, we have integrated by parts the terms in (2.4¢) in order to
write the scheme in a concise manner that reveals the symmetric and skew symmetric
terms. Finally, it is not necessary to decompose 4} into the coupled “interior” un-
knowns and the decoupled Dirichlet boundary unknowns in (2.24a)—(2.24c). We can
recouple (2.22) to the rest of the system, but that would change the matrix structure
of the trace system that we comment on in the following discussions.

In the following, we discuss the well-posedness of Formulation 2.2.

THEOREM 2.3. (well-posedness of Formulation 2.2)
Suppose that 7 > 0 and 7, > 0 (which is true in particular for 1, = TtS and T, = T,f)
Then Formulation 2.2 is well-posed in the sense that given f, up, and f,, there
exists a unique solution (Lyp, wp, pp,tp) in Gy x Vi, X Qp, ¥ ‘A/h.

Proof. It is sufficient to prove that if f, up, and f, are zero, then the solution
(L, up, pp, up) is zero. We can rewrite Formulation 2.2 as: find (Lp, wp, pp,up) in
~1
Gpn X Vi x Qn x V), such that
Asym ((Lh, Up, aZ) 3 (G7 v, 8))
+ Askew ((th Uh, Ph, aZ) 9 (G7 v,dq, 6)) =1 (G7 v,q, a)
for all (G, v,q,) in Gj, x Vi, x Qp x V,, where

aoym (Lo wn, @) (G, 0,8)) = Re (Ln, G, + (Swn, v) g,

+<S(uh—ﬁ§l),v—§> ,
OTi\O2 D
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st (Lo wnpn, @) L (GL0,0,8) ) = (wn, V- G)y = (V- Ly, v)y,

+ (Vpn, 'U)Th — (un, V(])Th - <ﬁ}“ Gn> + (Lpm, 6>a7’h\5QD

67-71 \aQD

+ aln’q _<ph7§'n> ’
h 6Th\8QD 37_}1\89D

and

1(G,v,q,0) = <ﬁhD,Gn>mD +(f.0)
H(salio) (@l nd), B,

Setting f = 0, up = 0 (and therefore @), = 0), and f, = 0 gives [ = 0. Setting

(G,v,q,v) = (Lh, up, Ph, 1’12) gives gperw = 0 leaving only the symmetric terms,

(2.27)  Re(Ln,Ly);, + <s (uh - a;) Ly, — 4 + (St up) yo, = 0.

>8Th\BQD
All of the terms in the previous expression are nonnegative and as a consequence must
be zero. Thus L, =0 in Ty, uwp = Uy on E,\0Qp, and uy = 0 on 0Qp.

Integration by parts reveals that equation (2.24a) reduces to (Vup,, G), = 0 and
since VV, C Gy, we set G = Vuy, to conclude that uy, is elementwise constant. But
since uy, = 4y, on £ and Uy, is single valued on &7, wuy, is continuous across each
internal interface, and therefore uy, is globally constant. Since uy, is zero on 9Qp we
conclude uy, = 0 and Uy = 0.

Then (2.24b) reduces to (Vpy,v), = 0, and since VQp, C V', we can conclude pj,
is elementwise constant. Since (2.24d) reduces to (ppm, D) 7, \ 5q for © with support on
&y, then pj, is globally continuous and globally constant. In the case that 0Qy # 0,
we have (ppn, ), = 0 implies that p, = 0 on dQp and therefore that p, = 0
everywhere. Otherwise the zero mean discrete pressure condition (2.26) implies py, is
Z€ero. 0

We next prove that the local solver, (2.24a)—(2.24¢), in Formulation 2.2 determines
the local pressure p;, only up to an elementwise constant.

THEOREM 2.4. (well-posedness of the local solver of Formulation 2.2)
Suppose that 74 > 0 and 7, > 0. Given f and uy, there exists a unique solution
(Lp,un,pr) in Gy, X Vi X Qn/Po (Th) to the local equations (2.24a)—(2.24c).

Proof. Tt is sufficient to restrict our attention to a single element, and prove that
if f and @y, are zero, then the solution (L, up,pn) is zero. We can rewrite the
local solver defined by (2.24a)—(2.24c) restricted to one element as find (L, up, pr)
in Gp(K) x V(K) x Qp(K) such that

(2.28) Re (Lp, G) g + (Sup, v) g5 + (un, V- G) i — (V- Ly, v) ¢ + (VDp,v)
- (uh7VQ)K = (f,’U)K =+ <Saha'v>aK + <aha Gn>aK - <ah 'n7Q>aK

for all (G,v,q) in Gi(K) x V(K) x Qn(K). Setting f and @y, to zero, and setting
(G,v,q) = (Lp,upn,pr), we have

(2.29) Re (Lp, Ln) e + (Sun, un)yr = 0.
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Thus Ly, =0 in K and u, = 0 on 0K.

Integrating by parts what remains of (2.24a) gives that wuy, is constant in K, and
since uy, = 0 on 0K, that up, = 0 in K. Integrating (2.24b) by parts gives that py, is
constant in K. O

2.3. Modifications for Local Solver Invertibility. As we saw in the previous
section, given f and 4y, the local solver (2.24a)—(2.24¢) of the HDG Formulation 2.2
does not uniquely define the pressure py in Q5. The reason for this can be seen as
follows. It is known that the Stokes equations with only Dirichlet boundary conditions
must be equipped with an additional condition on the pressure, usually the zero mean
pressure condition, in order to be well-posed. The local solver of Formulation 2.2
can be interpreted as solving the Dirichlet problem on each element with 4 as the
boundary data. From what we know about the Dirichlet problem for the Stokes
equations, we could not have expected that this local problem would be well-posed.
An HDG scheme whose local (element) problem is not well-posed is not particularly
useful, as it loses one of the main advantages of HDG methods as compared to DG
methods — the ability to condense the volume (DG) unknowns out of the global
linear system to have a resulting global system with a reduced number of unknowns.
Therefore, Formulation 2.2 must be modified in order to be useful.

There are two methods in the literature for addressing this issue [14]. One method
is a direct method that involves the introduction of additional global unknowns. The
other method is an iterative method, involving pseudotime, that does not change
the number of unknowns. We review those methods here before introducing a new
method in the next section that uses a different form of the HDG flux to avoid this
issue all together.

2.3.1. The Augmented Lagrangian Approach. The Augmented Lagrangian
approach for Stokes HDG schemes introduced in [14]. It is described by adding a
pseudotime derivative to (2.3c) as

0
(2.30) LoV ou=0,

or
providing an initial condition p(r = 0) = py, then solving for the steady state solution
with an HDG spatial discretization of (2.3a), (2.3b), and (2.30), with an implicit Euler
temporal discretization, and with the choice of pg = 0. Altering Formulation 2.2 in
such a manner, we have the following formulation describing a single pseudotime step.

Formulation 2.5. Find (Lﬁ,u}fb,p’g,ﬁzk) in Gp, x Vi x Qp % ‘7; such that the
local equations

(2.31a) Re (L}, G), + (uf,V - G), — <a’,j, Gn>8Th —0,
(2.31b) — (V- LZ,v)Th + (Vpﬁ,v)Th + <S (uﬁ - ﬁﬁ) ’v>a7’h = (f,v)r,
1 ~ 1 _

and the conservation equation and Neumann boundary condition

2.31d 7<7L’“ k s( ’uA’C),A> — —(fr, D
( ) R+ DR+ 5 Uy — Uy vaTh\aQD (FnsV)aay

hold for all (G,v,q,v) in G, x V, X Qp % ‘7;, where ﬁhD is defined by (2.22) and S
is defined by (2.25).
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In the above, k represents the pseudotime step number. Finally, [14] describes a
stopping criterion for the pseudotime iterations,

(2.32) llpk ~ b <e
2k

Algorithm 2.1 describes the solution procedure. We emphasize here that A7 and €

Algorithm 2.1 Augmented Lagrangian solution procedure.

choose A7 and €
set p% =0,k=1
while true do
solve for (L’,fL7 uﬁ,pﬁ7 ﬁﬁ) using Formulation 2.5
if (2.32) is true then
break
end if
k+—k+1
end while

must be chosen. We also remark that the stopping criterion (2.32) will not be useful
as it is written if the exact pressure is zero. To handle such cases, it may be useful to
add a small positive parameter (whose magnitude must be chosen) to the denominator
of (2.32).

Some remarks are in order. First, it can be seen that the local solver associated
with Formulation 2.5 is well-posed. Indeed, repeating the arguments in the proof for
Theorem 2.4, now with pi_l as an additional forcing function, instead of (2.29) we
will have

1
(2.33) Re (L, L7) o + (Sup, up)yre + 2= (P Ph) o = 0,

which allows us to conclude pﬁ = 0. Second, forming the condensed global system (in
terms of @), only) gives a global system

(2.34) AU* = F*=1,

where the matrix A is symmetric and positive definite. See Appendix B for details.

2.3.2. The Average Edge Pressure Approach. A direct (as opposed to it-
erative) approach to modifying Formulation 2.2 to obtain a well-posed local solver
is given in [14]. The method involves introducing a global unknown representing an
elementwise average edge-pressure. We give a slightly different presentation here with
implementation using a Lagrange polynomial basis in mind. We do so by altering
Formulation 2.2 to read as follows.

Formulation 2.6. Find (Ly, up, pp, 1’22, pn) In G X Vi x Qp % ‘7; X Po(0Tr) such
that the local equations

(235&) Re (Lha G)’Th + ('U/}“ V : G)'Th - <ah7 Gn)g}Th = 07
(2.35b) — (V- Li,v)y, + (Vpn,v), + (S (un — @n) ,v)yy, = (£,0)7, »
(235C) - (Uh, v(])'Th + <’I/Ih : ’I’l, q - q>a7’h + <ph - pth>87’h = Oa
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NEW HDG METHODS FOR THE STOKES AND OSEEN EQUATIONS 13

the conservation equation and Neumann boundary condition

(2.35d) —(~Lyn+ppn + S (up, — up) 75>aTh\aQD =—(fn; 6)39,\, )

and the constraint
(2.35€) (up, - n,w)m-h =0

hold for all (G, v,q,9,%) in Gy x Vi, X Qp X ‘72 x Py(8T), where @), is defined by
(2.22) and S is defined by (2.25). If 9Qy = 0, we additionally require the zero mean
pressure conditions for the uniqueness of the pressure, (2.26).

In the above, the notation g is defined by q := |('9K|71 (q,1) 5 as the 0K-wise average
of ¢, and |0K]| is the length of the perimeter of element K. The new unknowns pj
which are sought in Py(07) represent the K -wise average pressure. Indeed, taking
g to be an elementwise constant in (2.35c), we recover p;, = pp.

We observe that Formulations 2.2 and 2.6 give the same solution. Indeed, we
can show that (2.35¢) and (2.35¢) are equivalent to (2.24c). Given that we’ve already
shown p;, = pp, we have — (up, Vq)z + (Up -n,q — )7, = 0. Setting ¢ in (2.35)
equal to § and adding the result to the previous expression, we recover (2.24¢). Con-
versely, setting q in (2.24¢) equal to any elementwise constant 1, we recover (2.35¢).
Then setting 1 = g and subtracting (2.35¢) from (2.24¢), and defining pp, := p;, and
therefore that (D, @)y = (Ph: D ox = (Ph, @) for any ¢, we recover (2.35¢).

As with the Augmented Lagrangian iterative approach, we can see that the mod-
ifications result in a well-posed local solver. Indeed, repeating the arguments in the
proof for Theorem 2.4, now with pp, as a forcing function, instead of (2.29) we will
have

(236) Re (Lh; Lh)K + <SUh, uh>3K + <ph’ph>K = Oa

which allows us to conclude pp, = 0 on K. Then, following the same arguments as
before, we conclude that pj, is elementwise constant, and therefore zero.

As shown in [14], the condensed global system takes the form of a saddle point
problem,

(2.37) {AB B()TH[Z}:{E}

where A is symmetric and positive definite. See Appendix B for details.

2.4. HDG Schemes Using the (@), fh) Flux. In this section, we define new
HDG schemes for the Stokes equations. We do this by using the flux (2.18) on
all skeleton faces £7. The justification of this choice will become evident when we
analyze the well-posedness of the local solver associated with this scheme, where we
verify that no special treatment is required for the uniqueness of the local pressure.
Recall that for trace unknowns, this flux has the tangent velocity ﬁ}; and a scalar fj
which approximates —ﬁn - [Vu - n] + p. The volume unknowns will still be sought
from the discontinuous polynomial spaces (2.5). The discontinuous polynomial space

in which we seek fh and 1’22, respectively, are
(2.38) Fyi={g e 13(&) Gl € Fule)},

(2.39) V) = [ e [L2En]" : ¥l € 172(6)},
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~ ~1
where Fj(e) is a scalar polynomial space, and V' (e) is a vector valued polynomial
space with no normal component, defined by

-1
(2.40) ‘72(6) = {Z t'Ohi t Uhy € Vh(e)},
i1

where Vh(e) is a scalar polynomial space defined on e, and {tl, . ,tdil} is a basis
of the tangent space of e.
Realize that (2.18) defines u}, as

~ 1 n
(2.41) uf =, + Nuy, + — (—n - [Lam] +pp — fh) n.

n

The enforcement of the tangent component of the Dirichlet boundary condition (2.4g)
then simplifies to an L? projection of the tangent part of the Dirichlet boundary data
up to the trace unknown 1’22 on Jf)p, thereby decoupling ﬁz on JQ2p from the rest
of the unknowns. The normal part of the Dirichlet condition is enforced weakly as
will be shown below.

Similarly, (2.18) defines

(2.42) —Lin+pin=fin+T(-Lyn) + 7, (uﬁl - 172) ,

so the enforcement of the normal component of the Neumann boundary condition
(2.4h) simplifies to an L? projection of the normal part of the Neumann boundary
data f to the trace unknown fh on 0Ny, thereby decoupling ]?h on 0Ny from the
rest of the unknowns. The tangent part of the Neumann condition is enforced weakly
as will be shown below.

As before, we decompose the trace unknowns into the decoupled parts and the
coupled parts of the trace unknowns. We decompose fj, by

(2.43) fo=F+fN

where th is defined on 0y as the L? projection of the normal component of the
Neumann boundary data,

(2.44) <ﬁLN,§>6QN — (fn -MG)p0, forall G Fy(e) for all e € 80y,

and f}l is the trace unknown fh restricted to £,\0Qy. Similarly, we decompose 17’,51
by

(2.45) ay, =) +ay”

where ’i\LZ’D is defined on 9Qp as the L? projection of the tangential component of the
Dirichlet boundary data,

~t,.D ~t /ot oAt ~t _ 5t
(2.46) <uh U >8QD = <uD,v >6‘QD for all " € V,(e) for all e € 0Qp,

and ﬁZ’i is the trace unknown ), restricted to £,\0Qp. Again, in writing (2.43)
and (2.45) we identify f}, ]/”,71\], ﬁfl’l, and ﬁf{D with their extensions by zero to &.
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We assume that all discrete spaces are of equal polynomial order. We also note that
we have made a slight abuse of notation as the superscript “s” (for “interior”) has a

different meaning for J/‘;’L and 'EZZ Finally, we define the polynomial spaces

(2.47) Fi = {g € L2(E)\IW) : Gl € ﬁh(e)}7
(2.48) v {# € [L2E\020)]" + 9] € V(0]

in which ﬁl and ﬁ’;b’i, respectively, lie. With this in place, we write the HDG scheme
as follows.
o ~ti ~.
Formulation 2.7. Find (Lh,uh,ph,ﬁz’l,fﬁ) in Gp X Vi, x Qp X th x F} such
that the local equations

(249)  Re(Li.G)y, — (Vun, Gy, + (uf, —.Gn)
{2 (h- ) netem) o
(2.49D) (Ln, VU)r, — (01, V- 0), + <fh,v-n>8Th |
—(Linv )+ (7 (uh @) )= (o),
(2.49¢) -, + (= (£ ) ,q>m -0,

and the conservation equations combined with the tangential part of the Neumann
boundary condition and the normal part of the Dirichlet boundary condition

2.49d —<—L ( t —At),“> :—< ! ,At> ,
( ) PR TR T )Y ) oo IV ) g

1 ~\ ~
(2.49¢) — <uh ‘n 4+ — (fh - fh) 79> =—(up '"79>aQD
Tn AT\ N

hold for all (G,v,q,%",§) in Gy x Vi, x Qu x V' x F, where fy, := —m - [Lyn] +pp,
'ilﬁl’D is defined by (2.46), and f} is defined by (2.44). In the case that 9Qx = 0, we
require the zero mean pressure condition for uniqueness of the pressure, (2.26).

Note that we have identified the scalar test function g with —n - {an] + ¢ on

IT\OQ and with w - n on 0N in order to write (2.4d), (2.4f), and the normal part
of (2.4g) in a combined manner as (2.49¢). Similarly, the normal part of (2.4e) is
automatically satisfied, and we identify T@ with 3' to write (2.4e) and the tangent
part of (2.4h) in a combined manner as (2.49d). We are now ready to prove well-
posedness of Formulation 2.7 and its local solver.

THEOREM 2.8. (well-posedness of Formulation 2.7)
Suppose that 74 > 0 and 1,, > 0. Then Formulation 2.7 is well-posed in the sense that

. . . . ~t .
gwen f, up, and fy, there exists a unique solution (Lh,uh,ph,uh,fh> mn Gy X

VhXQhX‘/}ZXF\h.
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16 S. SHANNON AND T. BUI-THANH

Proof. 1t is sufficient to prove that if f = 0, up = 0 and f, = 0, then the
solution (Lh,uh,ph,ﬁz,fh) is zero. We can rewrite (2.49) as

Asym ((Lh,'bbh,])h,ﬁf{ifﬁ) ) (GaUaQa6t7§)>
+ Askew ((Lh,Uh,ph7’l/z;ji,ﬁ> 5 (G7v7q76t7/g\>) =1 (va7qvat7/g\)

where, using for simplicity g := —n - [Gn] + ¢,
Asym ((Lhauhaph;u fh) (G,U,q7'/l]\t,§)) =

Re(Lh,G)Th,+<Tlfh7g> +<Tl (fh_};é)ag_/\
n N n

t t ~t,1 t ~t
+ (U, v + < (’LL — U, ) v —v >
< h >852D h o T \02D ’

>6Th \OQ N

Askew ((Lhau}upha azla .]/0;11,) ) (G7Ua Q7ata./g\)) = (V'Urh, G)'Th + (Lh7 V,U)ﬁ

= (Pn V- 0) g, + (V- un, @), + <filmv n>87’h\8QN —(un -1, 9) o008

~t.% ~t t t
7G > <L ) > 7G —«(L ) )
<Uh ™) or\o0m + {(Lnn,v OTi\O%D + (uy, ">a’rh (L, v >6Th

and
~t -~ t ~t ~ 1 N
Z<G7U7Q7U ag) = (f?v)’]’h - <vav >BQN - <uD 'nvg>BQD + ?fh y g
n

~t,.D ¢t N ~t,D
- : .G > .
+ <Ttuh v >aQD <fh 'Y n>aQN +< "/ oan

Setting f = 0, up = 0 (and therefore u, P —0), and £ = 0 (and therefore J/”;LN =0),
we have [ = 0. Setting (G,v,q,'u ,g) = (Lh,uh,ph,ﬁzi,ﬁl), we have agpew, = 0.

00N

What remains are the symmetric terms asym,, giving

1 - N 1
(2:50) Re(Ly, Ly, + < (fo=72) f - fﬁ> + <fh, fh>
Tn OTH\OUN Tn 0N
+ <Tt (uh ail) Uy a21>an\aszD + (reh, uh) g, = 0-

All the terms in the previous expression are nonnegative and therefore must be zero.
Thus L, = 0 in T, ul, = uzz on & UIQN, ul =0 on dQp, pp, = fr on EL UMD,
and pp, = 0 on 0N y.

Equation (2.49a) reduces to (Vuy, G)7 = 0, and since VV, C Gh we can set
G Vuy, to conclude that uy, is elementwise constant. But since uh = uh on & and
ay, is single valued on £7, and since the remainder (2.49¢) implies (uy, - n, 9>6Th\89 =
0, the tangential and normal components of u; are continuous across each internal
interface, and therefore wj, is globally constant. Equation (2.49¢) also implies the
normal component of uy is zero on 9{2p, and we already have that u',{b is zero on
0 p, we conclude that w, and 'Ezl are zero.
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Integrating (2.49b) by parts gives (Vps,v),, = 0, and since V@), C V), we have
ph, is elementwise constant. And since py, = f, on &7, py is globally constzglt. In
the case that OQx # 0, since pp, = 0 on Ny we can conclude pp, = 0 and f;, = 0.
Otherwise, if 90y = ), then (2.26) implies p, and f} are zero. d

THEOREM 2.9. (well-posedness of the local solver of Formulation 2.7)

Suppose that . > 0 and 1, > 0. Given f, ﬁz, and fh, there exists a unique solution
(L, up,pn) in Gp X Vi, X Qp to the local equations (2.49a)—(2.49¢) .

Proof. 1t is sufficient to restrict our attention to a single element, and prove that if
7, ﬁz, and f, are zero, then the solution (Ly,, wp, pp) is zero. We can rewrite the local
problem associated with Formulation 2.7 as: seek (Lyp, up,pp) in Gp(K) x Vi (K) x
Qr(K) such that

(2.51)
Re (Lp, G)  + <Tlnfh,g>aK + (reup, ') e — (Vun, G) g + (L, Vo)
— (pn, V- 0) e + (V- un, q) i + (up,, Gn) o — (L, vt
AR <7'1nfh’g>aK + <Ttaz’vt>aK + <ﬁ}i, Gn>aK B <fh’v ' n>6K

for all (G,v,q) in Gp(K) x V,(K) x Qn(K). Setting f, L, and f, to zero, and
setting (G, v, q) = (L, up, pn), we have

(252) Re (LhaLh)K+<Ttu§mu§1>3K+ <1fh7fh> =0.
Tn oK
Thus L, =0 in K, and u} = 0 and p;, = 0 on K.
Integrating (2.49b) by parts gives that pj, is constant in K, and since pp, = 0 on
0K, that p, = 0 in K. What remains of (2.49a) gives that uy, is constant in K, and
since u}, = 0 on 9K, that up =0 in K. |

Finally, we note that the condensed global system associated with Formulation 2.7
takes the form
_| B
=5 |

A BT
. (4, 2]
where A and D are symmetric and positive semi-definite. If 02y is nonempty, then
D is positive definite. Otherwise, constraining one degree of freedom associated with
frn renders D positive definite (see the Discussion section at the end of this section).
Details are in Appendix B.

ﬁt
F

2.5. Numerical Results. We consider as a numerical test problem an analyt-
ical solution by Kovasznay [12] to the two dimensional incompressible Navier-Stokes
equations. The solution is given by

(2.54) u1 = 1 — exp Axq cos 2mxo,
A
(2.55) Ug = — exp A\xq sin 27wxg,
2
1
(2.56) p=—5exp 2Az1.
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Fic. 1. Stokes HDG schemes: Kovasznay flow problem solution - wp, (top left), wpo (top
right), and py (bottom).

For the Stokes equations, we apply the advection term of the exact solution as a
forcing term, i.e., we set

(2.57) f=-u-Vu.

A domain of [0, 2] x [—0.5, 1.5] is considered, with the exact velocity solution prescribed
as Dirichlet boundary conditions on all parts of the domain boundary. We compute
on a mesh of N x N tensor product square elements, defining the element size h := %

In Figure 1, the numerical solution w;, and py, are plotted. In Figure 2, the L%(Q)
error of the volume unknowns (Lj,up,pr) are plotted along with their convergence
rates. The left column of plots shows the L? error obtained using the iy, flux (2.16)
on all skeleton faces (i.e., Formulation 2.2), while the right column shows the L2
error obtained using the (ﬁz,fh) flux (2.18) on the interior skeleton faces and the
uy, flux (2.16) on the boundary skeleton faces. In both cases 7z and 7, are chosen
as the upwind parameters 7;° and 7.7, respectively. As expected, the errors using the
two versions of the Godunov flux are virtually identical. In both cases, the observed
convergence rates are k + 1 for uy, and close to k + 1 for L, and py,.
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F1G. 2. Stokes HDG schemes: Kovasznay flow problem L? convergence of volume unknowns
using Gy, fluz (2.16) (left), using (@h, fr,) fluz (2.18) (right).

2.6. Discussion. We used the upwind HDG framework in [2] to derive an HDG
scheme based on the 4, flux (2.16), rediscovering the existing HDG scheme in [14],
and relating specific values for the stabilization tensor that result in the upwind flux.
Additionally, through manipulation of the upwind flux, we have developed a new HDG
scheme based on the (@}, f,) flux (2.18). The schemes based on the @) flux require
modifications in order for the HDG local solver to be well-posed. One modification
involves solving a trace system iteratively (in addition to any iterative linear solver),
while introducing multiple parameters related to the iterations. Another modification
involves introducing an elementwise constant global unknown, rendering the global
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20 S. SHANNON AND T. BUI-THANH

system a saddle point system. The global unknowns in the latter modified system
are of a different nature; the u; unknowns are discontinuous polynomials on the
mesh skeleton, whereas the p, unknowns are elementwise discontinuous constants.
This presents challenges in the design of linear solvers and preconditioners. The new
scheme based on the ('TLZ, frn) flux offers some advantages from both of these schemes.
No iterations are needed, and all unknowns in the condensed global system are of
the same nature: discontinuous polynomials on the mesh skeleton. Additionally, the
trace system does not result in a traditional saddle point system; there are no zero
blocks on the diagonal, which allows more flexibility in the types of preconditioners
we can apply, including allowing for the application of the simple Jacobi/block Jacobi
preconditioners. R

When using the (@}, f5) flux (2.18), it can be convenient to use that flux on the
interior skeleton face only, and to use a different flux on the domain boundary. In
addition to being potentially easier to implement, applying the boundary conditions
in this way minimizes the number of globally coupled unknowns, since all of the
boundary unknowns are decoupled from the interior ones. For example, if all of the
boundary conditions are Dirichlet boundary conditions (2.2a), then we can use the uy,
flux (2.16) on the domain boundary so that the application of the boundary conditions
are simply the projection of the boundary data to the trace unknown, rather than the
“mixed” way of applying them described in Formulation 2.7. It can be shown that the
global system and the local solver remain well-posed, and that the condensed global
matrix structure (2.53) does not change.

As pointed out in the definitions of the HDG schemes, an additional constraint is
required when we have 9Qy = () in order to uniquely define the pressure. Even though
the zero mean pressure constraint (2.26) appears to be a global equation that couples
volume variables across elements, the implementation can be handled in a way that
does not break the locality of the local problems. In the case of Formulation 2.2, the
analysis reveals that we must only constrain one degree of freedom associated with
pr in order to uniquely define p and therefore py. Depending on the linear solver, it
may or may not be necessary to explicitly constrain that degree of freedom. Similarly
for Formulation 2.7, we must only constrain one degree of freedom associated with
fn. Then we must only shift pj, in a postprocessing step in order to satisfy (2.26) (if
desired).

3. Oseen Equations. In this section, we employ the upwind HDG framework
proposed in [2] in order to derive HDG schemes for the Oseen equations. Similar to
the the previous section on the Stokes equations, we manipulate the upwind flux in
order to express it in four different ways, each of which can be shown to lead to a
well-posed HDG scheme. One of the schemes is related to the scheme in [5], whereas
the other three are new contributions in this work. We present two of these schemes in
detail and prove the aforementioned well-posedness. The two schemes are employed
in numerical tests and their convergence is demonstrated. Additionally we define a
Picard-type iterative method that can be used to solve the (nonlinear) incompressible
Navier-Stokes equations, and we demonstrate the convergence of the scheme.

3.1. Construction of Upwind HDG Schemes. For notation used in this sec-
tion and throughout this work, see Appendix A. The Oseen equations in dimensionless
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form read

1
(3.1a) —ﬁAu+w~Vu+Vp:f,
(3.1b) V-u=0,

where w is assumed to be divergence free and is assumed to reside in H(div,?). For
simplicity, we consider only Dirichlet boundary conditions,

(3.2) u=up on .

A compatibility condition on the Dirichlet boundary data [ wp -n = 0 should be
o0
satisfied, and we have to impose an additional constraint on the pressure. We choose

this constraint to be [p = 0. Comments will be made later on generalizations to
Q

different types of boundary conditions.

Toward applying the upwind HDG framework [2], we first put (3.1) into first order
form through the definition of an auxiliary variable. We define the auxiliary variable
L through the velocity gradient, resulting in the first order system

(333) RGL — V’U, = 07
(3.3b) -V L+Vp+ V- (u@w)=Ff,
(3.3¢) V-u=0.

In the above, we have used the divergence-free assumption on w to put the system
into divergence form. To define a general HDG scheme for the Oseen equations,
we multiply (3.3) by test functions, integrate over the computational domain, inte-
grate by parts, and replace the boundary terms with yet-to-be-defined numerical flux
terms, which we then enforce to be weakly continuous across element interfaces. HDG
schemes derived in this manner for (3.3) will take a general form consisting of the local
equations

(3.4a) Re (L, G)7, + (un, V- G)r —(u, @n,G)yr, =0,
(3.4Db) (Lp, Vo), = (pn, V- 0) . — (up @ w, Vo).

+ (=Lin +ppn+ (w - n)u;, v)yr, = (f,v)7,
(3.4c) — (un, V)7, + (up - n,q) o7, =0,

the conservation equations

3.4d (uj @ n,G) =0,
(3.4d) p, 91 9T \0Q

(3.4e) — (=Lin +ppn + (w - n)up, 0) 57, 90 = 0,
(3.4f) —(up, -1 Qo700 = 0,

and the Dirichlet boundary condition

(3.4g) (uf,, W) gq = (Up, W) -

The volume unknowns (Ly, wp, pr) and the test functions (G, v, q) will belong to the
discontinuous polynomial spaces (2.5). The quantities u} and —Lin + pjn + (w -
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22 S. SHANNON AND T. BUI-THANH

n)u; are yet-to-be-defined, not-necessarily-single-valued numerical fluxes, which are
function of the volume unknowns (Ly, wp, pr) and trace variables (ih, ﬁh,ﬁh>. The
trace variables reside in discontinuous polynomial spaces defined on the mesh skeleton,
as do the interior test functions (é,ﬁ@) and boundary test function w. In what

follows, we derive different choices for the starred quantities and analyze schemes that
result from some specific choices. The fluxes we derive will have a minimal number of

trace unknowns (d scalar unknowns) so that not all of the trace unknowns (ﬁ by U, ﬁh)

(and their corresponding test functions) will exist as unknowns (and test functions).
Related to this is the fact that not all of the conservation equations (3.4d)—(3.4f) must
be explicitly enforced, as some will be automatically satisfied depending on the choice
of the numerical flux. Additionally, the boundary test function w will have a natural

association with the interior skeleton test functions among (é, v, @) that do exist in

the scheme. These points will be made clearer after we derive the HDG numerical
fluxes.

To derive the numerical fluxes, we observe that the first order system (3.3) fits
into the framework of (1.1) and is, in fact, a symmetric hyperbolic system. Choosing
the ordering of unknowns as the column vector U := (vec (L) ;wu;p), and defining
m = w - n, we have

0 —nRgl 0
(3.5) A=| n'"egl ml n .
0 n' 0

We perform the eigendecomposition A = RDR™!, where D is a diagonal matrix
comprising the eigenvalues of A, and R is a matrix whose columns are the eigenvectors
corresponding those eigenvalues. Defining |D| by taking the absolute value of each
eigenvalue in D, we can define |A| := R |D|R™!. It can be shown that for the Oseen
system we have

(3.6)
Nok (HT+AN)  —Znex (HT+5N)  —Lnegn
l m)2 1 1
Al= | —znTox (HT+LN) | (3) (5T + HN) min |,
e " + (0T + 79N) n
—on'@xn’ 5on' o

where 72 = 1v/4+m? and 79 := 3v8+ m? Later we will allow for the gen-
eralization 70 — 7, 7¢ — 7,, where 7, and 7, are freely chosen positive param-
eters, allowing us to define simpler fluxes and relate the upwind schemes to ex-
isting schemes. We define the normal upwind flux F; as a column vector F :=
(vec (—u* @ n); —L*n + p*n + mu*;u* - n). Since there is a one-to-one correspon-
dence between vec (—u* ® n) and —u* ® n, we also identify F'; with the triple

—u*®n

(3.7 F; =| -L*n+p*n + mu*
u*-n
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In this way, we can write the exact upwind flux F, = AU + |A|(U —U") as

—(u+So' (- -L)n+(p-p)n+ 2 (u-u)))®n
—Ln + pn + mu + Sp (u — u*)

38 F*: mag— * * m * 9
(38 +285! (- (L-L)n+ (p—p)n+ 2 (u—u)
un+-o(—n-L-LIn+(p-p)+%2(u-u) n)
where
1 1
. O (@] -1 _
(3.9) So :=1°T + 7N, SOL?T+T—ON.

At this point, we can eliminate “starred quantities” with the aim of defining an HDG
flux with minimal trace unknowns. As we did the Stokes equations, we manipulate the
flux (3.8) in several different ways leading to fluxes that are suitable for use in HDG
schemes. We begin with a lemma that gives key relationship between the upwind
states.

LEMMA 3.1. The following relationships between the upwind states hold:
(3.10a) 0T (u—u) = —T [— (L—L*)n+%(u—u*)],
(3.10b) 79N (u —u*) = -N [— L-LY)Yn+(p-p)n+ % (u— u*)} .

Proof. We arrive at the result by equating the normal components of the left and
right side of the first component of flux (3.8), and doing the same for the tangent
components. 0

Note that (3.10) can be arrived at by equating the second component of (3.8), and
(3.10b) can be arrived at by equating the third component of (3.8). That is to say
that (3.10a) and (3.10b) are the only two relations we can discover from (3.8).

Next, we use (3.10) to reduce the number of upwind quantities on the right hand
side of (3.8) to d scalar unknowns in different ways. The presence of the advection
term in the Navier-Stokes momentum equations opens up the possibility of expressing
the upwind flux in more ways than we could for the Stokes equations. First, we explore
different forms of the flux based on choosing the normal component of either u* or
~L*n + p*n + 3(w - m)u*, and choosing the tangential component of either u* or
—L*n + p*n + %(w -n)u*. Essentially, we can choose either the left or right side
of (3.10a) and either the left or right side of (3.10b). It turns out that these fluxes,
when discretized, lead to well-posed HDG schemes. These fluxes are listed below.

The u} flux: The quantities —L*n + p*n can be eliminated from (3.8) so that
(3.8) can be written as

—u*Rn
(3.11) F,=| -Ln+pn+ Tu+ Fu* +So (u —u*)
u*-n
The F*n flux: Defining
1 1
(3.12) F:=-L+pl+ FU Qw, F*:=-L"+pI+ QU* R w,

the flux (3.8) can be written with F*n as the only starred quantities,

—(u+S5'(F-F)n)@n
(3.13) F!=| F'n+ Zu+2S;' (F-F)n
u-n+ Hn-[(F-F)n]
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24 S. SHANNON AND T. BUI-THANH
The (Tu*, f*) flux: Defining
(3.14) fi=-n-[Fn], f":=-n-[F'n],

the flux (3.8) can be written with f* and Tu* as the only starred quantities,

—(Tu*—}—Nu—i—%(f—f*)n) Qn
(3.15) F = f*n+%Tu*+%u—TLn+%%(f—f*)n—thoT(u—u*)
w-n+ o (f=f)

The (Nu*, TF*n) flux: The flux (3.8) can be written with Nu* and TF*n as
the only starred quantities,

(3.16)
— (Nu*JrTquT%T(FfF*)n) Rn
F,, = | TF*n+ NFn + ZNu* + 2Tu + 2T (F-F)n+ 79N (u—u*)
u*-n
It is not obvious that the above forms of the upwind flux will lead to well-posed

HDG schemes, and they are in fact not the only ways that we can express the upwind
flux. The relations (3.10) between the upwind states can be re-expressed as

(3.17a) <TP+%)T(u—u*):—T[— (L - L*)n],
(3.17b) (T,?—I—%)N(u—u*):—N[— (L-L)n+(p—p)n.

Then, we can write the upwind flux in terms of the normal component of either u*
and —L*n 4 p*n and the tangential component of either u* and —L*n 4 p*n. That
is, we can choose either the left or right side of (3.17a) and either the left or right
side of (3.17b). We have already considered the case where we write the upwind flux
in terms of u* only, giving (3.11). The three remaining forms, as it turns out, do not
lead to well-posed HDG schemes when used on all skeleton faces, but it is possible
that they could serve a purpose by being used on the domain boundary in order to
decouple as many unknowns as possible. For the sake of readability, these additional
forms of the flux, and their discrete counterparts, are given in Appendix C.
In order to define numerical fluxes

—up @n
(3.18) wh=| “Lin+pin+ (w-n)uj

to be used in the HDG scheme (3.4), we append a subscript h to the terms in (3.11),
(3.13), (3.15), and (3.16) and replace the starred quantities on the right side of the
different forms of the upwind flux with hatted unknown quantities residing on the
mesh skeleton. Additionally we replace 7° and 7¢ with 7, and 7,, which, from
the well-posedness analysis, can be freely chosen positive values. It is sometimes
convenient to use the following notation for the normal and tangential stabilization
terms,
4 1 1

(3.19) S=nT+mN, S =—-T+—N.

Tt Tn
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896 This gives the following numerical fluxes.

897 The ) flux:

—ﬁh XN
898 (3.20) ;;h = | —Lpn+ppn+ %uh + %ah + S (up — ’l/ih)
899 up-n

900 The }h flux (where ?h approximates —L*n + p*n + sgngu*):
_ (uh + 81 (—Lhn + ppn + %uh — sgn:f\"h>) Xn

901 (3.21) F = sgn}h + Fup + %S_l (—Lhn +pan + Fup — sgn}'h)
uh-n—i—%n (—n~[Lhn}+ph+%uh-n—?h-ﬁ>

903 The (ﬁz,fh) flux (where f), approximates —n, - [L*n] 4+ p* + 3(w - n)u* - n):

(3.22)

- (ﬁz + Nuy, + (fh - fh) n)
904 b = fhn+%ﬁ2+%uh TLhn+%% (f f)n+7t (u%—ﬁi), )
4+ 1 _
905 Tn ( h fh)
906  where
1
907 (3.23) fni=-n-[Lyn]+p, + i(w -n)(up - n).
- ~t ~

909 The (ﬂﬁ,fi) flux (where f, approximates T (—L*ﬂ+sgn%u*) and U} ap-

910 proximates u* - n):
(3.24)
(uh +ul + % (Tth - sgnfh)) ®n
o * ~t m - m ~t i~
911 F = sgnf;, + NFyn + 2uin + 2 Tu, +7T—t (Tth—sgnfh) + 7, (Nu — uf'n)

912 sgnay

913  where

:ﬁ% (3.25) Fj = —-Ly+pp I+ %uh R w.

916 It can be shown that the use of fluxes (3.20) through (3.24) lead to well-posed

917 HDG schemes, but some of the fluxes are more practical than others. Using (3.20) or
918 (3.24) results in a scheme that requires modifications in order to uniquely define the
919 pressure py, in the local solver, similar to some of the fluxes discussed in section 2 for
920 the Stokes equations. The flux (3.21) results in a scheme where the velocity 4y, is not
921 uniquely defined by the local solver if w - n = 0 on a set of nonzero measure on 97},
922 (unless we consider the time-dependent version of the Oseen equations with implicit
923  time stepping, in which case it is well-posed without modifications). The flux (3.22)
924 results in a scheme that is in any case well-posed without modifications. In what
925 follows, we concretely define and prove the well-posedness of HDG schemes based on
926 the fluxes (3.20) and (3.22).

This manuscript is for review purposes only.



962
963

964
965

966

can
[« )
o
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3.2. HDG Schemes Using the u; Flux. In this section, we define an HDG
scheme based on (3.11), which is the “familiar” form that can be related to the
scheme proposed in the work by Cesmelioglu et al. [5], and can be related to the
fluid subsystem of the incompressible MHD scheme [13]. As before, we consider
polynomial spaces of equal order £ > 1 for all volume and trace unknowns. The
discontinuous polynomial spaces in which we seek the volume unknowns (L, up, pp)
and to which their corresponding test functions (G, v, q) belong are (2.5), the same as
for the Stokes HDG schemes. The discontinuous polynomial space in which we seek
the trace unknowns iy, is

(3.26) V) = {a e [L2@E)]" - Bl € f/h(e)},

where Vh(e) is a polynomial space defined on e.

With the numerical flux (3.20), the enforcement of the Dirichlet boundary condi-
tion (3.4g) simplifies to an L? projection of the Dirichlet boundary data to the trace
unknown on 0f2, thereby decoupling the trace unknowns on 92 from the rest of the
unknowns. Then we can decompose the trace unknown

(3.27) U, =, + uy,
where ﬁhD is defined on 0€) as the L? projection of the boundary data,

(3.28) <a5,a>m = (up, D)y, for all B € Vy(e) for all e € 99,

and @}, is the trace unknown @y, restricted to the interior skeleton faces £°. Note that
in writing (3.27) we identify @, and @, with their extensions by zero to the whole
skeleton &,. Then w;, resides in the polynomial space

(3.29) V), = {a e [L2E]” - Bl € f/h(e)}.
With this in place, we write the HDG scheme as follows.

Formulation 3.2. Find (Ly, up, pp, ﬁ;) in Gy X Vi xQp X ‘72 such that the local
equations

(3.30a) Re (Ly, G)y, + (up, V- G — <ah Gn>8Th —0,
(3300) (VL vl + (Yool — 3 (wn ©w, Vo),

+% (Vup,v@w), + <; (w-n)up + S (up —up) ’v>a7*h =(f,v)7, ,
(3.30c) — (un, Vq) 7. + (Wn -1, q) 57 =0,

and the conservation equation

1 ~ N A~
(3.30d) - <—Lhn +ppn + 3 (w-n)up+ S (up, —up),v =0

>377L\8Q

hold for all (G, v,q,?) in Gy X Vi X Qp X ‘7;, where S is defined as in (3.19), 'il,?
is defined as in (3.28), and with the zero mean pressure conditions for the uniqueness
of the pressure,

(3.31) (ph, 1)87_h = 0.
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To come to the above formulation from (3.4), realize that use of the flux (3.20)
implies that the conservation conditions (3.4d) and (3.4f) are automatically satisfied,
and so we do not need to explicitly include these equations in the formulation. We
have integrated by parts terms in (2.4e) in order to write the scheme in a concise
manner that reveals the symmetric and skew symmetric terms, and have used the
divergence-free assumption on w. Also, we have used the fact that w € H(div, Q) to

L OTN00 = 0 and have removed this term from (3.30d).

conclude — (1 (w - n) @y, V)
In the following, we discuss the well-posedness of Formulation 3.2.

THEOREM 3.3. (well-posedness of Formulation 3.2)
Suppose that 7, > 0 and 7, > 0 (which is always true for 7, = 70 and 7, = 7).
Then Formulation 3.2 is well-posed in the sense that given f and up, there ezists a
unique solution (Lp,wpn,pp,Un) in G X Vi X Qp X V.

Proof. Tt is sufficient to prove that setting f = 0 and uwp = 0 implies that the
solution (Ly,, wp, pp,up) is zero. We can rewrite (3.30) as

Asym ((Lh,Uh,aﬁl) ,(G,v,ﬁ))
+ Askew ((Lh,Uh,ph,ﬁ;L) 5 (vaa Q7:U\)> = l(G7 v,q, ,/U\> B}
where

asymn (Lo @) (G v.8)) = Re (L, G), + (Sun,v)

S (=) 0= 8)
+< up — Uy ), v vaTh\aQ

aurew (T wn, pns @) (G v,0,9)) = (un, V- G) = (V- L, vy

1 1
+ (Von,v) g, — (un, Vq) 7, — 3 (up @ w, Vo) + 3 (Vup, v @ w)r

— (U Gn>an\aa + (L, D)o 00 + <ah I q>aTh\aQ = (P ¥ 700
1 i 1 5
3 <(w ' n)uh’v>an\an — 5 (@ m)un D)o o0

and

~ ~ 1
H(Gv.0:9) = (£0)5, — (@ ~Grt gnt Lm0 —So)
' oQ
Setting f = 0 and up = 0 (and therefore @ = 0 on dN), we have [ = 0. Setting
(G,v,q,v) = (Lh,uh,ph,ﬁz), then aggewy = 0, and the only remaining terms are
Gsym, giving

(332)  Re(Lp,Ln)y, + <s (uh - aﬁl) g, — a;@b>an\m + (Sun, up) yo = 0.

Thus Ly, =0in Ty, up = ﬁz on &7, and uj, = 0 on 0.

Equation (3.30a) reduces to (Vup,G),, = 0, and since VV;, C Gy, we set
G = Vuy, to conclude that uj, is elementwise constant. But since uj, = 4y, on &y and
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28 S. SHANNON AND T. BUI-THANH

Uy, is single valued on &2, uy, is continuous across each internal interface, and therefore
uy, is globally constant. With the zero boundary condition we conclude u;, = 0 and
up = 0.

Integrating what remains of (3.30b) by parts gives (Vph,v)Th = 0, and since
VQn C V5, we conclude that py is elementwise constant. Since (3.30d) reduces to
(ppn, V) oTi\oq, then py is globally continuous and globally constant. Then (3.31)
implies py, is zero. 0

We next prove that the local solver, (3.30a)—(3.30¢), in Formulation 3.2 determines
the local pressure p;, only up to an elementwise constant.

THEOREM 3.4. (well-posedness of the local solver of Formulation 3.2)
Suppose that 74 > 0 and 7, > 0. Given f and uy, there exists a unique solution
(L, un,prn) in G X Vi, X Qn/Po (Tr) to the local equations (3.30a)—(3.30c).

Proof. Tt is sufficient to restrict our attention to a single element, and prove that
if f and @y, are zero, then the solution (L, up, pp) is zero. We can rewrite the local
problem associated with Formulation 3.2 as find (Lyp, wp, pp) in Gp(K) x Vi (K) x
Qr(K) such that

(3.33) Re (Ln, G) ¢ + (Sun, v) g5 + (un, V- G) g — (V- Lp,v)

1 1
+ (Vpn, v) i — (un, V@) i — 5 (up ® w, Vo) + 5 (Vup, v @ w)g

I 1
=(fiv)g - <’uh, -Gn+qn+ - (w-n)v - Sv>
2 oK
for all (G,v,q) in Gp(K) x V,(K) x Qn(K). Setting f and uy, to zero, and setting
(Gaan) = (Lh,’uh,ph), we have

(3.34) Re (Lp, L) jc + (Sun, un) y i = 0.

Thus Ly, =0 in K and uy, = 0 on 0K.
What remains of (3.30a) gives that wy is constant in K, and since uj, = 0 on
0K, that up, = 0 in K. Integrating (3.30b) by parts gives that py, is constant in K.O

Formulation 3.2 can be modified in the same way that Formulation 2.2 that the
Stokes equations can be modified in order to attain a unique pressure p; in @, and
therefore well-posedness of the local solver. See subsection 2.3.1 for a discussion on the
augmented Lagrangian (iterative) method of modifying Formulation 3.2. The matrix
system (which must be solved multiple times) associated with the Formulation 3.2
altered by the augmented Lagrangian method looks like

(3.35) AU* = FF=1
where A* is positive definite. See subsection 2.3.2 for a discussion on a direct method
involving an elementwise edge-average pressure as a global variable. The matrix sys-

tem associated with the Formulation 3.2 altered by the average edge-pressure method
looks like

5700 5)

where A is positive definite.
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3.3. HDG Schemes Using the (i}, fh) Flux. In this section, we define new
HDG schemes for the Oseen equations. We do this by using the (@}, fh) flux (3.22)
on all skeleton faces £7. The justification of this choice will become evident when
we analyze the well-posedness of the local solver associated with this scheme, where
we verify that no special treatment is required for uniqueness of the local pressure.
Recall that for trace unknowns this flux has the tangent velocity uh and a scalar fh
which approximates — a7 - [Vu n] 4+ p+ 2(w - n)(u-n). The volume unknowns
will still be sought from the discontinuous polynomial spaces (2.5). The discontinuous
polynomial space in which we seek ﬁ and ﬁz, respectively, are

(3.37) E, = {g L&) : Gl e ﬁh(e)},

(3.38) V) = {at e [L2(E)]" : 9. € f/;(e)},

~ ~1
where Fj(e) is a scalar polynomial space, and V' (e) is a vector valued polynomial

space with no normal component, defined by

d—1
(3.39) Vi(e) = {Ztiah,i T em},
i=1

where \A/h(e) is a scalar polynomial space defined on e, and {tl, . ,tdil} is a basis
of the tangent space of e.
Realize that (3.22) defines u;}, as

~ 1 1 —~
(3.40) wj = a), + Nuy, + p (—n - [Lpn] +pn + i(w ‘n)(up -n) — fh> n
The enforcement of the tangent component of the Dirichlet boundary condition (3.4g)
then simplifies to an L? projection of the tangent part of the Dirichlet boundary data
up to the trace unknown @) on 99, thereby decoupling @j, on 9 from the rest of
the unknowns. The normal part of the Dirichlet condition is enforced weakly as will

be shown below.
Also (3.22) defines

1
(341) —Lin+ppn+ uj = fun+T (—Lhn + §(w : n)uh) + 7 ( uh)

2
In contrast to Formulation 2.7 for the Stokes equations, this does not correspond to
any known boundary condition, so the f, unknowns on 92 will remain coupled to the
rest of the unknowns, even if we consider boundary conditions beyond pure Dirichlet
conditions.

As before, we decompose the velocity trace unknowns into the decoupled parts
and the coupled parts of the trace unknowns,

(3.42) ap =+,

where ﬁZ’D is defined on 02 as the L? projection of the tangential components of the
boundary data,

~t
3.43 <A“3,At> :< t ,At> for all &' € V' (e) for all e € 9,
(3.43) u ) up,v’)  forallv e V,(e) foralle e

This manuscript is for review purposes only.



1090
1091
1092

1096
1097

1098

1099

1100

1101

1102

1103
1104
110:
1106

1107

1108
1109

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

1120
1121
1122
1123
1124

30 S. SHANNON AND T. BUI-THANH

and ﬁf;i is the trace unknown ), restricted to £7. Again, in writing (3.42) we identify
ﬁff, and fLZ’D with their extensions by zero to &,. We assume that all discrete spaces
are of equal polynomial order. Finally, we define the polynomial space

i

(3.44) v, = {ote (2" vl e v;<e>},

in which ﬁzl lies. With this in place, we write the HDG scheme as follows.

~ti . ~t, ~
Formulation 3.5. Find (Lh,umph,uzz,fh) in G, x Vi, x Qp X th x F}, such
that the local equations

(345a) Re(Ln,G)y — (Vup,G)y + <UZ — iy, Gn>

e

OTh

OTh

1 1
(3.45b)  (Lp, Vv)r — (pn, V- v)7 — 3 (up ® w,Vv)r + 3 (Vup,v@w)

—<Lhn,'ut>a7,h—|—<T1 (fh—fh) ,;(w.n)v.n>

1 Y Y
+<2 (w'n)u%l+7t (uz_u}f{z)vvt> :(.f7v)7‘ha
OTh

+ <fh,v-n>
9Th OTh

1 —~
(3450) (vuhaQ)’Th'i_< (fh_fh),Q> :Oa

Tn OTh
and the conservation equations combined with the normal part of the boundary con-
dition

1 t t ~t ~t
(3.45d) —(—Lpn+ 3 (w-n)uj, + 1 (uh - uh> ,U =0,
OTh\O2

(3.45¢) - <uh ‘N + 1 (fh - J?h) ,§> = —(up M, 7)sq
OTh

n

hold for all (G,v,q,%",§) in G, x Vi x Qn x V' x Fy, where f;, is defined as in
(3.23), where I/ZZD is defined as in (3.43), and with the zero mean pressure conditions

for the uniqueness of the pressure, (3.31).

Note that we have identified the scalar test function § with —mn - {(A}n] +q+

(w-n)(v-n) on 97,\00N and with @ - n on I in order to write (3.4d), (3.4f), the
normal part of (3.4¢), and the normal part of (3.4g) in a combined manner as (3.45¢).
Similarly, we identify T with 3" to write the tangent part of (3.4e) as (3.45d). Also
note that we have integrated by parts the terms in (3.45a) and (3.45¢) and half of
the advection term in (3.45b) in order to put the scheme into the form as the above
formulation, which readily reveals the symmetric and skew-symmetric terms. Also, we
have used the fact that w € H(div,Q) to conclude — <% (w-n)u,", v

t

>67’h\BQ
and have removed this term from (3.45d). We are now ready to prove well-posedness
of Formulation 3.5 and its local solver.

THEOREM 3.6. (well-posedness of Formulation 3.5)
Suppose that 7, > 0 and 1, > 0 (which is always true for 7, = 70 and 7, = 7).
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Then Formulation 3.5 is well-posed in the sense that given f and wp, there ezists a
~ N . ~1 ~
unique solution (Lh,uh,ph,uz,fh) in Gp XV xQpxV, xF.

Proof. Tt is sufficient to prove that if f = 0 and up = 0, then (Lh, Up, Ph, 17,2, ﬁ)

is zero. We can rewrite (3.45) as

Asym ((Lh7Uh,ph,’aZi7fh) ’ (G7'U7q76t7./g\))
+ Gskew ((Lh,uhaphaazi,fh) ) (G;Ua%@t,ﬁ)> =1 (G,vaq,6t7§>
where

Asym ((Lhauh7ph7a)}:{iafh) ) (G,’v,q,@t,/g\)) =Re (Lh7G)Th + <Ttu;mvt>6g

, 1 N
t 7At,1 t 7/\t - . 7 o~
+ <Tt (uh “h ) A >6Th\89 + <7-n (fh fh) g g> ’

oTh

Gskew ((Lh,’ll.h,ph,’azi, fh) ’ (G7 v,q, 6ta/g\>) = (V’Lth, G)Th + (Lh7 V’U)Th

(o V) 4 (Vewn) + (Flvem) = (e n@)or, + (uf, Gn)

; 1
t ~t,1 ~t
— (Lm0, — <uh 7Gn>an\ag + <Lhn’v >6Th\89 — 5w @w o)y

1 1 b 1 ~
+§(Vuh,v®w)7-h+7<(w-n)u2’ ,'ut> —7<(w-n)u}"1,vt

2 aT\oQ 2 >8Th\aﬂ ’

and
~t ~ ~
l (GavvtLv 79) = (.fav)Th - <uD : n7g>BQ
1 ~ti ~t.D .t atD
_ <2(w ‘n)u)' —nuy v o + <uh ,Gn>8Q ,
where we have have written for simplicity the combination of test functions

(3.46) g:= fn~[Gn]+q+%('w~n)(von).

Setting f = 0 and up = 0 (and therefore ﬁ',‘;’D = 0) gives I = 0, and setting
(G,v, q,%t,§> = (Lh,uh,ph,ﬁf;i, ﬁ) gives agpew = 0. All that remains is the agym
terms, giving

~ti ~ti
(3.47) Re (Lp, Lh)Th + <7't (uz — Uy ) ,UZ Uy >8Th\8§2

1 . .
+<Ttu2?uz>39+< (fh_fh>afh_fh> =0.
Tn OTh
All the terms on the left side of the preceding expression are nonnegative and therefore
must each be zero. Thus Ly = 0 in Tp, u}, = @)’ on &, u}, = 0 on 99, and
ph—l—%(w-n)(uh-n):fh on &,.
Equation (3.45a) reduces to (Vuy, G)y. = 0, and since VV', C Gj, we can set

~t,3

G = Vuy to conclude that uy is elementwise constant. But since uz = u, on
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&7 and 4y, is single valued on &2, and since (3.45¢) reduces to (uy, - n,9)s7, = 0, the
tangential and normal components of u;, are continuous across each internal interface,
and therefore uy, and is globally constant. Since we already have concluded that w},
is zero on 99 (and additionally (3.45e) implies the normal component of wy is zero
on 99), we can conclude that uy, and @), are zero.

Integrating (3.45b) by parts gives (Vpy,v),, = 0, and since VQ, C V', we can
set v to Vpy, to conclude that pj, is elementwise constant. Because py = ﬁl on &y, pp
is globally constant. Then (3.31) implies p, and f;, are zero. d

THEOREM 3.7. (well-posedness of the local solver of Formulation 3.5)

Suppose that 7 > 0 and 7, > 0. Given f, 'ﬂz, and J/“\h, there exists a unique solution
(L, up,pn) in Gp X Vi, x Qp, to the local equations (3.45a)—(3.45¢).

Proof. 1t is sufficient to restrict our attention to a single element, and prove that if
f, 17,2, and f, are zero, then the solution (L, u, pp) is zero. We can rewrite the local
problem associated with Formulation 3.5 as find (Lp, wp,pp) in Gp(K) x Vi (K) x
Qr(K) such that

1
(3.48) Re(Ly, G)g + (reuf, vy, + <Tfh,g>
n OK
— (Vup, G) g + (Ln, V) g — (pr, V- 0) o + (V- up, @) ¢

1 1
-3 (up @ w, Vv) . + 3 (Vup, v @ w), + (uj, Gn>aK - <Lhn’vt>aK

~ 1 ~ I
=(f,v)+ <uz, Gn>aK — <2 (w-n) uz — Ttuz,vt>

- <fh’v ' n>6K + <Tlnfh’g>

for all (G,v,q) in G(K) x V,(K) x Qn(K), where f}, is defined as in (3.23) and g is
defined as in (3.46). Setting f, ﬁz, and fp, to zero, and setting (G, v, q) = (L, un, pr),
we have

oK

OK

1
(349) Re (LhaLh)K+<Ttu27uz>aK+ <Tfh7fh> =0.
n 0K

Thus L, =0 in K, andu’;l:0andph+%(w-n)uh-n:00n6K.

What remains of (3.45a) gives that wy, is constant in K, and since u}, = 0 on
0K, that u, = 0 in K. Integrating (3.45b) by parts gives that pp is constant in K,
and since py, + 3(w - n)(uy, -n) =p, =0 on IK, that p, =0 in K. 0

Finally, we note that the condensed global system associated with Formulation 3.5
takes the form
_|
=& |

A B
(3.50) [ C D ]
where A and D are positive semi-definite and constraining one degree of freedom
associated with f5 (which is done to enforce (3.31)) renders D positive definite.

(/jt
F

3.4. Numerical Results. We consider as a numerical test problem the same
problems as considered in the previous section on the Stokes equations. The problem

This manuscript is for review purposes only.



1198
1199

1200

NEW HDG METHODS FOR THE STOKES AND OSEEN EQUATIONS 33

is an analytical solution by Kovasznay [12] to the two dimensional incompressible
Navier-Stokes equations. The solution is given by

(3.51) w1 = 1 — exp Az cos 2mxa,
(3.52) Uy = —— exp Az sin 27w xa,
2
1
(3.53) p=—gexp 2\17.

A domain of [0, 2] x [—0.5, 1.5] is considered, with the exact velocity solution prescribed
as Dirichlet boundary conditions on all parts of the domain boundary. Setting f = 0,
w = u, and up = u, we compute on a mesh of N x N tensor product square elements,
defining the element size h := %

In Figure 3, the numerical solution w;, and py are plotted. In Figure 4, the L%(Q)
error of the volume unknowns (Ly,up,pr) are plotted along with their convergence
rates. The left column of plots shows the L? error obtained using the @ flux (3.20)
on all skeleton faces (i.e., Formulation 3.2), while the right column shows the L?
error obtained using the (@, f,) flux (3.22) on the interior skeleton faces and the @y,
flux (3.20) on the boundary skeleton faces. In both cases 7; and 7, are chosen as
the upwind parameters 7 and 70, respectively. As expected, the errors using the
two versions of the Godunov flux are virtually identical. In both cases, the observed
convergence rates are k + 1 for uy, and close to k + 1 for Ly and py,.

Next we demonstrate the utility of the HDG schemes for the Oseen equations
for solving the (nonlinear) incompressible Navier-Stokes equations. If we consider
the Oseen equations (3.1) to be a linear map w +— wu, then any fixed point of that
mapping is a solution to the steady state incompressible Navier-Stokes equations.
With this in mind, we can use the general Oseen HDG scheme (3.4) in an iterative
manner to numerically solve the incompressible Navier-Stokes equations. Omitting
the specification of trial/test spaces for simplicity, we can express the Oseen HDG
schemes as solving

(3.54) a (w;Lh,umpmﬁh; G,v,q,f/) =1 (G,mq, ‘7) ,

where ﬁh and V represent the global unknowns and test functions, respectively.
For example, for Formulation 3.2 with the average edge-pressure modification, Uy,

represents (uy,, pp) and V represents (v,4), and for Formulation 3.5, U, represents

(@), fi) and V represents (%', §). Then, we can define one step of the Picard iteration

. N .
as solving for (L’;f7 upt, pit, Uy, ) using

(3.55) a (uzl’l;LZ”,UZ",pznv U, ;G,v,q, ‘7) =1 (G,v,q,f/) .

It remains to define stopping criteria for the nonlinear iteration. One possible stopping
criterion involves using a residual r™ € V', to the discretized momentum equation
that we define by

(3.56) (r'"v) =a (uhm, Ly, uy, prt, [71:, 0,v,0, 0) —1(0,v,0,0)

for all v in V', and stopping when

(357) ||7°mHL2(Q) < 1)
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Fic. 3. Oseen HDG schemes: Kovasznay flow problem solution - wpy (top left), wpo (top
right), and py (bottom).

Algorithm 3.1 Picard Iteration for Steady Incompressible Navier-Stokes HDG
Schemes.
set initial guess u%, choose stopping tolerance J, and set m =1
while true do .
solve for (Lhm,u?f,pzn, U, ) using (3.55)
if (3.57) is true then
break
end if
m<+—m+1
end while

1242 for some & > 0. The Picard iteration is outlined in Algorithm 3.1

1243 Using the Picard iteration, we can solve the Kovasznay problem by applying
1244 the boundary conditions up as the exact solution w and applying zero forcing. In
1245  Figure 5, the L?(Q) error of the volume unknowns (L, wy,, pp) are plotted along with
1246 their convergence rates. The left column of plots shows the L? error obtained using
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Fi1G. 4. Oseen HDG schemes: Kovasznay flow problem L? convergence of volume unknowns
using up, flur (3.20) (left), using (uh,fh) fluz (3.22) (right).

the 4y, flux (3.20) on all skeleton faces (i.e., Formulation 3.2), while the right column
shows the L? error obtained using the (@Z,fh) flux (3.22) on the interior skeleton
faces and the u, flux (3.20) on the boundary skeleton faces. In both cases 7 and
T, are chosen as the upwind parameters 70 and 70, respectively. In both cases, the
tolerance for the stopping criterion (3.57) was taken as 0 = 1071% in order to avoid
that the error plots level out. For the u;, flux, 10-11 iterations were needed in order to
reach the stoppmg criterion regardless of polynomial order or mesh refinement level.
For the (@}, fh) flux, it took 11-12 iterations regardless of polynomial order or mesh
refinement level. In both cases, an initial guess of zero was used. Again, the errors
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F1G. 5. Oseen HDG schemes: Kovasznay flow problem nonlinear solution with Picard iteration
- L? convergence of volume unknowns using uy, fluz (3.20) (left), using (Gh, fr,) fluz (3.22) (right).

using the two versions of the Godunov flux are virtually identical. In both cases, the
observed convergence rates are k + 1 for uy, and close to k + 1 for Ly and pp, which
are the same convergence rates as for the linear Oseen scheme.

3.5. Discussion. Through the upwind HDG methodology [2], we have derived
two families of HDG schemes for the Oseen equations. One scheme is based on the 4,
flux, and can be related to the scheme analyzed by Cesmelioglu et. al [5]. Rearranging
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the second term of (3.20), we can write
—Lin+pin+ (w-n)uj, = —Lyn +ppn+ (w - n)uy

et

If we denote the stabilization tensor used in [5] by S¢ := g-7¢N + f-7°T, then we
5 : _1._c_1 L1 c_1
can recover the scheme from [5] by choosing 7, = g7y —sw-nand 7, = g577 —sw-n

in Formulation 3.2.

Some comments are in order regarding the difference between these similar fluxes.
First, we have already shown in the well-posedness for Formulation 3.2 that we must
only choose 7, > 0 and 7, > 0 for well-posedness, which is always true in particular
for the upwind flux parameters 7 and 7. So, if we would like to define a scheme
with JK-wise constant, skeleton face-wise constant, or globally constant stability
parameters 7y and 7, the only restriction on those stability parameters is that they are
positive. On the other hand, using the scheme analyzed in [5], if we would like to define
a scheme with 0K-wise constant, skeleton face-wise constant, or globally constant
stability parameters 7C and ¢, we must ensure that min (iTtC - %w . n) >0 0K-
wise, skeleton face-wise, or globally.

Second, it may appear that the form of the flux in [5] with (w - n)uy;, is a simpler
form of the flux than the one in (3.20) which has the terms 1 (w - n)@y, + 3 (w - n)uy,.
But as we put the advection term in Formulation 3.2 into a form which ensures the
skew symmetry of the volume terms upon discretization,

1 1 1
—(up @ w, Vo), = —3 (up ®@w,Vv)r + 3 (Vup,v@w), — 3 (w-n)up,v)yr, »

the only advection boundary term remaining in Formulation 3.2 is £ ((w - n)@p,, v) oTh
whereas putting the formulation analyzed in [5] into a similar form gives advection
boundary terms as ((w - n)u;, — +(w - n)u, v>8Th' Because of this and the discus-
sion in the previous paragraph, we favor defining the stabilization parameters as in
Formulation 3.2 for the Oseen HDG scheme based on the u;, flux.

Third, the formulation in [5] with constant stability parameters (satisfying the
conditions already discussed) was proven to converge at order k + 1 for equal order
total degree (simplicial) elements for sufficiently smooth solutions. Here, we have
numerically demonstrated the convergence of Formulation 3.2 for 2D tensor product
elements, but have made no theoretical claims. This is reserved for future work.

The second family of schemes that we have derived is based on the (@}, fi,) flux.
These schemes are new schemes that are published only in this work (at the time of
writing). As opposed to the HDG schemes based on the uy, flux, these HDG schemes
do not require special modifications to achieve well-posedness of the local solver. Thus
we avoid the iterative nature of the augmented Lagrangian method, and we avoid the
introduction additional unknowns of a different nature and the saddle point system
that arises from the average edge-pressure method.

It should be reiterated that we have assumed V - w = 0 throughout this section
by setting ((V - w)up, v) = 0 upon integration by parts of half the advection term in
(3.4b) to write (3.30b) and (3.45b). When using these schemes iteratively to solve the
incompressible Navier-Stokes equations using the Picard iteration outlined in the pre-
vious section, we take w to be uZ’_l when solving the mth iterate. It can be seen from
(3.30¢) and (3.45c¢) that wy, is only weakly divergence free, and not exactly divergence
free. It is an option to perform a postprocessing on the velocity in order to obtain
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a postprocessed velocity which is exactly divergence free and lies in H(div, Q) [8],
and then to use the postprocessed velocity as w in the next iteration. Postprocessing
is not explored in this work, however, and we simply use the previous iterate of wy.
However, we still use Formulations 3.2 and 3.5 as they are written. With this in mind,
it can be interpreted that we have added —%(V -w)u to the left side of the momentum
equation (3.1a) and therefore have added the source term —% ((V - w)up, v). to the
left side of (3.4b). This term will then cancel the term of opposite sign arising from
integration by parts that we have up to this point assumed to be zero on the basis of
w being divergence free.

A similar idea applies to the conservation conditions (3.30d) and (3.45d), where

we have assumed w € H(div, Q) in order to exclude the —3 ((w - n)ap, V) o700 and

1 ~ti ~t
—35 w - -Nn)u v
2 <( ) >8Th\6§2

is taken as the previous iterate of uy, these terms would no longer be exactly zero,

so their omission is interpreted as an approximate enforcement of conservation, or as

adding the stabilization terms % ((w - n)ap, V) o7, \00 and 1 <(w n)a)’, v

terms in Formulations 3.2 and 3.5, respectively. When w

to
>67’h\aﬂ
the conservation conditions of Formulations 3.2 and 3.5, respectively. It is interesting

to note that using the }h flux (3.21) avoids this issue altogether.

4. Conclusions. Through the upwind HDG framework, we have introduced
three new HDG schemes for the Stokes equations and three new HDG schemes for
the Oseen equations. One Stokes scheme and one Oseen scheme uses a numerical
flux based on the tangent velocity trace unknown and an additional scalar trace un-
known. The well-posedness analysis reveals that the local solvers associated with
these schemes are well-posed without modifications. This is in contrast to the HDG
schemes based on the full trace velocity, which require modifications that either re-
quire an iterative solution procedure, or introduce additional unknowns and result in
a saddle point system. Numerical studies show that the different fluxes give solutions
that are nearly identical.

Appendix A. Notation.

In this appendix we review common notation and conventions that apply to the
entirety of this work. The spatial dimension of the problem under consideration
is denoted by d. Let © C R?% d = 2,3, be a bounded domain and its boundary
09 is a Lipschitz manifold. We partition Q into disjoint elements K (simplices or
quadrilaterals/hexahedra), and define 7, := {K} as the collection of elements. We
define 0T := {0K : K € T} as the collection of element faces (where we use the
term “face” regardless of the spatial dimension). For any K, e = 0K NdNisa (d—1
dimensional) boundary face if e has a nonzero d — 1 Lebesgue measure. For any two
distinct elements K~ and K+, e = 9K~ NAK ™ is an interior face if e has a nonzero
d — 1 Lebesgue measure. The collection of all interior faces is denoted by £} and the
collection of all boundary faces is denoted by 5,‘? . The mesh skeleton &, := &7 U 5,? is
the collection of all faces, boundary and interior.

We use (+,)p or (-,-) p to denote the L?-inner product on D if D isa d or (d—1)
dimensional domain, respectively. For vector (first order tensor) valued functions or
second order tensor valued functions, these notations are naturally extended with a
component-wise inner product. We define the gradient of a vector (first order tensor),
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the divergence of a second order tensor, and the outer product symbol ® as

8’LLZ' d 8L1
A1) (Vw), =52 (V-L),=) 5
J j=1

s (a®b)” :aibj = (abT)
J R4
In general, we denote vectors by bold, italicized symbols, and we denote matrices and
tensors by non-italicized, bold, uppercase letters. When relevant, vectors are to be
interpreted as column vectors, and AT denotes the vector or matrix transpose.

In this work n denotes a unit normal vector field on a face of 0K, and it points
outward relative to the element K with which 0K is associated. If 0K~ NOK+ € &,
for two distinct simplices K —, K*, then n~ and n™ denote the outward unit normal
vector fields on 0K~ and KT, respectively, and n~ = —nt on 0K~ NIKT. We
simply use 1 to denote either n~ or n™ in an expression that is valid for both cases,
and this convention is also used for other quantities restricted to a face e € &,. We
use 7 to define a unique normal vector associated with the face 8K~ N dKT. That

is, . is chosen arbitrarily as either n~ or nt, so that either n = n~ = —n* or
n = —-n" =n"T. Associated with each skeleton face, we define the double valued sgn
by

1, if n=mn,
-1

ifn=-n

sgn := sgn(n) = {

3

which is either positive or negative one. We define N := n ® n so that the normal

component of some vector b can be written as b" := (b-n)n = Nb. Similarly, we
define T :=I-N = —nx (n x ), where I is the identity matrix, so that the tangential
component of some vector b can be written as b’ := —n x (n x b) = Tb.

Finally, in the derivation of numerical fluxes for HDG schemes with second order
tensor valued auxiliary variables, for conciseness and convenience we will use the
Kronecker product and vectorization operator [11, 17]. The Kronecker product is
typically denoted by the same symbol (®) as the tensor product. Because we use both
the tensor product and Kronecker product in this work, in order to avoid confusion we
will denote the Kronecker product by ® i (where the subscript refers to “Kronecker”).
For an arbitrary m x n matrix A and p x ¢ matrix B, the Kronecker product AR xB
is defined by

allB e alnB
amiB ... a,,B

or, more concisely, (A®KB)p(i—1)+k,q(j71)+z = A;;Bi;. Among the useful properties
of the Kronecker product are the following:

(A.3) (AoxB)" = AToxBT,

(A4) (A®KB) (CoxD) = (AC) ®k (BD).

The vectorization operator, vec, maps a matrix to a vector that is composed of the
columns of the matrix “stacked” on top of each other. For example a 3 x 3 matrix L is
mapped to the column vector vec (L) = (L11; La1; Ls1; L12; Loo; Lsa; L1s; Lag; Lss). A
convenient relationship between the Kronecker product and the vectorization operator
is

(A.5) vec (ABC) = (CT®xA) vec(B).
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Appendix B. Characterization of HDG Schemes for the Stokes Equa-
tions.

For conforming finite element methods, it is a relatively easy task to determine the
form that the matrix structure will take. For the Stokes equations with homogeneous

Dirichlet boundary conditions, a conforming finite element method looks like: find
(wn,pr) € Vi x Qn C HY(Q) x LE() such that

o (Vau, Vo) — (o1, V) = (,0)g

(B-Q) - (V *Up, Q)Q =0,

for all (v,q) € V;, x Qy, for some stable finite element space pair (V,, Qn). Here the
letters V), and @), are reused and are not meant to refer to (2.5), and L3(€2) refers
to functions in L?(Q) with zero average. It is clear that the matrix associated with
(B.1) will take the form

308}

For the HDG schemes for the Stokes equations in section 2, it is not clear what form
the condensed global system will take just by looking at the weak form of the HDG
scheme. In this appendix, we prove the properties of the condensed global matrices
for the Stokes HDG schemes discussed in section 2.

B.1. Characterization of Formulation 2.5. In the following, we characterize
the statically condensed global system of the Stokes HDG scheme Formulation 2.5,
which uses the u; flux (2.16) and the augmented Lagrangian modification for well-
posedness of the local solver. The following characterization sheds light on the matrix
system associated with this formulation. Toward this goal, we define the following
local solvers, where S is a stabilization tensor defined in (2.25).

For p € ‘72, we define (L', uf’,pt/) in Gj x V', x Qy as the solution to

(B.4a) Re (LY, G) + (uh', V- G) — (k. Gn)yr 00, =0,

(B.4b) —(V-Lj,v). + (Vo) v); +(S(u} —p) V) arno0p T (Suj,v) s, =0,
1

(B.4c) Ar Pho @)y, = (uh, Va)p 4 (B 107000, = 0

for all (G,v,q) in G, x V', X Qp.
For U € Pk(ﬁﬂp)d, we define (LhU, uhU,phU) in Gy x Vi, x @y, as the solution to

(B.5a) Re (L, G).. + (uf/,V-G) . —(U,Gn)yq, =0,
(B.5b) — (V- LY, v)Th + (VphU,'u)Th + <SuhU’U>8Th\BQD
+(S (uf = U) ,v>8QD =0,
1
(B5C) E (p57Q)Th - (uhUv VQ)T;, + <U <N, Q>8QD = 0’

for all (G,v,q) in G, x Vi, X Qp.
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For g € L*(Q2), we define (LY, uy,p?) in Gj, x V', x Q, as the solution to

(B.6a) Re (L7, G), + (uf,V-G). =0,
(BGb) - (V : Lgﬂv)’]‘h + (vp}g“v)Th + <S’U,}g“’v>87-h = (gvv)Th ’
1

for all (G,’U,q) in Gh x Vi X Qh-
For r € Qp, we define (L}, u},p}) in G x Vi, x Q) as the solution to

(B.7a) Re (Ly, G), + (up,, V- G)y =0,
(B.7b) — (V- Ly, v)r + (Vpp,v)r + (Sup,v)sr =0,
1, . 1
(B7C) E (ph7 q)Th - (uhv Vq)Th = E (717 Q)Th )

for all (G,v,q) in G, x V', X Qp.
The local solvers (B.4)—(B.7) can be shown to be well-posed in an identical manner
to how the well-posedness of the local solver of Formulation 2.5 is shown in section 2.
At this point, we are in a position to state the main result.

THEOREM B.1. (characterization of condensed global system for Formulation 2.5)
The combined jump condition and Neumann boundary condition (2.31d) can be writ-
ten as

(B.8) a (ﬁﬁgk, @) =1(v),

where
. Gk . 1 LIS ik =
B9 a(@h0) = (R np) o+ (i) 4 (sul )
Tn T Th aNp

~ik . N
+ <S (uzh — ﬁ;k) ,up — 8>
ATi\O9D

=D ~D ~D
(B.10) b (@) == (fn: V)oa, + <_L:h n+p," n+ Suy” ’6>

and

0T \0p
+<7Lfn+ fn+Suf,ﬁ>
T Py h "L omnoan
1 k-1 1 k-1 1 k-1
+ <_L€7pn n_‘_phATph n_"_SuhATph ’,’v\> .
0Tr\OQD

Proof. Due to the linearity of the local solver (2.31a)—(2.31¢), we can decompose
the volume solution to (2.31a)-(2.31c) as

LE b k) — Lﬁi’k ay*  ayt LEK 8 Uk
(Li, uf, pi) = (L™ u,™ ,p, + (Lt w" o,

L Lk L
+(L£,u£,p£)+<L,ffph cupm e ppr )
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That is, (L}, u}, pf) is the sum of the solutions to (B.4)-(B.7) with p = @},*, U = @y,
g=f,andr = ﬁpﬁfl. Then, the combined jump and Neumann boundary condition
(2.31d) can be written as

~i,k A‘L k ~i,k
- <—Luh n+p," n+8S (u}f" u2k> ,ﬁ>
AT \OD

~D ~D ~D
—(-LY"n+ uhn—&—Suuh,'TJ> —<—Lfn+ fn+Suf,ﬁ>
< TP M amnean TP M oTNoan

1 k-1

Jred D), prt
— (=LA n+pAT ho n+SuAT rD —{fn.D >SQN'
oTN

=i,k

~i,k A7 k .
It remains to show — <—Luh n+p " n+8S (u;;h - ﬁ;k> ,ﬁ> =a (ﬁzlﬂ 5)'
OTr\OS2D

/\z k .
as defined by (B.9). In (B.da) take p = v and G = L;’ " in (B.4b) take p = ﬁzk
Az k
and v = uh, and in (B.4c) take p = v and ¢ = p . Summing the result, we have

ai,k o 1 AL k & ai,k ik o
ReL,* ,Lj + — Ar ph , Py +{(S{u," —uy" |, uy
Th Th T\ D

~1i,k ~1i,k ~1i,k
u D u,’ ~ u,’ ~
<Suhh ,uz> —<th n,v> —|—<phh ,v-n> =0.
o0p AT\ OTh\0%D

Therefore,

~ik ~ik
<Lzh n,'u> — <pzh , U - n>
A AT

ﬁ;Lk ~i.k ~ ~i,k ~
—(S{u,” —u,"|,v =alu, ,v). ]
AT\

We can conclude from Theorem B.1 that the condensed global system will take
the form

AU* = pr-1,

Inspecting (B.9), we can see that the block matrix A is symmetric and positive semi-
definite. We can further claim that A is positive definite. To support this claim
we must show a (uzk,ﬁ2k> 0= ﬁ;k = 0. Indeed, a (u;k,ﬁﬁlk) = 0 implies

~i,k ~i,k ~1i

& ik

LZ’L = 0, psh =0, uZ’“‘ = 0 on 9Qp, and u}f" = uh on E\INp. Then, with
i,k

n = uh in (B.4a), integrating by parts reveals that uh is elementwise constant,

and therefore globally constant since u,, @, ﬁ;k on EL\INp. Since IQp # B then
~ik
Uy,

u," =0 and therefore ﬁf{k =0.

B.2. Characterization of Formulation 2.6. In the following, we characterize
the statically condensed global system of the Stokes HDG scheme Formulation 2.6,
which uses the up, flux (2.16) and the average edge-pressure modification for well-
posedness of the local solver. The following characterization sheds light on the matrix
system associated with this formulation. Toward this goal, we define the following
local solvers, where S is a stabilization tensor defined in (2.25).
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For p € ‘7;, we define (L{', uf’,pt)) in Gj x V', x Q) as the solution to

(B.11a) Re (Lj,, G)Th + (up,, V- G)Th —(m, Gn>aTh\(’)QD =0,
(B.11b)

— (V- Ly, v)p + (VD) 0)g + (Suj, v) g + (S (uh — 1), )57\ 9a,, =0,
(B.11c) - ('u’;:a VCI)Th +(p-n,q— q>a7'h\aQD + <p_ﬁ’q>an =0,

for all (G, v,q) in G x Vi, X Qp.
For 8 € Py(9Tr), we define (Lﬁ,uﬁ,pﬁ) in Gy, x Vj, x Qp, as the solution to

(B.12a) Re (Lﬁ,G)T + (V- G)T —0,
h h

(B.12b) - (v : L’,f,v)Th n (fo,’v)n + <Su§,v>m —0,

(B.12¢) - (uQ,Vq)Th +(pia >8 — (B, = 0,

for all (G,v,q) in Gy, >< Vi xQp.
For U € Pk(ﬁQD , we define (LhU, uh N ) in G, x Vi, X @5, as the solution to

(B.13a) Re (L), G) . + (ui,V-G) . — (U, Gn)yq, =0,
(B.13b) ~(V-LF,v). + (Vo v), <Suh V) 0T\

+(S (uff —~U) 7v>BQD =0,
(B.13c) —(u \Va) ;. + (U - n,0)50, + <PZ]>§>8Th =0,

for all (G,v,q) in G, x V', X Qp.
For g € L*(Q2), we define (LY, uy,p?) in Gj, x V, x @, as the solution to

(B.14a) Re (LY, G) -+ (uf,v- G)Th, =0,
(B.14b) —(V-Lj, U)T;L (Vpi,v )Th (Suj, v >37‘, (g,v )
(B.14c) ~ (. Vo), +(fT) =0,

for all (G,v,q) in G, x Vi, X Qp.

The local solvers (B.11)—(B.14) can be shown to be well-posed in an identical
manner to how the well-posedness of the local solver of Formulation 2.6 is shown in
section 2.

At this point, we are in a position to state the main result.

THEOREM B.2. (characterization of condensed global system for Formulation 2.6)
The combined jump condition and Neumann boundary condition (2.35d) with the
additional condition (2.35e) can be written as

(B.152) a (ah a) Fb (@, pn) =1 (),

(B.15b) b (@) =2 (0),
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where
(B.16) a (6276) = (ReL}:‘;’,Lf)Th + <Su§;’u2>asm
(s (i —a) ot -v)
(B.17) b(@,¢) ==V nY)yr\ 00,
(B.18) h(©) == (fx:V)gny » + <7L25n topnt Su?fﬁ%n\@%
+ <—L,]:n +p,]:n + Su£’6>an\8ﬂp )
and
(B.19) b (¥) =~ <¢,a£’ '">aQD

Proof. Due to the linearity of the local solver (2.35a)-(2.35¢), we can decom-
pose the volume solution to (2.35a)—(2.35¢) as (Lp,wp,pp) = <LZ’L,uZh,th) +
~D ~D =D
(L ul™ pir) + (LZ’L L uy " ,pgh) + (L{,ui,pﬁ). That is, (Lp, up, pp) is the sum
of the solutions to (B.11)~(B.14) with = @, 8 = pp, U = @), and g = f. Then,
the combined jump and Neumann boundary condition (2.35d) can be written as
(B.20)
—{(—L¥n 4+ plin+8 (uﬁ}; - 'Tﬁ) ,6>
h Pr h h OT\Op

— (=L n + pi"n + Suf", v) — <—Lgfn +pgfn+Sug’?,i}>
7w \O1p OT\O9D

—(-Lin+pin Suf,§> =— U )
< BT+ PRt Suy, OTi\0 (fn >6QN

~ A~ o~

It remains to show that — <7La;”‘n + a;n +S (ua; — 1’21> v> =a (u ,v)
h by, h h> O\ h

as defined by (B.16) and that — (=L"n + p/"n + Suih’man\aQD = b(v,pp) as
defined by (B.17).
Step 1: Taking g equal to a (nonzero) elementwise constant in (B.12¢) gives

(B.21) =2
and
(B.22) - (uﬁ,vq)Th = 0.

Then setting (G,v,q) = (Lﬁ,ug,pg) in (B.12a), (B.12b), and (B.22), we conclude
by summing the results that

(ReL;, 1) ;

h

+(sufuf) =0
Uy, Up, oT:
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and therefore that L? = 0, and ug = 0 on O7},. Integrating what remains of (B.12a)
by parts, we conclude that uﬁ is elementwise constant and therefore zero. Then what

remains of (B.12b) implies that pg is elementwise constant, and therefore pi = .
Summarizing, we have that for any g8 in Py(97;), that (Lg,ug,pg) = (0,0,0).
Therefore — (=Lj"n + pi"n + Sup",v) \oap = 0(pn,0) .

Step 2: Taking ¢ equal to a (nonzero) constant in (B.11c) gives

(B.23) =0
and
(B.24) —(u},, Vo), + {1 nq—Dor 00, =0

In (B.11a) take p = ¥ and G = L:h, in (B.11b) take g = @), and v = u?, and in
(B.24) take p = v and ¢ = . Summing the result, and recalling (B.23), we have

(B.25) (ReL}jh,Lz)Th n <suzh,ug>a% i <s (uzh _ a;) ,uz>8ﬁ’\a%
< nh? afrh\anDJr Proo¥ ) o \oan

Therefore,

Liin, —{pin%n —{(s(ui )% —a (s
h P h nls =a (u,vll.
OTh\0QD 0T \0Qp OTh\0QD

We can conclude from Theorem B.2 that the condensed global system will take

the form
A BT v\l _ | R
-B 0 P o Fy ’

Inspecting (B.16), we can see that the block matrix A is symmetric and positive
semi-definite. We can further claim that A is positive definite. To clalm this we must

show a (uh,uh) = 0= @), = 0. Indeed, a (uh,uh) = 0 implies Lh =0, u;:h =0
on 0fp, and ugz = ﬁﬁl on £,\0Qp. Then, with u = @), in (B.11a), integrating by
parts reveals that u,, Yh s elementwise constant and therefore globally constant since
uh =) on £,\0Np. Since INp # 0, then uh = 0 and therefore @), = 0.

B.3. Characterization of Formulation 2.7. In the following, we characterize
the statically condensed global system of the Stokes HDG scheme Formulation 2.7,
which uses the (), fh) flux (2.18). The following characterization sheds light on
the matrix system associated with this formulation. Toward this goal, we define the
following local solvers, where

ﬁf1 atz Atz
fh = L _|_phL
1= —n-[Lin|+pin

etc.
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~1,% . .
For p € th, we define (L}, ul’,pt) in Gi x V), x Qp, as the solution to

(B.26a) Re (L, G) . — (Vuy, G). + (Tuy,Gn) g,
1
+ (Tuf) — p, Gn>67—h\aQD + <f}’f, -n- [Gn]> =0,
Tn T
(B.26D) Ly, Vo) — (0}, V- v) + (—Lin + 7, Tul, vt>mD
+ <—L2‘n + 7 (Tuh — ), vt>a7_h\69D =0,
1
(B.26¢) (V- uf, Q)7 + <7_f,’:, q> =0,
n T

for all (G, v,q) in G, x Vi, X Qp.
For v € F}, we define (L}, u},p]) in Gj x V}, X Qy, as the solution to

(B.27a) Re (Lj, G); — (Vu,G) . + (Tu;, Gn),
1 1
H(E U =nefenl) (e Gnl) o
Tn AT \OON Tn QN
(B.27Db) Ly, Vo). = (py, V- v)p
+ <—LZn + TtTuZ,vt>8Th + (y,v- '"'>8Th\aQN =0,
1 1
B21e)  (Voula)y + < (7 - 7),Q> n <fz,q> 0,
Tn AT \OON Tn o0

for all (G, v,q) in G, x Vi, X Qp.
For U € ?Z(@QD), we define (LY, ul/,pl) in Gj, x V;, x Q, as the solution to

(B.28a) Re (LY, G) . — (Vui,G) 1 +(Tuy ,Gn), o 0
1
+<TuhU_U7Gn>GQD +<flsjv_n[Gn]> :0’
Tn oTh
(B.28b) (LY. Vo), — (pf/, V- ), + (—Lin + TtTuhU7vt>6Th\6QD
+(-Ln+7 (Tuy —U) ,vt>mD =0,
1
' Tn oTh

for all (G,v,q) in G, x V', X Qp.
For F € Fj,(02N), we define (Lf,uﬁ,pf) in Gy, x V, x Qp, as the solution to

(B.29a) Re (Lj,,G) . — (Vuy,,G) . +(Tuy,Gn),
1 1
+<f,f,—n-[Gn]> +<(f,f—F),—n-[Gn]> =0,
Tn ATh\OON Tn 0N
(B.29b) (L, Vo) — (. V-v),

+{(-Lfn+ TtTuf,'ut>aTh +(F,v-n)y, =0,

1 1
(B.29¢) (V-uf,q)n+<f}fﬂ> +<(f;f—F),q> =0,
Tn AT \ON o0y

Tn
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for all (G,’U,q) in Gh X Vh X Qh-
For g € L?(Q), we define (LY, u?,p?) in G;, x V), x @, as the solution to

(B.30a)
1
Re (Li7 G)Th - (VU’Z7 G)Th + <Tu}gw Gn)a’[‘h + <Tf}€> -n- [G’I’L]> =0
n OTh
(B.30b) (LY, Vo), — (], V-v)p + (-Lin+7Tuf,v"), - = (g.v),
1
(B.30c) (V-ud,q) + <ng,q> —0,
n OTh

for all (G,v,q) in G, x Vi, X Qp.

The local solvers (B.26)—(B.30) can be shown to be well-posed in an identical
manner to how the well-posedness of the local solver of Formulation 2.7 is shown in
section 2.

At this point, we are in a position to state the main result.

THEOREM B.3. (characterization of condensed global system for Formulation 2.7)
The jump conditions (2.49d) and (2.49¢) can be written as

(B.31a) a (ﬁf{i7ﬁt> +b <3t, ﬁl) =h (at) )
(B.31b) b (a@",9) +a(Fi.9) = @),
where

(B.32)

~t,i ~t,1
~ti o~ u,’ ot u,’ ~t.,4 ot ~
a (ui’l,vt> = <Reth L} > + <Tt <Tuhh - ufll) ,Tul — '
Tr

h

1 ~t,i - =t o~
+<f:h af}’:)t> +<TtTuZh 7TUZt> )
Tn OTn 11975)

B.33 d(Ai,A> = (R Lﬁ‘,Lg) < Tult, T §>
( ) b9 el h7_h+ Teluy L)

1 I ~ =~ 1 7 =
H( (=R i-a) ()
Tn ATH\OQN Tn 0N

>3Th \aﬂD

(B.34)

b(9".3) = (ReLf\Lf)  — (Vup'1f) - (L.Vuq) 4 (b1 Vo)
+<V ot @) +<T o' 19 > +<L6” T §>
U u n n u
h > Ph T h »™Hh T h 1% h
~t = 1 ¢ ~
_ T v T g> _— fv g
<Tt uha uh 87—}L+<Tnfh 7fh> 9

OTh

OTh

~D ~D
. 1 v == ,’/U\ — n Tt h, !
(B.35) 1 ( t) <TfN t>a§z + < Ly n o+ nTu" o >8T \0Q
N h D
N N
+ <—L£h' ’I’L—I-TtT’Ulih ,i?t> + <—L£n+TtTu£,17t>

T\ D AT\
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and
~D
(B.36)  12(9) == —(up n,9)yq, + <UZ’L f“h N >
OTH\OUN
1 7~ 1 R
+< " n+fhh,g> +<u£-n+f,{,g> :
Tn ATH\OQN Tn ATH\OON

Proof. Due to the linearity of the local solver (2.49a)—(2.49¢), we can decompose
the volume solution to (2.49a)—(2.49¢) as

L = (LB % L ult plh
( h7’u’haph> = h aph + y Up s Dp,
=~D =~D =D N N N
(G5 ) 4 (U ! o) 4 (L)
That is, it is the sum of the solutions to (B.26)—(B.30) with p = ﬁfl’i, v o= ﬁ,

U = ﬁiD F = th , and g = f. Then, the jump conditions and partial boundary
condition imposition (2.49d) and (2.49¢) can be written as

~t,i ~t,i . ~t,% At i
- <—LZh n+7 (Tu;:h - 1’221> 75t> <u;;h f >
OTr\022p OT\OQN

7 i st i 2\ ~
—Lhn+TtTuh,v> —< " n+f(fh f>a9>
< h h 8T \0%p 4 " OTH\ON
~D

< L n+TtTuh",At> <uzh fuh A>
0Tn\02p a7 \oN

< thn—i—TtTu ,ﬁt> —<U£Ah n+ fhh7§>
OTr\Op Tn T\ N

1
- —Lfn+7'Tuf,ﬁt> —<uf~n—|— f,A>
< h £ Th T \OD h Tnfh g DT\

= _<r:[‘fN7§t>aQ - <U'D 'na§>8QD .

N

~t,i ~t,i . .
It remains to show that — <—LZ*‘ n+ 7 (Tuh — ﬁzz) ,6t> =a ('EZ’Z, §t>
O\
=d (ﬁfb,/g\) as de-
At k3

fined by (B.33), that —< up L > — b (aij,g) as defined by
OTi\OSy

as defined by (B.32), that — <U£Z ‘nt L (fhi - ﬁzb) ’§>a7* \OQ
h N

(B.34), and that — <—L£’i‘n + TtTuﬁ‘,@t> =b (@t, f,’l) as defined by (B.34).

TN\
Step 1: In (B.26a) take p = ' and G = Lu’; , in (B.26Db) take p = uzl and

Atl

v = uh , and in (B.26¢) take p = ?' and ¢ = ph . Summing the result, we have

(B.37) (ReL}:‘*f,Lﬁt) < £ f,?t> +<7’tTuh Tuh>
Th OTh 121975

~t,i R . ati
+ <Tt (TuZ - ufj) , Tuy > - <LZ’L n,vt> =0.
T\ aTh\02p
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~t,i ~t,i
Therefore, <LZ}L n vt> < (Tuh ﬁzl) 6t> =a (ﬁ%l,$t>.
OTr\02p 9T \02p

Step 2: In (B.27a) take v = fh and G = LZ, in (B.27b) take vy = g and v = uf’“”
and in (B.27¢) take v = fh and q¢ = ph Summing the result, we have

o I
(B.38) (ReLﬁmL-g) <7‘tT’u Tuh> +< }f%f;‘i>
Th OTh Tn 0N
1 7 ~ ~ fi R
G A A, o 3),
<Tn W) OTA\O h I/ o o00x

Theretore, — (ufl n.g) (2 (= 5).9), 0= (F0)
erefore u" -n,g T\00 T fh 871\852 1

~t,i ~t,i Ati

Step 3: In (B.27) take vy =g and (G, v,q) = (—L h uh ,—py" > Summing
the result, we have

~t,i At 2 ~t,i
(B.39) (Lg,L“h ) (L,’;, Vu, " ) (Vuh, L," )
Th Th Th
- (V : U%pgh’l) (ph7V u}: 1) - <Lhn T’u’; 1>
Th Th OTh

—~ ~t,1 ~t,i ~t,i
- <TuZ,LZ“ 'n,> <TtTuh,Tuu“ > < fh, e >
OTh OTh OTh

~t,i

1 L abt
- <g o > + <g,u}f’” n> =0.
Tn OTr\0Q N OTh\OQN

~t,i ~t,i
Therefore, — <uh 'n,,§> _ <Tlf:h 7§> =-p (ﬁzzﬁ)
T \OON " AT\ N

Step 4: In (B.26) take u = o' and (G,v,q) = (Lih, —uih,pi"). Summing the
result, we have

(B.40) (Lih. L )T} - (Lﬁh,VuE’)T} — (Vui.Ly) }
Vot aR ) (V) (i)
( Uh Ph . by, up . R T LU oT
+<Tu’?’i atn> — <TtTu h Tu6/> + LA fﬁt
ho T o, R T U Ry ey
<th ') + <TtTufh o) —0.
T\ D OTh\Op
Therefore, <th At> <TtTuhh,ﬁt> =b (ﬁt, f,ﬁb) O
dTh\OQD OTh\OQD
We can conclude from Theorem B.3 that the condensed global system will take
the form
A BT1|U0 | [HRA
-B D F| | |
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Inspecting (B.32) and (B.33), we can see that the block matrices A and D are sym-
metric and positive semi-definite. We can further claim that the matrix D is positive

definite. To claim this we must show d (fh, fh) =0= ffl =0. Indeed, d (ﬁlw ﬁi) =0
implies Lih =0, ph = fh on &\, ph =0 on 092y, and Tu =0 on &,. Then,

with v = fh in (B.27b), integrating by parts reveals that p,fl is elementwise constant,

and therefore globally constant since pf h fh on E\OQN. If 90N # 0, then pf =0
and therefore fh = 0. Otherwise, constraining one value of fh to zero gives that

Py = fh = 0. In this case, we can only claim positive definiteness for the D matrix
that results from reducing the matrix by the one constrained degree of freedom.

Appendix C. Additional Fluxes for the Oseen Equations.

In section 3, we derived HDG schemes for the Oseen equations, where four dif-
ferent fluxes can be used. These four fluxes are based on four different forms of the
upwind flux. These four forms of the upwind flux are not the only ways we can express
the upwind flux, but they are the four that we know lead to well-posed HDG schemes
when used on all faces of the mesh skeleton. When the problem being solved has
boundary conditions on —é [Vu] n + pn, or its normal or tangential components, it
could be feasible to use an HDG flux that directly approximates these quantities so
that the boundary conditions can be directly prescribed to the hatted trace variables.
We present three numerical fluxes in this appendix that can serve such a purpose.
First we rewrite the numerical flux (3.8) using the identities (3.17).

The —L*n + p*n flux: The quantity u4* can be eliminated from (3.8) so that
(3.8) can be written as

~(ut (T g N) @ -L)ns p-p)nl) e n
-L*n+p'n+mu
+m( +mT+TO+mN)(_(L_L*)n+(p_p*)n)7
u-n+ o [-n- [(L-L")n]+ (p—p")]

(C.1) Ff =

n

The (Tu*, h*) flux: The quantities TL*n and Nu* can be eliminated from
(3.8) so that (3.8) can be written as

(Tu +N'U:+7_o+m (—n-[Ln]+p—h*)n) RN,
h* n—TLn+mNu+%Tu*+%Tu
+7PT (u —u )+m O+m (—n - [Ln]+p—h*)n, ’
wn b ol (cn- (L 4 p - )

(C.2) F, =

where h* := —n - [L*n] + p*.
The (Nu*, TL*) flux: The quantities N (—L*n + p*n) and Tu* can be elimi-
nated from (3.8) so that (3.8) can be written as

—(Nu*+Tu— ol (L-1) >®n,

(C.3) F*— | “NLn+pn—-TL'n + mNu + TNu + mTu
" +7ON (u — u*) — m—iem O+m (L L*)n
u*-n

As before, in order to define the numerical flux (3.18) we append a subscript h
to the terms in (C.1)—(C.3), replace the starred quantities on the right side of (C.1)-
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(C.3) with hatted unknown quantities residing on the mesh skeleton, and replace 7
and T,? with 7; and 7,,. The following numerical fluxes are the result.

The IALh flux (where ﬁh approximates —L*n + p*n):

- (Uh + (ﬁT + ﬁN) (—Lhn + ppn — Sgnﬁh)> R n,

—sgnhy + mu

C4) Fr, = ~
(C4) F, +m(T+1mT+ - JlrﬂN) (—Lhn+phn—sgnhh) ,
tT 5 nT 5 N
up - N+ Tni% [—'I’L- (Lhn)+ph—hh~ﬁ]

The (@', hy,) flux (where hy, approximates —n - [L*n] 4 p*):

_ (az + Nuy, + ﬁ <7n~ [Lhn] + ph 771h) n) Xn,
. han — TLyn + mNu + %1’12 + Zuj,
(C.5) b= S . B -
+7T (un = Un) + Mo (- [Lan] +pn — b ) n,

wy ot (—n- (Lan] + pn — ﬁh)

~n At ~n . ~ At . ~
The (4}, h;) flux (where @} approximates u* -7 and h,, approximates —TL*n):

P~ ~t
t

(C.6) o= | ~NLan+pimt sgnhy, + @R + 2 Nuy, + mTu),
+7n (Nuh — ﬂﬁﬁ) + mﬂﬁ <—TLhn — sgnhh) ,
2
sgnuy
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