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Abstract. In this work, we derive new hybridized discontinuous Galerkin methods for the Stokes4
and Oseen equations. The schemes are based on the first order schemes defined using the velocity5
gradient as an auxiliary variable. For the Stokes equations, through an upwind HDG methodology,6
we define four HDG schemes, differing only in the definition of the numerical flux. One of the7
schemes uses the velocity as the trace unknown, which is related to existing methods for the velocity-8
pressure-gradient form of the Stokes equations. It is known that for these schemes, modifications9
are required to so that the local solver uniquely defines the pressure. One modification requires10
that the global trace system be solved iteratively, while the other modification introduces additional11
elementwise constant global unknowns and renders the trace system a saddle point system. Of12
our three new schemes, one scheme uses the tangential velocity and an additional scalar as trace13
unknowns. This scheme has the unique advantage that the HDG local solver is well-posed without14
modification. For the Oseen equations, we also define four upwind HDG schemes. Again, one is15
related to existing schemes, while the other three are new, one with the advantage of having a well-16
posed local solver without modification. For the advantageous schemes, we prove well-posedness,17
demonstrate numerical convergence, and compare the results to those of the existing schemes.18
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1. Introduction. In this paper we propose three new hybridized discontinuous21

Galerkin (HDG) formulations for the Stokes equations and three new HDG formula-22

tions for the Oseen equations. The hybridization technique and post-processing have23

been proposed to reduce computational costs of saddle-point problems and to improve24

the accuracy of numerical solutions [1]. HDG methods were developed by Cockburn,25

coauthors, and others to mitigate the computational costs of classical discontinuous26

Galerkin (DG) methods. They have been proposed for various types of PDEs in-27

cluding, but not limited to, Poisson-type equations [7, 9, 15, 10], the Stokes equation28

[6, 14], the Oseen equations [5], and the incompressible Navier-Stokes equations [16].29

In HDG discretizations, the coupled unknowns are single-valued traces introduced30

on the mesh skeleton, i.e., the faces, and for high order implicit systems the resulting31

matrix is substantially smaller and sparser compared to standard DG approaches.32

Once they are solved for, the volume DG unknowns can be recovered in an element-33

by-element fashion, completely independent of one another. Therefore HDG methods34

have an intrinsic structure for parallel computing which is essential for large scale35

applications. Nevertheless, devising an HDG method for coupled PDE systems is36

challenging because construction of a consistent and robust HDG flux is nontrivial. We37

adopt the upwind HDG framework proposed in [2, 4, 3] since it provides a systematic38

construction of HDG methods for a large class of PDEs.39

In this section, we outline the basic concepts of HDG in the context of a general40

class of PDEs and review the upwind HDG framework [2]. The reader can refer41

to Appendix A for the common notation used throughout this work. Consider the42
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2 S. SHANNON AND T. BUI-THANH

abstract first order system of PDEs43

∇ · F (u) +Cu :=
∂u

∂t
+

d∑
l=1

∂Fl(u)

∂xl
+Cu = f in Ω,(1.1)44

45

where the vector Fl = Alu is the lth component of the flux, u ∈ Rm is the unknown46

solution, and f is a forcing term. For simplicity, the matrices Al are assumed to be47

continuous across Ω.48

Formally, multiplying (1.1) by an elementwise continuous test function, integrat-49

ing over every element K of a finite element mesh Th, and integrating by parts, we50

have51

− (F(u),∇v)K + (Cu,v)K + ⟨F(u) · n,v⟩∂K = (f ,v)K .(1.2)5253

The boundary term F (u) · n can be written as F (u) · n = Au, where54

A :=

d∑
l=1

Alnl.(1.3)55

56

The treatment of this boundary term in the numerical scheme is what differentiates57

HDG and traditional DG. Working now with discrete (polynomial) function spaces,58

replacing the boundary term by a single-valued flux that depends on the solution uh59

on each side of the interface, F∗
h = F∗

h(u
−
h ,u

+
h ) gives a steady-state DG scheme60

− (F(uh),∇v)K + (Cuh,v)K +
〈
F∗

h(u
−
h ,u

+
h ) · n,v

〉
∂K

= (f ,v)K .(1.4)6162

For steady-state problems and time-dependent problems with implicit time discretiza-63

tion, the DG scheme (1.4) leads to a system where all the unknowns are globally cou-64

pled. Instead, to construct an HDG scheme, we introduce the trace quantity ûh and65

replace the flux on the boundary in (1.2) by a one sided HDG flux F̂h = F̂h(u
−
h , ûh),66

which gives67

− (F(uh),∇v)K + (Cuh,v)K +
〈
F̂h (uh, ûh) · n,v

〉
∂K

= (f ,v)K .(1.5)68
69

To close the system, we enforce that the normal flux is (weakly) continuous across70

element interfaces,71 〈
F̂h (uh, ûh) · n, v̂

〉
∂Th\∂Ω

= 0(1.6)72
73

for test functions v̂ that are continuous on each skeleton face (but are discontinuous74

at skeleton face interfaces). The HDG scheme comprises the local solver (1.5), the75

transmission or conservation conditions (1.6), and boundary conditions, which are76

prescribed through the trace unknowns on the domain boundary. The main point of77

the upwind HDG framework [2] is the definition of the HDG flux. The Godunov flux78

is traditionally written as79

F∗ · n− =
1

2

[
F (u−) + F (u+)

]
· n− +

1

2
|A|

(
u− − u+

)
,(1.7)80

81

but can also be written in terms of the upwind state u∗ as82

F∗ · n = F (u) · n+ |A| (u− u∗) .(1.8)8384
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NEW HDG METHODS FOR THE STOKES AND OSEEN EQUATIONS 3

This one-sided expression of the Godunov flux leads naturally to the definition of the85

HDG flux by treating the upwind state u∗ as an unknown û,86

F̂h · n = F (uh) · n+ |A| (uh − ûh) ,(1.9)8788

where we have assumed that A admits an eigendecomposition RDR−1. Here D is89

a diagonal matrix of eigenvalues and |A| := R |D|R−1 where |D| is D with each90

entry replaced with its absolute value. Thus, the upwind HDG framework provides a91

unified methodology by which to derive parameter-free HDG schemes by hybridizing92

the Godunov flux. We refer the reader to [2] for more details. It may appear that93

we have m trace variables that must be solved for, but we can reduce the number of94

trace unknowns when we consider each PDE specifically, as will be demonstrated in95

sections 2 and 3.96

For linear systems, the HDG scheme (1.5) and (1.6) gives rise to the following97

matrix equations, where U represents the vector degrees of freedom of uh, and Û98

represents the vector degrees of freedom of ûh,99 [
A B
C D

]∗{ U
Û

}
=

{
Fl

Fg

}
.(1.10)100

101

Here, the subscripts l and g stand for local and global, respectively. Nonzero terms102

in Fg may result, for example, depending on the boundary conditions and how they103

are enforced.104

The power of HDG comes from the following.105

• The HDG flux is one-sided, i.e., for a given element, the flux depends only106

on the solution in that element and the neighboring skeleton faces. Together107

with the fact that the discontinuous basis functions are local to one element,108

this implies that A is block diagonal.109

• If the local solver (ûh,f) 7→ uh given by (1.5) is well-posed, then A is invert-110

ible.111

A consequence of these two points is that we can easily eliminate U from (1.10) by a112

static condensation procedure, and write113

U = A−1
[
Fl − BÛ

]
.(1.11)114

115

The global system (1.10) then reduces to116 (
D− C [A]−1 B

)
︸ ︷︷ ︸

K

Û = Fg − C [A]−1 Fl︸ ︷︷ ︸
F

.(1.12)117

118

In practice, K and F are formed by a local assembly procedure, Û is solved for from119

the reduced global system (1.12), and then U is recovered in an element by element120

fashion from (1.11).121

2. Stokes Equations. In this section, we construct HDGmethods for the Stokes122

equations based on the upwind HDG framework proposed in [2]. The HDG methods123

are based on the first order Stokes system defined through an auxiliary variable based124

on the velocity gradient. Through the use of this framework, we derive four different125

HDG schemes. One of the schemes is related to or is precisely the one defined in126

[14, 2]. The other schemes are new in this work. We prove well-posedness of two127

schemes that seem to be particularly useful, and present numerical results for these128

two schemes, showing that they give practically identical results.129
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4 S. SHANNON AND T. BUI-THANH

2.1. Construction of Upwind HDG Schemes. For notation used in this sec-130

tion and throughout this work, see Appendix A. The Stokes equations in dimensionless131

form read132

− 1

Re
∆u+∇p = f ,(2.1a)133

∇ · u = 0,(2.1b)134135

where Re := ρu0l0
µ is the Reynolds number, ρ is the fluid density, u0 is a characteristic136

speed, l0 is a characteristic length scale, and µ is the dynamic viscosity of the fluid.137

All parameters are assumed to be constant. We consider the boundary conditions138

u = uD on ∂ΩD,(2.2a)139

− 1

Re
∇u · n+ pn = fN on ∂ΩN ,(2.2b)140

141

where ∂ΩD ∩ ∂ΩN = ∅ and ∂ΩD ∪ ∂ΩN = ∂Ω. In the case that ∂ΩN = ∅, the142

compatibility condition on the Dirichlet boundary data
∫
∂Ω

uD · n = 0 should be143

satisfied, and we have to impose an additional constraint on the pressure. We choose144

this constraint to be the zero mean pressure
∫
Ω

p = 0. For simplicity, we consider the145

case where ∂ΩD ̸= ∅.146

Toward applying the upwind HDG framework outlined in [2], we first put (2.1)147

into first order form through the definition of an auxiliary variable. We have multiple148

choices as to how to define the auxiliary variable, leading to different HDG formula-149

tions. In this work, we define the auxiliary variable L through the velocity gradient,150

leading to a velocity-gradient-pressure formulation:151

ReL−∇u = 0,(2.3a)152

−∇ · L+∇p = f ,(2.3b)153

∇ · u = 0.(2.3c)154155

To define a general HDG scheme for the Stokes equations, we multiply (2.3) by a test156

function, integrate over the computational domain, integrate by parts, replace the157

boundary terms with a not-necessarily-single-valued HDG flux, then weakly enforce158

the single valuedness of the HDG flux. HDG schemes defined in this manner for (2.3)159

will take a general form consisting of the local equations160

Re (Lh,G)Th
+ (uh,∇ ·G)Th

− ⟨u∗
h ⊗ n,G⟩∂Th

= 0,(2.4a)161

(Lh,∇v)Th
− (ph,∇ · v)Th

+ ⟨−L∗
hn+ p∗hn,v⟩∂Th

= (f ,v)Th
,(2.4b)162

− (uh,∇q)Th
+ ⟨u∗

h · n, q⟩∂Th
= 0,(2.4c)163

164

the conservation equations165 〈
u∗
h ⊗ n, Ĝ

〉
∂Th\∂Ω

= 0,(2.4d)166

−⟨−L∗
hn+ p∗hn, v̂⟩∂Th\∂Ω = 0,(2.4e)167

−⟨u∗
h · n, q̂⟩∂Th\∂Ω = 0,(2.4f)168

169

and the boundary conditions170

⟨u∗
h, ŵ⟩∂ΩD

= ⟨uD, ŵ⟩∂ΩD
,(2.4g)171

⟨−L∗
hn+ p∗hn, ŵ⟩∂ΩN

= ⟨fN , ŵ⟩∂ΩN
.(2.4h)172

173
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NEW HDG METHODS FOR THE STOKES AND OSEEN EQUATIONS 5

In all of the HDG schemes we will derive, the discontinuous polynomial spaces in174

which we seek the volume unknowns (Lh,uh, ph) and to which their corresponding175

test functions (G,v, q) belong are as follows:176

Gh :=
{
G ∈

[
L2(Ω)

]d×d
: G|K ∈ Gh(K)

}
,(2.5a)177

V h :=
{
v ∈

[
L2(Ω)

]d
: v|K ∈ V h(K)

}
,(2.5b)178

Qh :=
{
q ∈ L2(Ω) : q|K ∈ Qh(K)

}
,(2.5c)179180

whereGh(K), V h(K), Qh(K) are total-degree or tensor-product finite element spaces181

defined on K that we assume to be of equal polynomial order k ≥ 1.182

The quantities u∗
h and −L∗

hn+ p∗hn are yet-to-be-defined, not-necessarily-single-183

valued numerical fluxes, which are function of the volume unknowns (Lh,uh, ph) and184

trace variables
(
L̂h, ûh, p̂h

)
. The trace variables reside in discontinuous polynomial185

spaces defined on the mesh skeleton, as do the interior test functions
(
Ĝ, v̂, q̂

)
and186

boundary test function ŵ. In what follows, we derive different choices for u∗
h and187

−L∗
hn+ p∗hn and analyze schemes that result from some specific choices. The fluxes188

we derive will have a minimal number of trace unknowns (d scalar unknowns) so that189

not all of the trace unknowns
(
L̂h, ûh, p̂h

)
(and their corresponding test functions)190

will exist as unknowns (and test functions). Related to this is the fact that not all of191

the conservation equations (2.4d)–(2.4f) must be explicitly enforced, as some will be192

automatically satisfied depending on the choice of the numerical flux. Additionally,193

the boundary test function ŵ will have a natural association with the interior skeleton194

test functions among
(
Ĝ, v̂, q̂

)
that do exist in the scheme. These points will be made195

clearer after we derive the HDG numerical fluxes.196

The first order system (2.3) fits into the general framework (1.1), and is symmetric197

hyperbolic. Indeed, choosing the ordering of unknowns as the column vector U :=198

(vec (L) ;u; p), we have199

A =

 0 −n⊗KI 0
−n⊤⊗KI 0 n

0 n⊤ 0

 .(2.6)200

201

We can perform the eigendecomposition A = RDR−1, where D is a diagonal matrix202

comprising the eigenvalues ofA, andR is a matrix whose columns are the eigenvectors203

corresponding those eigenvalues. Defining |D| by taking the absolute value of each204

eigenvalue in D, we can define |A| := R |D|R−1. It can be shown that for the Stokes205

system we have206

|A| =

 N⊗K

(
1
τS
t
T+ 1

τS
n
N
)

0 − 1
τS
n
n⊗Kn

0 τSt T+ τSnN 0
− 1

τS
n
n⊤⊗Kn⊤ 0 1

τS
n

 ,(2.7)207

208

where τSt := 1 and τSn :=
√
2. Later, we will consider more general parameters209

τt and τn than τSt and τSn which give the upwind flux. This allows us to gener-210

alize the upwind scheme, to define simpler schemes, and to make connections to211

existing HDG methods. We define the normal upwind flux F ∗
n as a column vector212
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6 S. SHANNON AND T. BUI-THANH

F ∗
n := (vec (−u∗ ⊗ n) ;−L∗n+ p∗n;u∗ · n). Since there is a one-to-one correspon-213

dence between vec (−u∗ ⊗ n) and −u∗ ⊗ n, we also identify F ∗
n with the triple214

F ∗
n =

 −u∗ ⊗ n
−L∗n+ p∗n

u∗ · n

 .(2.8)215

216

In this way, we can write the exact upwind flux in its one-sided form, F ∗
n = AU +217

|A| (U −U∗), as218

F ∗
n =

 −u⊗ n+
(

1
τS
t
T+ 1

τS
n
N
)
(L− L∗)N− 1

τS
n
(p− p∗)N

−Ln+ pn+
(
τSt T+ τSnN

)
(u− u∗)

u · n− 1
τS
n
n · [(L− L∗)n] + 1

τS
n
(p− p∗)

 .(2.9)219

220

At this point, we can eliminate “starred quantities” from the right side of (2.9) with221

the aim of defining an HDG flux with minimal trace unknowns. It turns out that we222

can do so in a way that naturally leads to four different forms of the upwind flux, each223

with d scalar starred quantities. The key to reducing the number of trace unknowns224

is the following relations between the upwind states.225

Lemma 2.1. The following relationships between the upwind states hold:226

τSt T (u− u∗) = T (L− L∗)n,(2.10a)227

τSnN (u− u∗) = −N [− (L− L∗)n+ (p− p∗)n] .(2.10b)228229

Proof. The claims follow directly from equating the tangential components of the230

left and right sides of the second term of (2.9), and doing the same for the normal231

components.232

Note that we arrive at the same expressions by equating the left and right sides of233

the first term of (2.9). Equating the third term gives the expression (2.10b). That is234

to say that (2.10a) and (2.10b) are the only two relations we can discover from (2.9).235

Using (2.10a) to eliminate either Tu∗ or TL∗n, and using (2.10b) to eliminate236

either Nu∗ or N (−L∗n+ p∗n), we arrive at the following four forms of the upwind237

flux.238

The u∗ flux: The quantity −L∗n + p∗n can be eliminated from (2.9) so that239

(2.9) can be written as240

F ∗
n =

 −u∗ ⊗ n
−Ln+ pn+

(
τSt T+ τSnN

)
(u− u∗)

u∗ · n

 .(2.11)241

242

The −L∗n + p∗n flux: The quantity u∗ can be eliminated from (2.9) so that243

(2.9) can be written as244

F ∗
n =

 −u⊗ n+
(

1
τS
t
T+ 1

τS
n
N
)
(L− L∗)N− 1

τS
n
(p− p∗)N

−L∗n+ p∗n
u · n− 1

τS
n
n · [(L− L∗)n] + 1

τS
n
(p− p∗)

 .(2.12)245

246

The (Tu∗, f∗) flux: The quantities TL∗n and Nu∗ can be eliminated from247

(2.9) so that (2.9) can be written as248

F ∗
n =

 −Nu⊗ n−Tu∗ ⊗ n− 1
τS
n
(−n · [Ln] + p− f∗)N

−T (Ln) + f∗n+ τSt T (u− u∗)
u · n+ 1

τS
n
(−n · [Ln] + p− f∗)

 ,(2.13)249

250
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where f∗ := −n · [L∗n] + p∗.251

The (Nu∗,TL∗n) flux: The quantities N (−L∗n+ p∗n) and Tu∗ can be252

eliminated from (2.9) so that (2.9) can be written as253

F ∗
n =

 −Nu∗ ⊗ n−Tu⊗ n− 1
τS
t
T (−L+ L∗)N

(−n · [Ln] + p)n+T (−L∗n) + τSnN (u− u∗)
u∗ · n

 .(2.14)254

255

Finally, in order to define numerical fluxes256

F ∗
n,h :=

 −u∗
h ⊗ n

−L∗
hn+ p∗hn
u∗
h · n

(2.15)257

258

to be used in the HDG scheme (2.4), we append a subscript h to the terms in (2.11)–259

(2.14) and replace the starred quantities on the right side of (2.11)–(2.14) with hatted260

unknown quantities residing on the mesh skeleton. Additionally we replace τSt and τSn261

with τt and τn, which, from the well-posedness analysis, can be freely chosen positive262

values. This gives the following numerical fluxes.263

The ûh flux:264

F ∗
n,h :=

 −ûh ⊗ n
−Lhn+ phn+ (τtT+ τnN) (u− ûh)

ûh · n

 .(2.16)265

266

The f̂h flux (where f̂h approximates −L∗ñ+ p∗ñ):267

F ∗
n,h :=


−
(
uh +

(
1
τt
T+ 1

τn
N
)(
−Lhn+ phn− sgnf̂h

))
⊗ n

sgnf̂h

uh · n+ 1
τn

(
−n · [Lhn] + ph − f̂h · ñ

)
 .(2.17)268

269

The (ût
h, f̂h) flux (where f̂h approximates −n · [L∗n] + p∗):270

F ∗
n,h :=


−
((

ût
h +Nuh

)
+ 1

τn

(
−n · [Lhn] + ph − f̂h

)
n
)
⊗ n

f̂hn−TLhn+ τt

(
ut
h − ût

h

)
uh · n+ 1

τn

(
−n · [Lhn] + ph − f̂h

)
 .(2.18)271

272

The (ûñh, f̂
t

h) flux (where f̂
t

h approximates −TL∗ñ):273

F ∗
n,h :=

 −
(
ûñhñ+ ut

h + 1
τt

(
−TLhn− sgnf̂

t

h

))
⊗ n

sgnf̂
t

h +N (−Lhn+ phn) + τn
(
Nuh − ûñhñ

)
sgnûñh

 .(2.19)274

275

It can be shown that any of the fluxes (2.16)–(2.19) are suitable for use in the HDG276

scheme (2.4), some being more practical than others. It should also be noted that277

it is not necessary to use the same flux on all skeleton faces. It may be convenient278

to use one flux on the skeleton faces that are on the interior of the computational279

domain and a different flux for each part of the boundary corresponding to a different280
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8 S. SHANNON AND T. BUI-THANH

boundary condition. For example, the ûh flux (2.16) can be used to directly prescribe281

Dirichlet boundary conditions of type (2.2a), the f̂h flux (2.17) can be used to directly282

prescribe boundary conditions of type (2.2b), and the (ûñh, f̂
t

h) flux (2.19) can be used283

to directly prescribe the conditions for “mirror” symmetry boundary conditions. If284

it is possible to treat the boundary conditions in this manner, all boundary skeleton285

unknowns decouple from the interior skeleton unknowns, thereby keeping the number286

of coupled unknowns in the system to a minimum.287

Recall that in order to realize one of the advantages of HDG, the volume unknowns288

must be uniquely defined by the trace unknowns; that is, the local solver must be well289

posed. It can be shown that, without modifications, schemes using (2.16) and (2.19)290

only define the pressure ph up to a constant. Similarly, (2.17) only defines the velocity291

ûh up to constant. On the other hand, (2.18) defines the all of the volume unknowns292

uniquely. In the following sections, we explicitly define schemes based on ûh flux (2.16)293

and modifications that ensure uniqueness of the local solver. This is the “standard”294

flux for the velocity gradient based HDG scheme for the Stokes equations. We also295

define a new scheme based on the flux (2.18) that requires no modifications for well-296

posedness of the local solver. We do not pursue HDG schemes based on (2.17) and297

(2.19), as they do not appear to offer benefits compared to the other schemes.298

2.2. HDG Schemes Using the ûh Flux. In this section, we define an upwind299

HDG scheme based on (2.16), which recovers schemes developed in [6, 2]. For the sake300

of this discussion, we use (2.16) on all skeleton faces. The discontinuous polynomial301

space in which we seek the trace unknowns ûh is302

V̂ h :=
{
v̂ ∈

[
L2(Eh)

]d
: v̂|e ∈ V̂ h(e)

}
,(2.20)303

304

where V̂ h(e) is a polynomial space defined on e that is assumed to be of the same305

polynomial order k as the volume unknowns.306

With the numerical flux (2.16), the enforcement of the Dirichlet boundary condi-307

tion (2.4g) simplifies to an L2 projection of the Dirichlet boundary data to the trace308

unknown on ∂ΩD, thereby decoupling the trace unknowns on ∂ΩD from the rest of309

the unknowns. Then we can decompose the trace unknown310

ûh = ûi
h + ûD

h(2.21)311312

where ûD
h is defined on ∂ΩD as the L2 projection of the boundary data,313 〈

ûD
h , v̂

〉
∂ΩD

= ⟨uD, v̂⟩∂ΩD
for all v̂ ∈ V̂ h(e) for all e ∈ ∂ΩD,(2.22)314

315

and ûi
h is the trace unknown ûh restricted to Eh\∂ΩD. Note that in writing (2.21)316

we identify ûi
h and ûD

h with their extensions by zero to Eh. Then ûi
h resides in the317

polynomial space318

V̂
i

h :=
{
v̂ ∈

[
L2(Eh\∂ΩD)

]d
: v̂|e ∈ V̂ h(e)

}
.(2.23)319

320

With this in place, we write the HDG scheme as follows.321

Formulation 2.2. Find (Lh,uh, ph, û
i
h) in Gh×V h×Qh× V̂

i

h such that the local322
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equations323

Re (Lh,G)Th
+ (uh,∇ ·G)Th

− ⟨ûh,Gn⟩∂Th
= 0,(2.24a)324

− (∇ · Lh,v)Th
+ (∇ph,v)Th

+ ⟨S (uh − ûh) ,v⟩∂Th
= (f ,v)Th

,(2.24b)325

− (uh,∇q)Th
+ ⟨ûh · n, q⟩∂Th

= 0,(2.24c)326
327

and the conservation equation and Neumann boundary condition328

−⟨−Lhn+ phn+ S (uh − ûh) , v̂⟩∂Th\∂ΩD
= −⟨fN , v̂⟩∂ΩN

(2.24d)329
330

hold for all (G,v, q, v̂) in Gh × V h ×Qh × V̂
i

h, where331

S := τtT+ τnN,(2.25)332333

and ûD
h is defined by (2.22). If ∂ΩN = ∅, we additionally require the zero mean334

pressure conditions for the uniqueness of the pressure335

(ph, 1)Th
= 0.(2.26)336

337

Some comments are in order. First, using the flux (2.16), the conservation condi-338

tions (2.4d) and (2.4f) are automatically satisfied, and so we do not need to explicitly339

include these equations in the formulation. Second, the conservation condition (2.4e)340

and the Neumann boundary condition (2.4h) (where we associate ŵ with v̂) are com-341

bined in (2.24d). Third, we have integrated by parts the terms in (2.4e) in order to342

write the scheme in a concise manner that reveals the symmetric and skew symmetric343

terms. Finally, it is not necessary to decompose ûh into the coupled “interior” un-344

knowns and the decoupled Dirichlet boundary unknowns in (2.24a)–(2.24c). We can345

recouple (2.22) to the rest of the system, but that would change the matrix structure346

of the trace system that we comment on in the following discussions.347

In the following, we discuss the well-posedness of Formulation 2.2.348

Theorem 2.3. (well-posedness of Formulation 2.2)349

Suppose that τt > 0 and τn > 0 (which is true in particular for τt = τSt and τn = τSn ).350

Then Formulation 2.2 is well-posed in the sense that given f , uD, and fN , there351

exists a unique solution (Lh,uh, ph, ûh) in Gh × V h ×Qh × V̂ h.352

Proof. It is sufficient to prove that if f , uD, and fN are zero, then the solution353

(Lh,uh, ph, ûh) is zero. We can rewrite Formulation 2.2 as: find (Lh,uh, ph, û
i
h) in354

Gh × V h ×Qh × V̂
i

h such that355

asym

((
Lh,uh, û

i
h

)
, (G,v, v̂)

)
356

+ askew

((
Lh,uh, ph, û

i
h

)
, (G,v, q, v̂)

)
= l (G,v, q, v̂)357

358

for all (G,v, q, v̂) in Gh × V h ×Qh × V̂
i

h, where359

asym

((
Lh,uh, û

i
h

)
, (G,v, v̂)

)
= Re (Lh,G)Th

+ ⟨Suh,v⟩∂ΩD
360

+
〈
S
(
uh − ûi

h

)
,v − v̂

〉
∂Th\∂ΩD

,361
362
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10 S. SHANNON AND T. BUI-THANH

363

askew

((
Lh,uh, ph, û

i
h

)
, (G,v, q, v̂)

)
= (uh,∇ ·G)Th

− (∇ · Lh,v)Th
364

+ (∇ph,v)Th
− (uh,∇q)Th

−
〈
ûi
h,Gn

〉
∂Th\∂ΩD

+ ⟨Lhn, v̂⟩∂Th\∂ΩD
365

+
〈
ûi
h · n, q

〉
∂Th\∂ΩD

− ⟨ph, v̂ · n⟩∂Th\∂ΩD
,366

367

and368

l (G,v, q, v̂) =
〈
ûD
h ,Gn

〉
∂ΩD

+ (f ,v)Th
369

+
〈
SûD

h ,v
〉
∂ΩD

−
〈
ûD
h · n, q

〉
∂ΩD

− ⟨fN , v̂⟩∂ΩN
.370

371

Setting f = 0, uD = 0 (and therefore ûD
h = 0), and fN = 0 gives l = 0. Setting372

(G,v, q, v̂) =
(
Lh,uh, ph, û

i
h

)
gives askew = 0 leaving only the symmetric terms,373

Re (Lh,Lh)Th
+
〈
S
(
uh − ûi

h

)
,uh − ûi

h

〉
∂Th\∂ΩD

+ ⟨Suh,uh⟩∂ΩD
= 0.(2.27)374

375

All of the terms in the previous expression are nonnegative and as a consequence must376

be zero. Thus Lh = 0 in Th, uh = ûh on Eh\∂ΩD, and uh = 0 on ∂ΩD.377

Integration by parts reveals that equation (2.24a) reduces to (∇uh,G)Th
= 0 and378

since ∇V h ⊂ Gh, we set G = ∇uh to conclude that uh is elementwise constant. But379

since uh = ûh on Eoh and ûh is single valued on Eoh, uh is continuous across each380

internal interface, and therefore uh is globally constant. Since ûh is zero on ∂ΩD we381

conclude uh = 0 and ûh = 0.382

Then (2.24b) reduces to (∇ph,v)Th
= 0, and since∇Qh ⊂ V h, we can conclude ph383

is elementwise constant. Since (2.24d) reduces to ⟨phn, v̂⟩∂Th\∂Ω for v̂ with support on384

Eoh, then ph is globally continuous and globally constant. In the case that ∂ΩN ̸= ∅,385

we have ⟨phn, v̂⟩∂ΩN
= 0 implies that ph = 0 on ∂ΩN and therefore that ph = 0386

everywhere. Otherwise the zero mean discrete pressure condition (2.26) implies ph is387

zero.388

We next prove that the local solver, (2.24a)–(2.24c), in Formulation 2.2 determines389

the local pressure ph only up to an elementwise constant.390

Theorem 2.4. (well-posedness of the local solver of Formulation 2.2)391

Suppose that τt > 0 and τn > 0. Given f and ûh, there exists a unique solution392

(Lh,uh, ph) in Gh × V h ×Qh/P0 (Th) to the local equations (2.24a)–(2.24c).393

Proof. It is sufficient to restrict our attention to a single element, and prove that394

if f and ûh are zero, then the solution (Lh,uh, ph) is zero. We can rewrite the395

local solver defined by (2.24a)–(2.24c) restricted to one element as find (Lh,uh, ph)396

in Gh(K)× V h(K)×Qh(K) such that397

Re (Lh,G)K + ⟨Suh,v⟩∂K + (uh,∇ ·G)K − (∇ · Lh,v)K + (∇ph,v)K(2.28)398

− (uh,∇q)K = (f ,v)K + ⟨Sûh,v⟩∂K + ⟨ûh,Gn⟩∂K − ⟨ûh · n, q⟩∂K399400

for all (G,v, q) in Gh(K)× V h(K)×Qh(K). Setting f and ûh to zero, and setting401

(G,v, q) = (Lh,uh, ph), we have402

Re (Lh,Lh)K + ⟨Suh,uh⟩∂K = 0.(2.29)403404
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Thus Lh = 0 in K and uh = 0 on ∂K.405

Integrating by parts what remains of (2.24a) gives that uh is constant in K, and406

since uh = 0 on ∂K, that uh = 0 in K. Integrating (2.24b) by parts gives that ph is407

constant in K.408

2.3. Modifications for Local Solver Invertibility. As we saw in the previous409

section, given f and ûh, the local solver (2.24a)–(2.24c) of the HDG Formulation 2.2410

does not uniquely define the pressure ph in Qh. The reason for this can be seen as411

follows. It is known that the Stokes equations with only Dirichlet boundary conditions412

must be equipped with an additional condition on the pressure, usually the zero mean413

pressure condition, in order to be well-posed. The local solver of Formulation 2.2414

can be interpreted as solving the Dirichlet problem on each element with ûh as the415

boundary data. From what we know about the Dirichlet problem for the Stokes416

equations, we could not have expected that this local problem would be well-posed.417

An HDG scheme whose local (element) problem is not well-posed is not particularly418

useful, as it loses one of the main advantages of HDG methods as compared to DG419

methods – the ability to condense the volume (DG) unknowns out of the global420

linear system to have a resulting global system with a reduced number of unknowns.421

Therefore, Formulation 2.2 must be modified in order to be useful.422

There are two methods in the literature for addressing this issue [14]. One method423

is a direct method that involves the introduction of additional global unknowns. The424

other method is an iterative method, involving pseudotime, that does not change425

the number of unknowns. We review those methods here before introducing a new426

method in the next section that uses a different form of the HDG flux to avoid this427

issue all together.428

2.3.1. The Augmented Lagrangian Approach. The Augmented Lagrangian429

approach for Stokes HDG schemes introduced in [14]. It is described by adding a430

pseudotime derivative to (2.3c) as431

∂p

∂τ
+∇ · u = 0,(2.30)432

433

providing an initial condition p(τ = 0) = p0, then solving for the steady state solution434

with an HDG spatial discretization of (2.3a), (2.3b), and (2.30), with an implicit Euler435

temporal discretization, and with the choice of p0 = 0. Altering Formulation 2.2 in436

such a manner, we have the following formulation describing a single pseudotime step.437

Formulation 2.5. Find (Lk
h,u

k
h, p

k
h, û

i,k
h ) in Gh × V h × Qh × V̂

i

h such that the438

local equations439

Re
(
Lk
h,G

)
Th

+
(
uk
h,∇ ·G

)
Th
−
〈
ûk
h,Gn

〉
∂Th

= 0,(2.31a)440

−
(
∇ · Lk

h,v
)
Th

+
(
∇pkh,v

)
Th

+
〈
S
(
uk
h − ûk

h

)
,v
〉
∂Th

= (f ,v)Th
,(2.31b)441

1

∆τ

(
pkh, q

)
Th
−
(
uk
h,∇q

)
Th

+
〈
ûk
h · n, q

〉
∂Th

=
1

∆τ

(
pk−1
h , q

)
Th
,(2.31c)442

443

and the conservation equation and Neumann boundary condition444

−
〈
−Lk

hn+ pkhn+ S
(
uk
h − ûk

h

)
, v̂
〉
∂Th\∂ΩD

= −⟨fN , v̂⟩∂ΩN
(2.31d)445

446

hold for all (G,v, q, v̂) in Gh × V h ×Qh × V̂
i

h, where ûD
h is defined by (2.22) and S447

is defined by (2.25).448

This manuscript is for review purposes only.



12 S. SHANNON AND T. BUI-THANH

In the above, k represents the pseudotime step number. Finally, [14] describes a449

stopping criterion for the pseudotime iterations,450 ∥∥pkh − pk−1
h

∥∥∥∥pkh∥∥ < ϵ.(2.32)451

452

Algorithm 2.1 describes the solution procedure. We emphasize here that ∆τ and ϵ

Algorithm 2.1 Augmented Lagrangian solution procedure.

choose ∆τ and ϵ
set p0h = 0, k = 1
while true do
solve for

(
Lk
h,u

k
h, p

k
h, û

k
h

)
using Formulation 2.5

if (2.32) is true then
break

end if
k ← k + 1

end while

453

must be chosen. We also remark that the stopping criterion (2.32) will not be useful454

as it is written if the exact pressure is zero. To handle such cases, it may be useful to455

add a small positive parameter (whose magnitude must be chosen) to the denominator456

of (2.32).457

Some remarks are in order. First, it can be seen that the local solver associated458

with Formulation 2.5 is well-posed. Indeed, repeating the arguments in the proof for459

Theorem 2.4, now with pk−1
h as an additional forcing function, instead of (2.29) we460

will have461

Re
(
Lk
h,L

k
h

)
K
+
〈
Suk

h,u
k
h

〉
∂K

+
1

∆τ

(
pkh, p

k
h

)
K

= 0,(2.33)462
463

which allows us to conclude pkh = 0. Second, forming the condensed global system (in464

terms of ûi
h only) gives a global system465

AÛk = F k−1,(2.34)466467

where the matrix A is symmetric and positive definite. See Appendix B for details.468

2.3.2. The Average Edge Pressure Approach. A direct (as opposed to it-469

erative) approach to modifying Formulation 2.2 to obtain a well-posed local solver470

is given in [14]. The method involves introducing a global unknown representing an471

elementwise average edge-pressure. We give a slightly different presentation here with472

implementation using a Lagrange polynomial basis in mind. We do so by altering473

Formulation 2.2 to read as follows.474

Formulation 2.6. Find (Lh,uh, ph, û
i
h, ρh) in Gh×V h×Qh× V̂

i

h×P0(∂Th) such475

that the local equations476

Re (Lh,G)Th
+ (uh,∇ ·G)Th

− ⟨ûh,Gn⟩∂Th
= 0,(2.35a)477

− (∇ · Lh,v)Th
+ (∇ph,v)Th

+ ⟨S (uh − ûh) ,v⟩∂Th
= (f ,v)Th

,(2.35b)478

− (uh,∇q)Th
+ ⟨ûh · n, q − q⟩∂Th

+ ⟨ph − ρh, q⟩∂Th
= 0,(2.35c)479

480
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the conservation equation and Neumann boundary condition481

−⟨−Lhn+ phn+ S (uh − ûh) , v̂⟩∂Th\∂ΩD
= −⟨fN , v̂⟩∂ΩN

,(2.35d)482
483

and the constraint484

⟨ûh · n, ψ⟩∂Th
= 0(2.35e)485

486

hold for all (G,v, q, v̂, ψ) in Gh ×V h ×Qh × V̂
i

h ×P0(∂Th), where ûD
h is defined by487

(2.22) and S is defined by (2.25). If ∂ΩN = ∅, we additionally require the zero mean488

pressure conditions for the uniqueness of the pressure, (2.26).489

In the above, the notation q is defined by q := |∂K|−1 ⟨q, 1⟩∂K as the ∂K-wise average490

of q, and |∂K| is the length of the perimeter of element K. The new unknowns ρh491

which are sought in P0(∂Th) represent the ∂K-wise average pressure. Indeed, taking492

q to be an elementwise constant in (2.35c), we recover ph = ρh.493

We observe that Formulations 2.2 and 2.6 give the same solution. Indeed, we494

can show that (2.35c) and (2.35e) are equivalent to (2.24c). Given that we’ve already495

shown ph = ρh, we have − (uh,∇q)Th
+ ⟨ûh · n, q − q⟩∂Th

= 0. Setting ψ in (2.35e)496

equal to q and adding the result to the previous expression, we recover (2.24c). Con-497

versely, setting q in (2.24c) equal to any elementwise constant ψ, we recover (2.35e).498

Then setting ψ = q and subtracting (2.35e) from (2.24c), and defining ρh := ph and499

therefore that ⟨ph, q⟩∂K = ⟨ph, q⟩∂K = ⟨ρh, q⟩∂K for any q, we recover (2.35c).500

As with the Augmented Lagrangian iterative approach, we can see that the mod-501

ifications result in a well-posed local solver. Indeed, repeating the arguments in the502

proof for Theorem 2.4, now with ρh as a forcing function, instead of (2.29) we will503

have504

Re (Lh,Lh)K + ⟨Suh,uh⟩∂K + ⟨ph, ph⟩K = 0,(2.36)505506

which allows us to conclude ph = 0 on ∂K. Then, following the same arguments as507

before, we conclude that ph is elementwise constant, and therefore zero.508

As shown in [14], the condensed global system takes the form of a saddle point509

problem,510 [
A B⊤

−B 0

]{
Û
ρ

}
=

{
F1

F2

}
,(2.37)511

512

where A is symmetric and positive definite. See Appendix B for details.513

2.4. HDG Schemes Using the (ût
h, f̂h) Flux. In this section, we define new514

HDG schemes for the Stokes equations. We do this by using the flux (2.18) on515

all skeleton faces Eoh. The justification of this choice will become evident when we516

analyze the well-posedness of the local solver associated with this scheme, where we517

verify that no special treatment is required for the uniqueness of the local pressure.518

Recall that for trace unknowns, this flux has the tangent velocity ût
h and a scalar f̂h519

which approximates − 1
Ren · [∇u · n] + p. The volume unknowns will still be sought520

from the discontinuous polynomial spaces (2.5). The discontinuous polynomial space521

in which we seek f̂h and ût
h, respectively, are522

F̂h :=
{
ĝ ∈ L2(Eh) : ĝ|e ∈ F̂h(e)

}
,(2.38)523

V̂
t

h :=
{
v̂t ∈

[
L2(Eh)

]d
: v̂t|e ∈ V̂

t

h(e)
}
,(2.39)524

525
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where F̂h(e) is a scalar polynomial space, and V̂
t

h(e) is a vector valued polynomial526

space with no normal component, defined by527

V̂
t

h(e) =

{
d−1∑
i=1

tiv̂h,i : v̂h,i ∈ V̂h(e)

}
,(2.40)528

529

where V̂h(e) is a scalar polynomial space defined on e, and
{
t1, . . . , td−1

}
is a basis530

of the tangent space of e.531

Realize that (2.18) defines u∗
h as532

u∗
h = ût

h +Nuh +
1

τn

(
−n · [Lhn] + ph − f̂h

)
n.(2.41)533

534

The enforcement of the tangent component of the Dirichlet boundary condition (2.4g)535

then simplifies to an L2 projection of the tangent part of the Dirichlet boundary data536

uD to the trace unknown ût
h on ∂ΩD, thereby decoupling ût

h on ∂ΩD from the rest537

of the unknowns. The normal part of the Dirichlet condition is enforced weakly as538

will be shown below.539

Similarly, (2.18) defines540

−L∗
hn+ p∗hn = f̂hn+T (−Lhn) + τt

(
ut
h − ût

h

)
,(2.42)541

542

so the enforcement of the normal component of the Neumann boundary condition543

(2.4h) simplifies to an L2 projection of the normal part of the Neumann boundary544

data fN to the trace unknown f̂h on ∂ΩN , thereby decoupling f̂h on ∂ΩN from the545

rest of the unknowns. The tangent part of the Neumann condition is enforced weakly546

as will be shown below.547

As before, we decompose the trace unknowns into the decoupled parts and the548

coupled parts of the trace unknowns. We decompose f̂h by549

f̂h = f̂ ih + f̂Nh(2.43)550551

where f̂Nh is defined on ∂ΩN as the L2 projection of the normal component of the552

Neumann boundary data,553 〈
f̂Nh , ĝ

〉
∂ΩN

= ⟨fN · n, ĝ⟩∂ΩN
for all ĝ ∈ F̂h(e) for all e ∈ ∂ΩN ,(2.44)554

555

and f̂ ih is the trace unknown f̂h restricted to Eh\∂ΩN . Similarly, we decompose ût
h556

by557

ût
h = ût,i

h + ût,D
h(2.45)558559

where ût,D
h is defined on ∂ΩD as the L2 projection of the tangential component of the560

Dirichlet boundary data,561 〈
ût,D
h , v̂t

〉
∂ΩD

=
〈
ut
D, v̂

t
〉
∂ΩD

for all v̂t ∈ V̂
t

h(e) for all e ∈ ∂ΩD,(2.46)562
563

and ût,i
h is the trace unknown ût

h restricted to Eh\∂ΩD. Again, in writing (2.43)564

and (2.45) we identify f̂ ih, f̂
N
h , ût,i

h , and ût,D
h with their extensions by zero to Eh.565
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We assume that all discrete spaces are of equal polynomial order. We also note that566

we have made a slight abuse of notation as the superscript “i” (for “interior”) has a567

different meaning for f̂ ih and ût,i
h . Finally, we define the polynomial spaces568

F̂ i
h :=

{
ĝ ∈ L2(Eh\∂ΩN ) : ĝ|e ∈ F̂h(e)

}
,(2.47)569

V̂
t,i

h :=
{
v̂t ∈

[
L2(Eh\∂ΩD)

]d
: v̂t|e ∈ V̂

t

h(e)
}
,(2.48)570

571

in which f̂ ih and ût,i
h , respectively, lie. With this in place, we write the HDG scheme572

as follows.573

Formulation 2.7. Find (Lh,uh, ph, û
t,i
h , f̂

i
h) in Gh × V h × Qh × V̂

t,i

h × F̂ i
h such574

that the local equations575

Re (Lh,G)Th
− (∇uh,G)Th

+
〈
ut
h − ût

h,Gn
〉
∂Th

(2.49a)576

+

〈
1

τn

(
fh − f̂h

)
,−n · [Gn]

〉
∂Th

= 0,577

(Lh,∇v)Th
− (ph,∇ · v)Th

+
〈
f̂h,v · n

〉
∂Th

(2.49b)578

−
〈
Lhn,v

t
〉
∂Th

+
〈
τt

(
ut
h − ût

h

)
,vt
〉
∂Th

= (f ,v)Th
,579

(∇ · uh, q)Th
+

〈
1

τn

(
fh − f̂h

)
, q

〉
∂Th

= 0,(2.49c)580

581

and the conservation equations combined with the tangential part of the Neumann582

boundary condition and the normal part of the Dirichlet boundary condition583

−
〈
−Lhn+ τt

(
ut
h − ût

h

)
, v̂t
〉
∂Th\∂ΩD

= −
〈
f t
N , v̂

t
〉
∂ΩN

,(2.49d)584

−
〈
uh · n+

1

τn

(
fh − f̂h

)
, ĝ

〉
∂Th\∂ΩN

= −⟨uD · n, ĝ⟩∂ΩD
(2.49e)585

586

hold for all (G,v, q, v̂t, ĝ) in Gh×V h×Qh× V̂
t,i

h × F̂ i
h, where fh := −n · [Lhn]+ ph,587

ût,D
h is defined by (2.46), and f̂Nh is defined by (2.44). In the case that ∂ΩN = ∅, we588

require the zero mean pressure condition for uniqueness of the pressure, (2.26).589

Note that we have identified the scalar test function ĝ with −n ·
[
Ĝn

]
+ q̂ on590

∂Th\∂Ω and with ŵ · n on ∂Ω in order to write (2.4d), (2.4f), and the normal part591

of (2.4g) in a combined manner as (2.49e). Similarly, the normal part of (2.4e) is592

automatically satisfied, and we identify Tŵ with v̂t to write (2.4e) and the tangent593

part of (2.4h) in a combined manner as (2.49d). We are now ready to prove well-594

posedness of Formulation 2.7 and its local solver.595

Theorem 2.8. (well-posedness of Formulation 2.7)596

Suppose that τt > 0 and τn > 0. Then Formulation 2.7 is well-posed in the sense that597

given f , uD, and fN , there exists a unique solution
(
Lh,uh, ph, û

t
h, f̂h

)
in Gh ×598

V h ×Qh × V̂
t

h × F̂h.599
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16 S. SHANNON AND T. BUI-THANH

Proof. It is sufficient to prove that if f = 0, uD = 0 and fN = 0, then the600

solution
(
Lh,uh, ph, û

t
h, f̂h

)
is zero. We can rewrite (2.49) as601

asym

((
Lh,uh, ph, û

t,i
h , f̂

i
h

)
,
(
G,v, q, v̂t, ĝ

))
602

+ askew

((
Lh,uh, ph, û

t,i
h , f̂

i
h

)
,
(
G,v, q, v̂t, ĝ

))
= l
(
G,v, q, v̂t, ĝ

)
603
604

where, using for simplicity g := −n · [Gn] + q,605

asym

((
Lh,uh, ph, û

t,i
h , f̂

i
h

)
,
(
G,v, q, v̂t, ĝ

))
:=606

Re (Lh,G)Th
+

〈
1

τn
fh, g

〉
∂ΩN

+

〈
1

τn

(
fh − f̂ ih

)
, g − ĝ

〉
∂Th\∂ΩN

607

+
〈
τtu

t
h,v

t
〉
∂ΩD

+
〈
τt

(
ut
h − ût,i

h

)
,vt − v̂t

〉
∂Th\∂ΩD

,608
609
610

askew

((
Lh,uh, ph, û

t,i
h , f̂

i
h

)
,
(
G,v, q, v̂t, ĝ

))
:= − (∇uh,G)Th

+ (Lh,∇v)Th
611

− (ph,∇ · v)Th
+ (∇ · uh, q)Th

+
〈
f̂ ih,v · n

〉
∂Th\∂ΩN

− ⟨uh · n, ĝ⟩∂Th\∂ΩN
612

−
〈
ût,i
h ,Gn

〉
∂Th\∂ΩD

+
〈
Lhn, v̂

t
〉
∂Th\∂ΩD

+
〈
ut
h,Gn

〉
∂Th
−
〈
Lhn,v

t
〉
∂Th

,613
614

and615

l
(
G,v, q, v̂t, ĝ

)
:= (f ,v)Th

−
〈
f t
N , v̂

t
〉
∂ΩN

− ⟨uD · n, ĝ⟩∂ΩD
+

〈
1

τn
f̂Nh , g

〉
∂ΩN

616

+
〈
τtû

t,D
h ,vt

〉
∂ΩD

−
〈
f̂Nh ,v · n

〉
∂ΩN

+
〈
ût,D
h ,Gn

〉
∂ΩD

.617
618

Setting f = 0, uD = 0 (and therefore ût,D
h = 0), and fN = 0 (and therefore f̂Nh = 0),619

we have l = 0. Setting
(
G,v, q, v̂t, ĝ

)
=
(
Lh,uh, ph, û

t,i
h , f̂

i
h

)
, we have askew = 0.620

What remains are the symmetric terms asym, giving621

Re (Lh,Lh)Th
+

〈
1

τn

(
fh − f̂ ih

)
, fh − f̂ ih

〉
∂Th\∂ΩN

+

〈
1

τn
fh, fh

〉
∂ΩN

(2.50)622

+
〈
τt

(
ut
h − ût,i

h

)
,ut

h − ût,i
h

〉
∂Th\∂ΩD

+
〈
τtu

t
h,u

t
h

〉
∂ΩD

= 0.623
624

All the terms in the previous expression are nonnegative and therefore must be zero.625

Thus Lh = 0 in Th, ut
h = ût,i

h on Eoh ∪ ∂ΩN , ut
h = 0 on ∂ΩD, ph = f̂h on Eoh ∪ ∂ΩD,626

and ph = 0 on ∂ΩN .627

Equation (2.49a) reduces to (∇uh,G)Th
= 0, and since ∇V h ⊂ Gh we can set628

G = ∇uh to conclude that uh is elementwise constant. But since ut
h = ût,i

h on Eoh and629

ût
h is single valued on Eoh, and since the remainder (2.49e) implies ⟨uh · n, ĝ⟩∂Th\∂Ω =630

0, the tangential and normal components of uh are continuous across each internal631

interface, and therefore uh is globally constant. Equation (2.49e) also implies the632

normal component of uh is zero on ∂ΩD, and we already have that ut
h is zero on633

∂ΩD, we conclude that uh and ût,i
h are zero.634
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Integrating (2.49b) by parts gives (∇ph,v)Th
= 0, and since ∇Qh ⊂ V h we have635

ph is elementwise constant. And since ph = f̂h on Eoh, ph is globally constant. In636

the case that ∂ΩN ̸= ∅, since ph = 0 on ∂ΩN we can conclude ph = 0 and f̂h = 0.637

Otherwise, if ∂ΩN = ∅, then (2.26) implies ph and f̂h are zero.638

Theorem 2.9. (well-posedness of the local solver of Formulation 2.7)639

Suppose that τt > 0 and τn > 0. Given f , ût
h, and f̂h, there exists a unique solution640

(Lh,uh, ph) in Gh × V h ×Qh to the local equations (2.49a)–(2.49c) .641

Proof. It is sufficient to restrict our attention to a single element, and prove that if642

f , ût
h, and f̂h are zero, then the solution (Lh,uh, ph) is zero. We can rewrite the local643

problem associated with Formulation 2.7 as: seek (Lh,uh, ph) in Gh(K)× V h(K)×644

Qh(K) such that645

Re (Lh,G)K +

〈
1

τn
fh, g

〉
∂K

+
〈
τtu

t
h,v

t
〉
∂K
− (∇uh,G)K + (Lh,∇v)K

(2.51)

646

− (ph,∇ · v)K + (∇ · uh, q)K +
〈
ut
h,Gn

〉
∂K
−
〈
Lhn,v

t
〉
∂K

647

= (f ,v)K +

〈
1

τn
f̂h, g

〉
∂K

+
〈
τtû

t
h,v

t
〉
∂K

+
〈
ût
h,Gn

〉
∂K
−
〈
f̂h,v · n

〉
∂K

648

649

for all (G,v, q) in Gh(K) × V h(K) × Qh(K). Setting f , ût
h, and f̂h to zero, and650

setting (G,v, q) = (Lh,uh, ph), we have651

Re (Lh,Lh)K +
〈
τtu

t
h,u

t
h

〉
∂K

+

〈
1

τn
fh, fh

〉
∂K

= 0.(2.52)652
653

Thus Lh = 0 in K, and ut
h = 0 and ph = 0 on ∂K.654

Integrating (2.49b) by parts gives that ph is constant in K, and since ph = 0 on655

∂K, that ph = 0 in K. What remains of (2.49a) gives that uh is constant in K, and656

since ut
h = 0 on ∂K, that uh = 0 in K.657

Finally, we note that the condensed global system associated with Formulation 2.7658

takes the form659 [
A B⊤

−B D

][
Û t

F̂

]
=

[
F1

F2

]
,(2.53)660

661

where A and D are symmetric and positive semi-definite. If ∂ΩN is nonempty, then662

D is positive definite. Otherwise, constraining one degree of freedom associated with663

f̂h renders D positive definite (see the Discussion section at the end of this section).664

Details are in Appendix B.665

2.5. Numerical Results. We consider as a numerical test problem an analyt-666

ical solution by Kovasznay [12] to the two dimensional incompressible Navier-Stokes667

equations. The solution is given by668

u1 = 1− expλx1 cos 2πx2,(2.54)669

u2 =
λ

2π
expλx1 sin 2πx2,(2.55)670

p = −1

2
exp 2λx1.(2.56)671

672
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18 S. SHANNON AND T. BUI-THANH

Fig. 1. Stokes HDG schemes: Kovasznay flow problem solution - uh1 (top left), uh2 (top
right), and ph (bottom).

For the Stokes equations, we apply the advection term of the exact solution as a673

forcing term, i.e., we set674

f = −u · ∇u.(2.57)675676

A domain of [0, 2]×[−0.5, 1.5] is considered, with the exact velocity solution prescribed677

as Dirichlet boundary conditions on all parts of the domain boundary. We compute678

on a mesh of N×N tensor product square elements, defining the element size h := 2
N .679

In Figure 1, the numerical solution uh and ph are plotted. In Figure 2, the L2(Ω)680

error of the volume unknowns (Lh,uh, ph) are plotted along with their convergence681

rates. The left column of plots shows the L2 error obtained using the ûh flux (2.16)682

on all skeleton faces (i.e., Formulation 2.2), while the right column shows the L2683

error obtained using the (ût
h, f̂h) flux (2.18) on the interior skeleton faces and the684

ûh flux (2.16) on the boundary skeleton faces. In both cases τt and τn are chosen685

as the upwind parameters τSt and τSn , respectively. As expected, the errors using the686

two versions of the Godunov flux are virtually identical. In both cases, the observed687

convergence rates are k + 1 for uh, and close to k + 1 for Lh and ph.688
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Fig. 2. Stokes HDG schemes: Kovasznay flow problem L2 convergence of volume unknowns
using ûh flux (2.16) (left), using (ût

h, f̂h) flux (2.18) (right).

2.6. Discussion. We used the upwind HDG framework in [2] to derive an HDG689

scheme based on the ûh flux (2.16), rediscovering the existing HDG scheme in [14],690

and relating specific values for the stabilization tensor that result in the upwind flux.691

Additionally, through manipulation of the upwind flux, we have developed a new HDG692

scheme based on the (ût
h, f̂h) flux (2.18). The schemes based on the ûh flux require693

modifications in order for the HDG local solver to be well-posed. One modification694

involves solving a trace system iteratively (in addition to any iterative linear solver),695

while introducing multiple parameters related to the iterations. Another modification696

involves introducing an elementwise constant global unknown, rendering the global697
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20 S. SHANNON AND T. BUI-THANH

system a saddle point system. The global unknowns in the latter modified system698

are of a different nature; the ûh unknowns are discontinuous polynomials on the699

mesh skeleton, whereas the ρh unknowns are elementwise discontinuous constants.700

This presents challenges in the design of linear solvers and preconditioners. The new701

scheme based on the (ût
h, f̂h) flux offers some advantages from both of these schemes.702

No iterations are needed, and all unknowns in the condensed global system are of703

the same nature: discontinuous polynomials on the mesh skeleton. Additionally, the704

trace system does not result in a traditional saddle point system; there are no zero705

blocks on the diagonal, which allows more flexibility in the types of preconditioners706

we can apply, including allowing for the application of the simple Jacobi/block Jacobi707

preconditioners.708

When using the (ût
h, f̂h) flux (2.18), it can be convenient to use that flux on the709

interior skeleton face only, and to use a different flux on the domain boundary. In710

addition to being potentially easier to implement, applying the boundary conditions711

in this way minimizes the number of globally coupled unknowns, since all of the712

boundary unknowns are decoupled from the interior ones. For example, if all of the713

boundary conditions are Dirichlet boundary conditions (2.2a), then we can use the ûh714

flux (2.16) on the domain boundary so that the application of the boundary conditions715

are simply the projection of the boundary data to the trace unknown, rather than the716

“mixed” way of applying them described in Formulation 2.7. It can be shown that the717

global system and the local solver remain well-posed, and that the condensed global718

matrix structure (2.53) does not change.719

As pointed out in the definitions of the HDG schemes, an additional constraint is720

required when we have ∂ΩN = ∅ in order to uniquely define the pressure. Even though721

the zero mean pressure constraint (2.26) appears to be a global equation that couples722

volume variables across elements, the implementation can be handled in a way that723

does not break the locality of the local problems. In the case of Formulation 2.2, the724

analysis reveals that we must only constrain one degree of freedom associated with725

ρh in order to uniquely define ρh and therefore ph. Depending on the linear solver, it726

may or may not be necessary to explicitly constrain that degree of freedom. Similarly727

for Formulation 2.7, we must only constrain one degree of freedom associated with728

f̂h. Then we must only shift ph in a postprocessing step in order to satisfy (2.26) (if729

desired).730

3. Oseen Equations. In this section, we employ the upwind HDG framework731

proposed in [2] in order to derive HDG schemes for the Oseen equations. Similar to732

the the previous section on the Stokes equations, we manipulate the upwind flux in733

order to express it in four different ways, each of which can be shown to lead to a734

well-posed HDG scheme. One of the schemes is related to the scheme in [5], whereas735

the other three are new contributions in this work. We present two of these schemes in736

detail and prove the aforementioned well-posedness. The two schemes are employed737

in numerical tests and their convergence is demonstrated. Additionally we define a738

Picard-type iterative method that can be used to solve the (nonlinear) incompressible739

Navier-Stokes equations, and we demonstrate the convergence of the scheme.740

3.1. Construction of Upwind HDG Schemes. For notation used in this sec-741

tion and throughout this work, see Appendix A. The Oseen equations in dimensionless742
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form read743

− 1

Re
∆u+w · ∇u+∇p = f ,(3.1a)744

∇ · u = 0,(3.1b)745746

where w is assumed to be divergence free and is assumed to reside in H(div,Ω). For747

simplicity, we consider only Dirichlet boundary conditions,748

u = uD on ∂Ω.(3.2)749750

A compatibility condition on the Dirichlet boundary data
∫
∂Ω

uD · n = 0 should be751

satisfied, and we have to impose an additional constraint on the pressure. We choose752

this constraint to be
∫
Ω

p = 0. Comments will be made later on generalizations to753

different types of boundary conditions.754

Toward applying the upwind HDG framework [2], we first put (3.1) into first order755

form through the definition of an auxiliary variable. We define the auxiliary variable756

L through the velocity gradient, resulting in the first order system757

ReL−∇u = 0,(3.3a)758

−∇ · L+∇p+∇ · (u⊗w) = f ,(3.3b)759

∇ · u = 0.(3.3c)760761

In the above, we have used the divergence-free assumption on w to put the system762

into divergence form. To define a general HDG scheme for the Oseen equations,763

we multiply (3.3) by test functions, integrate over the computational domain, inte-764

grate by parts, and replace the boundary terms with yet-to-be-defined numerical flux765

terms, which we then enforce to be weakly continuous across element interfaces. HDG766

schemes derived in this manner for (3.3) will take a general form consisting of the local767

equations768

Re (Lh,G)Th
+ (uh,∇ ·G)Th

− ⟨u∗
h ⊗ n,G⟩∂Th

= 0,(3.4a)769

(Lh,∇v)Th
− (ph,∇ · v)Th

− (uh ⊗w,∇v)Th
(3.4b)770

+ ⟨−L∗
hn+ p∗hn+ (w · n)u∗

h,v⟩∂Th
= (f ,v)Th

,771

− (uh,∇q)Th
+ ⟨u∗

h · n, q⟩∂Th
= 0,(3.4c)772

773

the conservation equations774 〈
u∗
h ⊗ n, Ĝ

〉
∂Th\∂Ω

= 0,(3.4d)775

−⟨−L∗
hn+ p∗hn+ (w · n)u∗

h, v̂⟩∂Th\∂Ω = 0,(3.4e)776

−⟨u∗
h · n, q̂⟩∂Th\∂Ω = 0,(3.4f)777

778

and the Dirichlet boundary condition779

⟨u∗
h, ŵ⟩∂Ω = ⟨uD, ŵ⟩∂Ω .(3.4g)780781

The volume unknowns (Lh,uh, ph) and the test functions (G,v, q) will belong to the782

discontinuous polynomial spaces (2.5). The quantities u∗
h and −L∗

hn + p∗hn + (w ·783
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n)u∗
h are yet-to-be-defined, not-necessarily-single-valued numerical fluxes, which are784

function of the volume unknowns (Lh,uh, ph) and trace variables
(
L̂h, ûh, p̂h

)
. The785

trace variables reside in discontinuous polynomial spaces defined on the mesh skeleton,786

as do the interior test functions
(
Ĝ, v̂, q̂

)
, and boundary test function ŵ. In what787

follows, we derive different choices for the starred quantities and analyze schemes that788

result from some specific choices. The fluxes we derive will have a minimal number of789

trace unknowns (d scalar unknowns) so that not all of the trace unknowns
(
L̂h, ûh, p̂h

)
790

(and their corresponding test functions) will exist as unknowns (and test functions).791

Related to this is the fact that not all of the conservation equations (3.4d)–(3.4f) must792

be explicitly enforced, as some will be automatically satisfied depending on the choice793

of the numerical flux. Additionally, the boundary test function ŵ will have a natural794

association with the interior skeleton test functions among
(
Ĝ, v̂, q̂

)
that do exist in795

the scheme. These points will be made clearer after we derive the HDG numerical796

fluxes.797

To derive the numerical fluxes, we observe that the first order system (3.3) fits798

into the framework of (1.1) and is, in fact, a symmetric hyperbolic system. Choosing799

the ordering of unknowns as the column vector U := (vec (L) ;u; p), and defining800

m := w · n, we have801

A =

 0 −n⊗KI 0
−n⊤⊗KI mI n

0 n⊤ 0
.

(3.5)802

803

We perform the eigendecomposition A = RDR−1, where D is a diagonal matrix804

comprising the eigenvalues ofA, andR is a matrix whose columns are the eigenvectors805

corresponding those eigenvalues. Defining |D| by taking the absolute value of each806

eigenvalue in D, we can define |A| := R |D|R−1. It can be shown that for the Oseen807

system we have808

|A| =


N⊗K

(
1
τO
t
T+ 1

τO
n
N
)

−m
2 n⊗K

(
1
τO
t
T+ 1

τO
n
N
)

− 1
τO
n
n⊗Kn

−m
2 n

⊤⊗K

(
1
τO
t
T+ 1

τO
n
N
) ( (

m
2

)2 ( 1
τO
t
T+ 1

τO
n
N
)

+
(
τOt T+ τOn N

) )
m
2

1
τO
n
n

− 1
τO
n
n⊤⊗Kn⊤ m

2
1
τO
n
n⊤ 1

τO
n

 ,
(3.6)

809

810

where τOt := 1
2

√
4 +m2 and τOn := 1

2

√
8 +m2. Later we will allow for the gen-811

eralization τOt → τt, τ
O
n → τn, where τt and τn are freely chosen positive param-812

eters, allowing us to define simpler fluxes and relate the upwind schemes to ex-813

isting schemes. We define the normal upwind flux F ∗
n as a column vector F ∗

n :=814

(vec (−u∗ ⊗ n) ;−L∗n+ p∗n+mu∗;u∗ · n). Since there is a one-to-one correspon-815

dence between vec (−u∗ ⊗ n) and −u∗ ⊗ n, we also identify F ∗
n with the triple816

F ∗
n =

 −u∗ ⊗ n
−L∗n+ p∗n+mu∗

u∗ · n

 .(3.7)817

818
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In this way, we can write the exact upwind flux F ∗
n = AU + |A| (U −U∗) as819

F ∗
n =


−
(
u+ S−1

O

(
− (L− L∗)n+ (p− p∗)n+ m

2 (u− u∗)
))
⊗ n

−Ln+ pn+mu+ SO (u− u∗)
+m

2 S
−1
O

(
− (L− L∗)n+ (p− p∗)n+ m

2 (u− u∗)
)

u · n+ 1
τO
n

(
−n · [L− L∗]n+ (p− p∗) + m

2 (u− u∗) · n
)
 ,(3.8)820

821

where822

SO := τOt T+ τOn N, S−1
O =

1

τOt
T+

1

τOn
N.(3.9)823

824

At this point, we can eliminate “starred quantities” with the aim of defining an HDG825

flux with minimal trace unknowns. As we did the Stokes equations, we manipulate the826

flux (3.8) in several different ways leading to fluxes that are suitable for use in HDG827

schemes. We begin with a lemma that gives key relationship between the upwind828

states.829

Lemma 3.1. The following relationships between the upwind states hold:830

τOt T (u− u∗) = −T
[
− (L− L∗)n+

m

2
(u− u∗)

]
,(3.10a)831

τOn N (u− u∗) = −N
[
− (L− L∗)n+ (p− p∗)n+

m

2
(u− u∗)

]
.(3.10b)832

833

Proof. We arrive at the result by equating the normal components of the left and834

right side of the first component of flux (3.8), and doing the same for the tangent835

components.836

Note that (3.10) can be arrived at by equating the second component of (3.8), and837

(3.10b) can be arrived at by equating the third component of (3.8). That is to say838

that (3.10a) and (3.10b) are the only two relations we can discover from (3.8).839

Next, we use (3.10) to reduce the number of upwind quantities on the right hand840

side of (3.8) to d scalar unknowns in different ways. The presence of the advection841

term in the Navier-Stokes momentum equations opens up the possibility of expressing842

the upwind flux in more ways than we could for the Stokes equations. First, we explore843

different forms of the flux based on choosing the normal component of either u∗ or844

−L∗n + p∗n + 1
2 (w · n)u

∗, and choosing the tangential component of either u∗ or845

−L∗n + p∗n + 1
2 (w · n)u

∗. Essentially, we can choose either the left or right side846

of (3.10a) and either the left or right side of (3.10b). It turns out that these fluxes,847

when discretized, lead to well-posed HDG schemes. These fluxes are listed below.848

The u∗
h flux: The quantities −L∗n+ p∗n can be eliminated from (3.8) so that849

(3.8) can be written as850

F ∗
n =

 −u∗ ⊗ n
−Ln+ pn+ m

2 u+ m
2 u

∗ + SO (u− u∗)
u∗ · n

 .(3.11)851

852

The F∗n flux: Defining853

F := −L+ pI+
1

2
u⊗w, F∗ := −L∗ + p∗I+

1

2
u∗ ⊗w,(3.12)854

855

the flux (3.8) can be written with F∗n as the only starred quantities,856

F ∗
n =

 −
(
u+ S−1

O (F− F∗)n
)
⊗ n

F∗n+ m
2 u+ m

2 S
−1
O (F− F∗)n

u · n+ 1
τO
n
n · [(F− F∗)n]

 .(3.13)857

858
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The (Tu∗, f∗) flux: Defining859

f := −n · [Fn] , f∗ := −n · [F∗n] ,(3.14)860861

the flux (3.8) can be written with f∗ and Tu∗ as the only starred quantities,862

F ∗
n =

 −
(
Tu∗ +Nu+ 1

τO
n
(f − f∗)n

)
⊗ n

f∗n+ m
2 Tu∗ + m

2 u−TLn+ m
2

1
τO
n
(f − f∗)n+ τOt T (u− u∗)

u · n+ 1
τO
n
(f − f∗)

 .(3.15)863

864

The (Nu∗,TF∗n) flux: The flux (3.8) can be written with Nu∗ and TF∗n as865

the only starred quantities,866

F ∗
n =

 −
(
Nu∗ +Tu+ 1

τO
t
T (F− F∗)n

)
⊗ n

TF∗n+NFn+ m
2 Nu∗ + m

2 Tu+ m
2

1
τO
t
T (F− F∗)n+ τOn N (u− u∗)

u∗ · n

 .
(3.16)

867

868

It is not obvious that the above forms of the upwind flux will lead to well-posed869

HDG schemes, and they are in fact not the only ways that we can express the upwind870

flux. The relations (3.10) between the upwind states can be re-expressed as871 (
τOt +

m

2

)
T (u− u∗) = −T [− (L− L∗)n] ,(3.17a)872 (

τOn +
m

2

)
N (u− u∗) = −N [− (L− L∗)n+ (p− p∗)n] .(3.17b)873

874

Then, we can write the upwind flux in terms of the normal component of either u∗875

and −L∗n+ p∗n and the tangential component of either u∗ and −L∗n+ p∗n. That876

is, we can choose either the left or right side of (3.17a) and either the left or right877

side of (3.17b). We have already considered the case where we write the upwind flux878

in terms of u∗ only, giving (3.11). The three remaining forms, as it turns out, do not879

lead to well-posed HDG schemes when used on all skeleton faces, but it is possible880

that they could serve a purpose by being used on the domain boundary in order to881

decouple as many unknowns as possible. For the sake of readability, these additional882

forms of the flux, and their discrete counterparts, are given in Appendix C.883

In order to define numerical fluxes884

F ∗
n,h =

 −u∗
h ⊗ n

−L∗
hn+ p∗hn+ (w · n)u∗

h

u∗
h · n

(3.18)885

886

to be used in the HDG scheme (3.4), we append a subscript h to the terms in (3.11),887

(3.13), (3.15), and (3.16) and replace the starred quantities on the right side of the888

different forms of the upwind flux with hatted unknown quantities residing on the889

mesh skeleton. Additionally we replace τOt and τOn with τt and τn, which, from890

the well-posedness analysis, can be freely chosen positive values. It is sometimes891

convenient to use the following notation for the normal and tangential stabilization892

terms,893

S := τtT+ τnN, S−1 =
1

τt
T+

1

τn
N.(3.19)894

895
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This gives the following numerical fluxes.896

The ûh flux:897

F ∗
n,h :=

 −ûh ⊗ n
−Lhn+ phn+ m

2 uh + m
2 ûh + S (uh − ûh)

ûh · n

 .(3.20)898

899

The f̂h flux (where f̂h approximates −L∗ñ+ p∗ñ+ sgnm
2 u

∗):900

F ∗
n,h =


−
(
uh + S−1

(
−Lhn+ phn+ m

2 uh − sgnf̂h

))
⊗ n

sgnf̂h + m
2 uh + m

2 S
−1
(
−Lhn+ phn+ m

2 uh − sgnf̂h

)
uh · n+ 1

τn

(
−n · [Lhn] + ph + m

2 uh · n− f̂h · ñ
)

 .(3.21)901

902

The (ût
h, f̂h) flux (where f̂h approximates −n · [L∗n] + p∗ + 1

2 (w · n)u
∗ · n):903

F ∗
n,h :=


−
(
ût
h +Nuh + 1

τn

(
fh − f̂h

)
n
)
⊗ n,

f̂hn+ m
2 û

t
h + m

2 uh −TLhn+ m
2

1
τn

(
fh − f̂h

)
n+ τt

(
ut
h − ût

h

)
,

uh · n+ 1
τn

(
fh − f̂h

)
 ,

(3.22)

904

905

where906

fh := −n · [Lhn] + ph +
1

2
(w · n)(uh · n).(3.23)907

908

The
(
ûñh, f̂

t

h

)
flux (where f̂

t

h approximates T
(
−L∗ñ+ sgnm

2 u
∗) and ûñh ap-909

proximates u∗ · ñ):910

F ∗
n =


−
(
ûñhñ+ ut

h + 1
τt

(
TFhn− sgnf̂

t

h

))
⊗ n

sgnf̂
t

h +NFhn+ m
2 û

ñ
hñ+ m

2 Tuh + m
2

1
τt

(
TFhn− sgnf̂

t

h

)
+ τn

(
Nu− ûñhñ

)
sgnûñh

 ,
(3.24)

911

912

where913

Fh := −Lh + phI+
1

2
uh ⊗w.(3.25)914

915

It can be shown that the use of fluxes (3.20) through (3.24) lead to well-posed916

HDG schemes, but some of the fluxes are more practical than others. Using (3.20) or917

(3.24) results in a scheme that requires modifications in order to uniquely define the918

pressure ph in the local solver, similar to some of the fluxes discussed in section 2 for919

the Stokes equations. The flux (3.21) results in a scheme where the velocity ûh is not920

uniquely defined by the local solver if w · n = 0 on a set of nonzero measure on ∂Th921

(unless we consider the time-dependent version of the Oseen equations with implicit922

time stepping, in which case it is well-posed without modifications). The flux (3.22)923

results in a scheme that is in any case well-posed without modifications. In what924

follows, we concretely define and prove the well-posedness of HDG schemes based on925

the fluxes (3.20) and (3.22).926
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3.2. HDG Schemes Using the ûh Flux. In this section, we define an HDG927

scheme based on (3.11), which is the “familiar” form that can be related to the928

scheme proposed in the work by Cesmelioglu et al. [5], and can be related to the929

fluid subsystem of the incompressible MHD scheme [13]. As before, we consider930

polynomial spaces of equal order k ≥ 1 for all volume and trace unknowns. The931

discontinuous polynomial spaces in which we seek the volume unknowns (Lh,uh, ph)932

and to which their corresponding test functions (G,v, q) belong are (2.5), the same as933

for the Stokes HDG schemes. The discontinuous polynomial space in which we seek934

the trace unknowns ûh is935

V̂ h :=
{
v̂ ∈

[
L2(Eh)

]d
: v̂|e ∈ V̂ h(e)

}
,(3.26)936

937

where V̂ h(e) is a polynomial space defined on e.938

With the numerical flux (3.20), the enforcement of the Dirichlet boundary condi-939

tion (3.4g) simplifies to an L2 projection of the Dirichlet boundary data to the trace940

unknown on ∂Ω, thereby decoupling the trace unknowns on ∂Ω from the rest of the941

unknowns. Then we can decompose the trace unknown942

ûh = ûi
h + ûD

h(3.27)943944

where ûD
h is defined on ∂Ω as the L2 projection of the boundary data,945 〈

ûD
h , v̂

〉
∂Ω

= ⟨uD, v̂⟩∂Ω for all v̂ ∈ V̂ h(e) for all e ∈ ∂Ω,(3.28)946
947

and ûi
h is the trace unknown ûh restricted to the interior skeleton faces Eoh. Note that948

in writing (3.27) we identify ûi
h and ûD

h with their extensions by zero to the whole949

skeleton Eh. Then ûi
h resides in the polynomial space950

V̂
i

h :=
{
v̂ ∈

[
L2(Eoh)

]d
: v̂|e ∈ V̂ h(e)

}
.(3.29)951

952

With this in place, we write the HDG scheme as follows.953

Formulation 3.2. Find (Lh,uh, ph, û
i
h) in Gh×V h×Qh× V̂

i

h such that the local954

equations955

Re (Lh,G)Th
+ (uh,∇ ·G)Th

−
〈
ûi
h,Gn

〉
∂Th

= 0,(3.30a)956

− (∇ · Lh,v)Th
+ (∇ph,v)Th

− 1

2
(uh ⊗w,∇v)Th

(3.30b)957

+
1

2
(∇uh,v ⊗w)Th

+

〈
1

2
(w · n) ûh + S (uh − ûh) ,v

〉
∂Th

= (f ,v)Th
,958

− (uh,∇q)Th
+ ⟨ûh · n, q⟩∂Th

= 0,(3.30c)959
960

and the conservation equation961

−
〈
−Lhn+ phn+

1

2
(w · n)uh + S (uh − ûh) , v̂

〉
∂Th\∂Ω

= 0(3.30d)962

963

hold for all (G,v, q, v̂) in Gh × V h × Qh × V̂
i

h, where S is defined as in (3.19), ûD
h964

is defined as in (3.28), and with the zero mean pressure conditions for the uniqueness965

of the pressure,966

(ph, 1)∂Th
= 0.(3.31)967

968
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To come to the above formulation from (3.4), realize that use of the flux (3.20)969

implies that the conservation conditions (3.4d) and (3.4f) are automatically satisfied,970

and so we do not need to explicitly include these equations in the formulation. We971

have integrated by parts terms in (2.4e) in order to write the scheme in a concise972

manner that reveals the symmetric and skew symmetric terms, and have used the973

divergence-free assumption on w. Also, we have used the fact that w ∈ H(div,Ω) to974

conclude −
〈
1
2 (w · n) ûh, v̂

〉
∂Th\∂Ω

= 0 and have removed this term from (3.30d).975

In the following, we discuss the well-posedness of Formulation 3.2.976

Theorem 3.3. (well-posedness of Formulation 3.2)977

Suppose that τt > 0 and τn > 0 (which is always true for τt = τOt and τn = τOn ).978

Then Formulation 3.2 is well-posed in the sense that given f and uD, there exists a979

unique solution (Lh,uh, ph, ûh) in Gh × V h ×Qh × V̂ h.980

Proof. It is sufficient to prove that setting f = 0 and uD = 0 implies that the981

solution (Lh,uh, ph, ûh) is zero. We can rewrite (3.30) as982

asym

((
Lh,uh, û

i
h

)
, (G,v, v̂)

)
983

+ askew

((
Lh,uh, ph, û

i
h

)
, (G,v, q, v̂)

)
= l (G,v, q, v̂) ,984

985

where986

asym

((
Lh,uh, û

i
h

)
, (G,v, v̂)

)
= Re (Lh,G)Th

+ ⟨Suh,v⟩∂Ω987

+
〈
S
(
uh − ûi

h

)
,v − v̂

〉
∂Th\∂Ω

,988
989

990

askew

((
Lh,uh, ph, û

i
h

)
, (G,v, q, v̂)

)
= (uh,∇ ·G)Th

− (∇ · Lh,v)Th
991

+ (∇ph,v)Th
− (uh,∇q)Th

− 1

2
(uh ⊗w,∇v)Th

+
1

2
(∇uh,v ⊗w)Th

992

−
〈
ûi
h,Gn

〉
∂Th\∂Ω

+ ⟨Lhn, v̂⟩∂Th\∂Ω +
〈
ûi
h · n, q

〉
∂Th\∂Ω

− ⟨ph, v̂ · n⟩∂Th\∂Ω993

+
1

2

〈
(w · n)ûi

h, v
〉
∂Th\∂Ω

− 1

2
⟨(w · n)uh, v̂⟩∂Th\∂Ω ,994

995

and996

l (G,v, q, v̂) = (f ,v)Th
−
〈
ûD
h ,−Gn+ qn+

1

2
(w · n)v − Sv

〉
∂Ω

.997

998

Setting f = 0 and uD = 0 (and therefore ûD
h = 0 on ∂Ω), we have l = 0. Setting999

(G,v, q, v̂) =
(
Lh,uh, ph, û

i
h

)
, then askew = 0, and the only remaining terms are1000

asym, giving1001

Re (Lh,Lh)Th
+
〈
S
(
uh − ûi

h

)
,uh − ûi

h

〉
∂Th\∂Ω

+ ⟨Suh,uh⟩∂Ω = 0.(3.32)1002
1003

Thus Lh = 0 in Th, uh = ûi
h on Eoh, and uh = 0 on ∂Ω.1004

Equation (3.30a) reduces to (∇uh,G)Th
= 0, and since ∇V h ⊂ Gh, we set1005

G = ∇uh to conclude that uh is elementwise constant. But since uh = ûh on Eoh and1006

This manuscript is for review purposes only.



28 S. SHANNON AND T. BUI-THANH

ûh is single valued on Eoh, uh is continuous across each internal interface, and therefore1007

uh is globally constant. With the zero boundary condition we conclude uh = 0 and1008

ûh = 0.1009

Integrating what remains of (3.30b) by parts gives (∇ph,v)Th
= 0, and since1010

∇Qh ⊂ V h we conclude that ph is elementwise constant. Since (3.30d) reduces to1011

⟨phn, v̂⟩∂Th\∂Ω, then ph is globally continuous and globally constant. Then (3.31)1012

implies ph is zero.1013

We next prove that the local solver, (3.30a)–(3.30c), in Formulation 3.2 determines1014

the local pressure ph only up to an elementwise constant.1015

Theorem 3.4. (well-posedness of the local solver of Formulation 3.2)1016

Suppose that τt > 0 and τn > 0. Given f and ûh, there exists a unique solution1017

(Lh,uh, ph) in Gh × V h ×Qh/P0 (Th) to the local equations (3.30a)–(3.30c).1018

Proof. It is sufficient to restrict our attention to a single element, and prove that1019

if f and ûh are zero, then the solution (Lh,uh, ph) is zero. We can rewrite the local1020

problem associated with Formulation 3.2 as find (Lh,uh, ph) in Gh(K) × V h(K) ×1021

Qh(K) such that1022

Re (Lh,G)K + ⟨Suh,v⟩∂K + (uh,∇ ·G)K − (∇ · Lh,v)K(3.33)1023

+ (∇ph,v)K − (uh,∇q)K −
1

2
(uh ⊗w,∇v)K +

1

2
(∇uh,v ⊗w)K1024

= (f ,v)K −
〈
ûh,−Gn+ qn+

1

2
(w · n)v − Sv

〉
∂K

1025
1026

for all (G,v, q) in Gh(K)× V h(K)×Qh(K). Setting f and ûh to zero, and setting1027

(G,v, q) = (Lh,uh, ph), we have1028

Re (Lh,Lh)K + ⟨Suh,uh⟩∂K = 0.(3.34)10291030

Thus Lh = 0 in K and uh = 0 on ∂K.1031

What remains of (3.30a) gives that uh is constant in K, and since uh = 0 on1032

∂K, that uh = 0 in K. Integrating (3.30b) by parts gives that ph is constant in K.1033

Formulation 3.2 can be modified in the same way that Formulation 2.2 that the1034

Stokes equations can be modified in order to attain a unique pressure ph in Qh, and1035

therefore well-posedness of the local solver. See subsection 2.3.1 for a discussion on the1036

augmented Lagrangian (iterative) method of modifying Formulation 3.2. The matrix1037

system (which must be solved multiple times) associated with the Formulation 3.21038

altered by the augmented Lagrangian method looks like1039

AÛk = F k−1,(3.35)10401041

where Ak is positive definite. See subsection 2.3.2 for a discussion on a direct method1042

involving an elementwise edge-average pressure as a global variable. The matrix sys-1043

tem associated with the Formulation 3.2 altered by the average edge-pressure method1044

looks like1045 [
A B⊤

−B 0

] [
Û
ρ

]
=

[
F1

F2

]
,(3.36)1046

1047

where A is positive definite.1048
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3.3. HDG Schemes Using the (ût
h, f̂h) Flux. In this section, we define new1049

HDG schemes for the Oseen equations. We do this by using the (ût
h, f̂h) flux (3.22)1050

on all skeleton faces Eoh. The justification of this choice will become evident when1051

we analyze the well-posedness of the local solver associated with this scheme, where1052

we verify that no special treatment is required for uniqueness of the local pressure.1053

Recall that for trace unknowns, this flux has the tangent velocity ût
h and a scalar f̂h1054

which approximates − 1
Ren · [∇u · n] + p + 1

2 (w · n)(u · n). The volume unknowns1055

will still be sought from the discontinuous polynomial spaces (2.5). The discontinuous1056

polynomial space in which we seek f̂h and ût
h, respectively, are1057

F̂h :=
{
ĝ ∈ L2(Eh) : ĝ|e ∈ F̂h(e)

}
,(3.37)1058

V̂
t

h :=
{
v̂t ∈

[
L2(Eh)

]d
: v̂t|e ∈ V̂

t

h(e)
}
,(3.38)1059

1060

where F̂h(e) is a scalar polynomial space, and V̂
t

h(e) is a vector valued polynomial1061

space with no normal component, defined by1062

V̂
t

h(e) =

{
d−1∑
i=1

tiv̂h,i : v̂h,i ∈ V̂h(e)

}
,(3.39)1063

1064

where V̂h(e) is a scalar polynomial space defined on e, and
{
t1, . . . , td−1

}
is a basis1065

of the tangent space of e.1066

Realize that (3.22) defines u∗
h as1067

u∗
h = ût

h +Nuh +
1

τn

(
−n · [Lhn] + ph +

1

2
(w · n)(uh · n)− f̂h

)
n.(3.40)1068

1069

The enforcement of the tangent component of the Dirichlet boundary condition (3.4g)1070

then simplifies to an L2 projection of the tangent part of the Dirichlet boundary data1071

uD to the trace unknown ût
h on ∂Ω, thereby decoupling ût

h on ∂Ω from the rest of1072

the unknowns. The normal part of the Dirichlet condition is enforced weakly as will1073

be shown below.1074

Also (3.22) defines1075

−L∗
hn+ p∗hn+

m

2
u∗
h = f̂hn+T

(
−Lhn+

1

2
(w · n)uh

)
+ τt

(
ut
h − ût

h

)
.(3.41)1076

1077

In contrast to Formulation 2.7 for the Stokes equations, this does not correspond to1078

any known boundary condition, so the f̂h unknowns on ∂Ω will remain coupled to the1079

rest of the unknowns, even if we consider boundary conditions beyond pure Dirichlet1080

conditions.1081

As before, we decompose the velocity trace unknowns into the decoupled parts1082

and the coupled parts of the trace unknowns,1083

ût
h = ût,i

h + ût,D
h ,(3.42)10841085

where ût,D
h is defined on ∂Ω as the L2 projection of the tangential components of the1086

boundary data,1087 〈
ût,D
h , v̂t

〉
∂Ω

=
〈
ut
D, v̂

t
〉
∂Ω

for all v̂t ∈ V̂
t

h(e) for all e ∈ ∂Ω,(3.43)1088
1089
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and ût,i
h is the trace unknown ût

h restricted to Eoh. Again, in writing (3.42) we identify1090

ût,i
h , and ût,D

h with their extensions by zero to Eh. We assume that all discrete spaces1091

are of equal polynomial order. Finally, we define the polynomial space1092

V̂
t,i

h :=
{
v̂t ∈

[
L2(Eoh)

]d
: v̂t|e ∈ V̂

t

h(e)
}
,(3.44)1093

1094

in which ût,i
h lies. With this in place, we write the HDG scheme as follows.1095

Formulation 3.5. Find (Lh,uh, ph, û
t,i
h , f̂h) in Gh × V h × Qh × V̂

t,i

h × F̂h such1096

that the local equations1097

Re (Lh,G)Th
− (∇uh,G)Th

+
〈
ut
h − ût

h,Gn
〉
∂Th

(3.45a)1098

+

〈
1

τn

(
fh − f̂h

)
,−n · [Gn]

〉
∂Th

= 0,1099

(Lh,∇v)Th
− (ph,∇ · v)Th

− 1

2
(uh ⊗w,∇v)Th

+
1

2
(∇uh,v ⊗w)Th

(3.45b)1100

+
〈
f̂h,v · n

〉
∂Th

−
〈
Lhn,v

t
〉
∂Th

+

〈
1

τn

(
fh − f̂h

)
,
1

2
(w · n)v · n

〉
∂Th

1101

+

〈
1

2
(w · n) ût,i

h + τt

(
ut
h − ût,i

h

)
,vt

〉
∂Th

= (f ,v)Th
,1102

(∇ · uh, q)Th
+

〈
1

τn

(
fh − f̂h

)
, q

〉
∂Th

= 0,(3.45c)1103

1104

and the conservation equations combined with the normal part of the boundary con-1105

dition1106

−
〈
−Lhn+

1

2
(w · n)ut

h + τt

(
ut
h − ût

h

)
, v̂t

〉
∂Th\∂Ω

= 0,(3.45d)1107

−
〈
uh · n+

1

τn

(
fh − f̂h

)
, ĝ

〉
∂Th

= −⟨uD · n, ĝ⟩∂Ω(3.45e)1108

1109

hold for all (G,v, q, v̂t, ĝ) in Gh × V h × Qh × V̂
t,i

h × F̂h, where fh is defined as in1110

(3.23), where ût,D
h is defined as in (3.43), and with the zero mean pressure conditions1111

for the uniqueness of the pressure, (3.31).1112

Note that we have identified the scalar test function ĝ with −n ·
[
Ĝn

]
+ q̂ +1113

1
2 (w ·n)(v̂ ·n) on ∂Th\∂Ω and with ŵ ·n on ∂Ω in order to write (3.4d), (3.4f), the1114

normal part of (3.4e), and the normal part of (3.4g) in a combined manner as (3.45e).1115

Similarly, we identify Tŵ with v̂t to write the tangent part of (3.4e) as (3.45d). Also1116

note that we have integrated by parts the terms in (3.45a) and (3.45c) and half of1117

the advection term in (3.45b) in order to put the scheme into the form as the above1118

formulation, which readily reveals the symmetric and skew-symmetric terms. Also, we1119

have used the fact that w ∈ H(div,Ω) to conclude −
〈

1
2 (w · n) û

t,i
h , v̂

t
〉
∂Th\∂Ω

= 01120

and have removed this term from (3.45d). We are now ready to prove well-posedness1121

of Formulation 3.5 and its local solver.1122

Theorem 3.6. (well-posedness of Formulation 3.5)1123

Suppose that τt > 0 and τn > 0 (which is always true for τt = τOt and τn = τOn ).1124
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Then Formulation 3.5 is well-posed in the sense that given f and uD, there exists a1125

unique solution
(
Lh,uh, ph, û

t
h, f̂h

)
in Gh × V h ×Qh × V̂

t

h × F̂h.1126

Proof. It is sufficient to prove that if f = 0 and uD = 0, then
(
Lh,uh, ph, û

t
h, f̂h

)
1127

is zero. We can rewrite (3.45) as1128

asym

((
Lh,uh, ph, û

t,i
h , f̂h

)
,
(
G,v, q, v̂t, ĝ

))
1129

+ askew

((
Lh,uh, ph, û

t,i
h , f̂h

)
,
(
G,v, q, v̂t, ĝ

))
= l
(
G,v, q, v̂t, ĝ

)
1130
1131

where1132

asym

((
Lh,uh, ph, û

t,i
h , f̂h

)
,
(
G,v, q, v̂t, ĝ

))
:= Re (Lh,G)Th

+
〈
τtu

t
h,v

t
〉
∂Ω

1133

+
〈
τt

(
ut
h − ût,i

h

)
,vt − v̂t

〉
∂Th\∂Ω

+

〈
1

τn

(
fh − f̂ ih

)
, g − ĝ

〉
∂Th

,1134

1135
1136

askew

((
Lh,uh, ph, û

t,i
h , f̂h

)
,
(
G,v, q, v̂t, ĝ

))
:= − (∇uh,G)Th

+ (Lh,∇v)Th
1137

− (ph,∇ · v)Th
+ (∇ · uh, q)Th

+
〈
f̂ ih,v · n

〉
∂Th

− ⟨uh · n, ĝ⟩∂Th
+
〈
ut
h,Gn

〉
∂Th

1138

−
〈
Lhn,v

t
〉
∂Th
−
〈
ût,i
h ,Gn

〉
∂Th\∂Ω

+
〈
Lhn, v̂

t
〉
∂Th\∂Ω

− 1

2
(uh ⊗w,∇v)Th

1139

+
1

2
(∇uh,v ⊗w)Th

+
1

2

〈
(w · n)ût,i

h ,v
t
〉
∂Th\∂Ω

− 1

2

〈
(w · n)ut

h, v̂
t
〉
∂Th\∂Ω

,1140
1141

and1142

l
(
G,v, q, v̂t, ĝ

)
:= (f ,v)Th

− ⟨uD · n, ĝ⟩∂Ω1143

−
〈
1

2
(w · n)ût,i

h − τtû
t,D
h ,vt

〉
∂Ω

+
〈
ût,D
h ,Gn

〉
∂Ω
,1144

1145

where we have have written for simplicity the combination of test functions1146

g := −n · [Gn] + q +
1

2
(w · n)(v · n).(3.46)1147

1148

Setting f = 0 and uD = 0 (and therefore ût,D
h = 0) gives l = 0, and setting1149 (

G,v, q, v̂t, ĝ
)
=
(
Lh,uh, ph, û

t,i
h , f̂h

)
gives askew = 0. All that remains is the asym1150

terms, giving1151

Re (Lh,Lh)Th
+
〈
τt

(
ut
h − ût,i

h

)
,ut

h − ût,i
h

〉
∂Th\∂Ω

(3.47)1152

+
〈
τtu

t
h,u

t
h

〉
∂Ω

+

〈
1

τn

(
fh − f̂h

)
, fh − f̂h

〉
∂Th

= 0.1153

1154

All the terms on the left side of the preceding expression are nonnegative and therefore1155

must each be zero. Thus Lh = 0 in Th, ut
h = ût,i

h on Eoh, ut
h = 0 on ∂Ω, and1156

ph + 1
2 (w · n) (uh · n) = f̂h on Eh.1157

Equation (3.45a) reduces to (∇uh,G)Th
= 0, and since ∇V h ⊂ Gh we can set1158

G = ∇uh to conclude that uh is elementwise constant. But since ut
h = ût,i

h on1159
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Eoh and ût
h is single valued on Eoh, and since (3.45e) reduces to ⟨uh · n, ĝ⟩∂Th

= 0, the1160

tangential and normal components of uh are continuous across each internal interface,1161

and therefore uh and is globally constant. Since we already have concluded that ut
h1162

is zero on ∂Ω (and additionally (3.45e) implies the normal component of uh is zero1163

on ∂Ω), we can conclude that uh and ût
h are zero.1164

Integrating (3.45b) by parts gives (∇ph,v)Th
= 0, and since ∇Qh ⊂ V h we can1165

set v to ∇ph to conclude that ph is elementwise constant. Because ph = f̂h on Eh, ph1166

is globally constant. Then (3.31) implies ph and f̂h are zero.1167

Theorem 3.7. (well-posedness of the local solver of Formulation 3.5)1168

Suppose that τt > 0 and τn > 0. Given f , ût
h, and f̂h, there exists a unique solution1169

(Lh,uh, ph) in Gh × V h ×Qh to the local equations (3.45a)–(3.45c).1170

Proof. It is sufficient to restrict our attention to a single element, and prove that if1171

f , ût
h, and f̂h are zero, then the solution (Lh,uh, ph) is zero. We can rewrite the local1172

problem associated with Formulation 3.5 as find (Lh,uh, ph) in Gh(K) × V h(K) ×1173

Qh(K) such that1174

Re (Lh,G)K +
〈
τtu

t
h,v

t
〉
∂K

+

〈
1

τn
fh, g

〉
∂K

(3.48)1175

− (∇uh,G)K + (Lh,∇v)K − (ph,∇ · v)K + (∇ · uh, q)K1176

− 1

2
(uh ⊗w,∇v)K +

1

2
(∇uh,v ⊗w)K +

〈
ut
h,Gn

〉
∂K
−
〈
Lhn,v

t
〉
∂K

1177

= (f ,v)K +
〈
ût
h,Gn

〉
∂K
−
〈
1

2
(w · n) ût

h − τtû
t
h,v

t

〉
∂K

1178

−
〈
f̂h,v · n

〉
∂K

+

〈
1

τn
f̂h, g

〉
∂K

1179

1180

for all (G,v, q) in Gh(K)×V h(K)×Qh(K), where fh is defined as in (3.23) and g is1181

defined as in (3.46). Setting f , ût
h, and f̂h to zero, and setting (G,v, q) = (Lh,uh, ph),1182

we have1183

Re (Lh,Lh)K +
〈
τtu

t
h,u

t
h

〉
∂K

+

〈
1

τn
fh, fh

〉
∂K

= 0.(3.49)1184

1185

Thus Lh = 0 in K, and ut
h = 0 and ph + 1

2 (w · n)uh · n = 0 on ∂K.1186

What remains of (3.45a) gives that uh is constant in K, and since ut
h = 0 on1187

∂K, that uh = 0 in K. Integrating (3.45b) by parts gives that ph is constant in K,1188

and since ph + 1
2 (w · n)(uh · n) = ph = 0 on ∂K, that ph = 0 in K.1189

Finally, we note that the condensed global system associated with Formulation 3.51190

takes the form1191 [
A B
C D

][
Û t

F̂

]
=

[
F1

F2

]
,(3.50)1192

1193

where A and D are positive semi-definite and constraining one degree of freedom1194

associated with f̂h (which is done to enforce (3.31)) renders D positive definite.1195

3.4. Numerical Results. We consider as a numerical test problem the same1196

problems as considered in the previous section on the Stokes equations. The problem1197
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is an analytical solution by Kovasznay [12] to the two dimensional incompressible1198

Navier-Stokes equations. The solution is given by1199

u1 = 1− expλx1 cos 2πx2,(3.51)1200

u2 =
λ

2π
expλx1 sin 2πx2,(3.52)1201

p = −1

2
exp 2λx1.(3.53)1202

1203

A domain of [0, 2]×[−0.5, 1.5] is considered, with the exact velocity solution prescribed1204

as Dirichlet boundary conditions on all parts of the domain boundary. Setting f = 0,1205

w = u, and uD = u, we compute on a mesh of N×N tensor product square elements,1206

defining the element size h := 2
N .1207

In Figure 3, the numerical solution uh and ph are plotted. In Figure 4, the L2(Ω)1208

error of the volume unknowns (Lh,uh, ph) are plotted along with their convergence1209

rates. The left column of plots shows the L2 error obtained using the ûh flux (3.20)1210

on all skeleton faces (i.e., Formulation 3.2), while the right column shows the L21211

error obtained using the (ût
h, f̂h) flux (3.22) on the interior skeleton faces and the ûh1212

flux (3.20) on the boundary skeleton faces. In both cases τt and τn are chosen as1213

the upwind parameters τOt and τOn , respectively. As expected, the errors using the1214

two versions of the Godunov flux are virtually identical. In both cases, the observed1215

convergence rates are k + 1 for uh, and close to k + 1 for Lh and ph.1216

Next we demonstrate the utility of the HDG schemes for the Oseen equations1217

for solving the (nonlinear) incompressible Navier-Stokes equations. If we consider1218

the Oseen equations (3.1) to be a linear map w 7→ u, then any fixed point of that1219

mapping is a solution to the steady state incompressible Navier-Stokes equations.1220

With this in mind, we can use the general Oseen HDG scheme (3.4) in an iterative1221

manner to numerically solve the incompressible Navier-Stokes equations. Omitting1222

the specification of trial/test spaces for simplicity, we can express the Oseen HDG1223

schemes as solving1224

a
(
w;Lh,uh, ph, Ûh;G,v, q, V̂

)
= l
(
G,v, q, V̂

)
,(3.54)1225

1226

where Ûh and V̂ represent the global unknowns and test functions, respectively.1227

For example, for Formulation 3.2 with the average edge-pressure modification, Ûh1228

represents (ûi
h, ρh) and V̂ represents (v̂, ψ), and for Formulation 3.5, Ûh represents1229

(ût,i
h , f̂

i
h) and V̂ represents (v̂t, ĝ). Then, we can define one step of the Picard iteration1230

as solving for
(
Lm
h ,u

m
h , p

m
h , Û

m

h

)
using1231

a
(
um−1
h ;Lm

h ,u
m
h , p

m
h , Û

m

h ;G,v, q, V̂
)
= l
(
G,v, q, V̂

)
.(3.55)1232

1233

It remains to define stopping criteria for the nonlinear iteration. One possible stopping1234

criterion involves using a residual rm ∈ V h to the discretized momentum equation1235

that we define by1236

(rm,v)Th
= a

(
um
h ;Lm

h ,u
m
h , p

m
h , Û

m

h ;0,v, 0,0
)
− l (0,v, 0,0)(3.56)1237

1238

for all v in V h and stopping when1239

∥rm∥L2(Ω) < δ(3.57)1240
1241
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Fig. 3. Oseen HDG schemes: Kovasznay flow problem solution - uh1 (top left), uh2 (top
right), and ph (bottom).

Algorithm 3.1 Picard Iteration for Steady Incompressible Navier-Stokes HDG
Schemes.

set initial guess u0
h, choose stopping tolerance δ, and set m = 1

while true do
solve for

(
Lm
h ,u

m
h , p

m
h , Û

m

h

)
using (3.55)

if (3.57) is true then
break

end if
m← m+ 1

end while

for some δ > 0. The Picard iteration is outlined in Algorithm 3.11242

Using the Picard iteration, we can solve the Kovasznay problem by applying1243

the boundary conditions uD as the exact solution u and applying zero forcing. In1244

Figure 5, the L2(Ω) error of the volume unknowns (Lh,uh, ph) are plotted along with1245

their convergence rates. The left column of plots shows the L2 error obtained using1246
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Fig. 4. Oseen HDG schemes: Kovasznay flow problem L2 convergence of volume unknowns
using ûh flux (3.20) (left), using (ût

h, f̂h) flux (3.22) (right).

the ûh flux (3.20) on all skeleton faces (i.e., Formulation 3.2), while the right column1247

shows the L2 error obtained using the (ût
h, f̂h) flux (3.22) on the interior skeleton1248

faces and the ûh flux (3.20) on the boundary skeleton faces. In both cases τt and1249

τn are chosen as the upwind parameters τOt and τOn , respectively. In both cases, the1250

tolerance for the stopping criterion (3.57) was taken as δ = 10−10 in order to avoid1251

that the error plots level out. For the ûh flux, 10-11 iterations were needed in order to1252

reach the stopping criterion regardless of polynomial order or mesh refinement level.1253

For the (ût
h, f̂h) flux, it took 11-12 iterations regardless of polynomial order or mesh1254

refinement level. In both cases, an initial guess of zero was used. Again, the errors1255
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Fig. 5. Oseen HDG schemes: Kovasznay flow problem nonlinear solution with Picard iteration
- L2 convergence of volume unknowns using ûh flux (3.20) (left), using (ût

h, f̂h) flux (3.22) (right).

using the two versions of the Godunov flux are virtually identical. In both cases, the1256

observed convergence rates are k + 1 for uh, and close to k + 1 for Lh and ph, which1257

are the same convergence rates as for the linear Oseen scheme.1258

3.5. Discussion. Through the upwind HDG methodology [2], we have derived1259

two families of HDG schemes for the Oseen equations. One scheme is based on the ûh1260

flux, and can be related to the scheme analyzed by Cesmelioglu et. al [5]. Rearranging1261
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the second term of (3.20), we can write1262

−L∗
hn+ p∗hn+ (w · n)u∗

h = −Lhn+ phn+ (w · n)ûh1263

+

([
τt +

1

2
w · n

]
T+

[
τn +

1

2
w · n

]
N

)
(uh − ûh) .1264

1265

If we denote the stabilization tensor used in [5] by SC := 1
Reτ

C
n N+ 1

Reτ
C
t T, then we1266

can recover the scheme from [5] by choosing τn = 1
Reτ

C
n − 1

2w·n and τt =
1
Reτ

C
t − 1

2w·n1267

in Formulation 3.2.1268

Some comments are in order regarding the difference between these similar fluxes.1269

First, we have already shown in the well-posedness for Formulation 3.2 that we must1270

only choose τt > 0 and τn > 0 for well-posedness, which is always true in particular1271

for the upwind flux parameters τOt and τOn . So, if we would like to define a scheme1272

with ∂K-wise constant, skeleton face-wise constant, or globally constant stability1273

parameters τt and τn, the only restriction on those stability parameters is that they are1274

positive. On the other hand, using the scheme analyzed in [5], if we would like to define1275

a scheme with ∂K-wise constant, skeleton face-wise constant, or globally constant1276

stability parameters τCt and τCn , we must ensure that min
(

1
Reτ

C
t − 1

2w · n
)
> 0 ∂K-1277

wise, skeleton face-wise, or globally.1278

Second, it may appear that the form of the flux in [5] with (w ·n)ûh is a simpler1279

form of the flux than the one in (3.20) which has the terms 1
2 (w ·n)ûh +

1
2 (w ·n)uh.1280

But as we put the advection term in Formulation 3.2 into a form which ensures the1281

skew symmetry of the volume terms upon discretization,1282

− (uh ⊗w,∇v)Th
= −1

2
(uh ⊗w,∇v)Th

+
1

2
(∇uh,v ⊗w)Th

− 1

2
⟨(w · n)uh,v⟩∂Th

,1283
1284

the only advection boundary term remaining in Formulation 3.2 is 1
2 ⟨(w · n)ûh,v⟩∂Th

,1285

whereas putting the formulation analyzed in [5] into a similar form gives advection1286

boundary terms as
〈
(w · n)ûh − 1

2 (w · n)uh,v
〉
∂Th

. Because of this and the discus-1287

sion in the previous paragraph, we favor defining the stabilization parameters as in1288

Formulation 3.2 for the Oseen HDG scheme based on the ûh flux.1289

Third, the formulation in [5] with constant stability parameters (satisfying the1290

conditions already discussed) was proven to converge at order k + 1 for equal order1291

total degree (simplicial) elements for sufficiently smooth solutions. Here, we have1292

numerically demonstrated the convergence of Formulation 3.2 for 2D tensor product1293

elements, but have made no theoretical claims. This is reserved for future work.1294

The second family of schemes that we have derived is based on the (ût
h, f̂h) flux.1295

These schemes are new schemes that are published only in this work (at the time of1296

writing). As opposed to the HDG schemes based on the ûh flux, these HDG schemes1297

do not require special modifications to achieve well-posedness of the local solver. Thus1298

we avoid the iterative nature of the augmented Lagrangian method, and we avoid the1299

introduction additional unknowns of a different nature and the saddle point system1300

that arises from the average edge-pressure method.1301

It should be reiterated that we have assumed ∇ ·w = 0 throughout this section1302

by setting ((∇ ·w)uh,v) = 0 upon integration by parts of half the advection term in1303

(3.4b) to write (3.30b) and (3.45b). When using these schemes iteratively to solve the1304

incompressible Navier-Stokes equations using the Picard iteration outlined in the pre-1305

vious section, we take w to be um−1
h when solving themth iterate. It can be seen from1306

(3.30c) and (3.45c) that uh is only weakly divergence free, and not exactly divergence1307

free. It is an option to perform a postprocessing on the velocity in order to obtain1308
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a postprocessed velocity which is exactly divergence free and lies in H(div,Ω) [8],1309

and then to use the postprocessed velocity as w in the next iteration. Postprocessing1310

is not explored in this work, however, and we simply use the previous iterate of uh.1311

However, we still use Formulations 3.2 and 3.5 as they are written. With this in mind,1312

it can be interpreted that we have added − 1
2 (∇·w)u to the left side of the momentum1313

equation (3.1a) and therefore have added the source term − 1
2 ((∇ ·w)uh,v)Th

to the1314

left side of (3.4b). This term will then cancel the term of opposite sign arising from1315

integration by parts that we have up to this point assumed to be zero on the basis of1316

w being divergence free.1317

A similar idea applies to the conservation conditions (3.30d) and (3.45d), where1318

we have assumed w ∈ H(div,Ω) in order to exclude the − 1
2 ⟨(w · n)ûh, v̂⟩∂Th\∂Ω and1319

− 1
2

〈
(w · n)ût,i

h , v̂
t
〉
∂Th\∂Ω

terms in Formulations 3.2 and 3.5, respectively. When w1320

is taken as the previous iterate of uh, these terms would no longer be exactly zero,1321

so their omission is interpreted as an approximate enforcement of conservation, or as1322

adding the stabilization terms 1
2 ⟨(w · n)ûh, v̂⟩∂Th\∂Ω and 1

2

〈
(w · n)ût,i

h , v̂
t
〉
∂Th\∂Ω

to1323

the conservation conditions of Formulations 3.2 and 3.5, respectively. It is interesting1324

to note that using the f̂h flux (3.21) avoids this issue altogether.1325

4. Conclusions. Through the upwind HDG framework, we have introduced1326

three new HDG schemes for the Stokes equations and three new HDG schemes for1327

the Oseen equations. One Stokes scheme and one Oseen scheme uses a numerical1328

flux based on the tangent velocity trace unknown and an additional scalar trace un-1329

known. The well-posedness analysis reveals that the local solvers associated with1330

these schemes are well-posed without modifications. This is in contrast to the HDG1331

schemes based on the full trace velocity, which require modifications that either re-1332

quire an iterative solution procedure, or introduce additional unknowns and result in1333

a saddle point system. Numerical studies show that the different fluxes give solutions1334

that are nearly identical.1335

Appendix A. Notation.1336

In this appendix we review common notation and conventions that apply to the1337

entirety of this work. The spatial dimension of the problem under consideration1338

is denoted by d. Let Ω ⊂ Rd, d = 2, 3, be a bounded domain and its boundary1339

∂Ω is a Lipschitz manifold. We partition Ω into disjoint elements K (simplices or1340

quadrilaterals/hexahedra), and define Th := {K} as the collection of elements. We1341

define ∂T := {∂K : K ∈ T } as the collection of element faces (where we use the1342

term “face” regardless of the spatial dimension). For any K, e = ∂K ∩ ∂Ω is a (d− 11343

dimensional) boundary face if e has a nonzero d− 1 Lebesgue measure. For any two1344

distinct elements K− and K+, e = ∂K− ∩ ∂K+ is an interior face if e has a nonzero1345

d− 1 Lebesgue measure. The collection of all interior faces is denoted by Eoh and the1346

collection of all boundary faces is denoted by E∂h . The mesh skeleton Eh := Eoh ∪ E∂h is1347

the collection of all faces, boundary and interior.1348

We use (·, ·)D or ⟨·, ·⟩D to denote the L2-inner product on D if D is a d or (d− 1)1349

dimensional domain, respectively. For vector (first order tensor) valued functions or1350

second order tensor valued functions, these notations are naturally extended with a1351

component-wise inner product. We define the gradient of a vector (first order tensor),1352
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the divergence of a second order tensor, and the outer product symbol ⊗ as1353

(∇u)ij =
∂ui
∂xj

, (∇ · L)i =
d∑

j=1

∂Lij

∂xj
, (a⊗ b)ij = aibj =

(
ab⊤

)
ij
.(A.1)1354

1355

In general, we denote vectors by bold, italicized symbols, and we denote matrices and1356

tensors by non-italicized, bold, uppercase letters. When relevant, vectors are to be1357

interpreted as column vectors, and A⊤ denotes the vector or matrix transpose.1358

In this work n denotes a unit normal vector field on a face of ∂K, and it points1359

outward relative to the element K with which ∂K is associated. If ∂K− ∩ ∂K+ ∈ Eh1360

for two distinct simplices K−,K+, then n− and n+ denote the outward unit normal1361

vector fields on ∂K− and ∂K+, respectively, and n− = −n+ on ∂K− ∩ ∂K+. We1362

simply use n to denote either n− or n+ in an expression that is valid for both cases,1363

and this convention is also used for other quantities restricted to a face e ∈ Eh. We1364

use ñ to define a unique normal vector associated with the face ∂K− ∩ ∂K+. That1365

is, ñ is chosen arbitrarily as either n− or n+, so that either ñ = n− = −n+ or1366

ñ = −n− = n+. Associated with each skeleton face, we define the double valued sgn1367

by1368

sgn := sgn(n) =

{
1, if n = ñ,

−1, if n = −ñ
1369

1370

which is either positive or negative one. We define N := n ⊗ n so that the normal1371

component of some vector b can be written as bn := (b · n)n = Nb. Similarly, we1372

define T := I−N = −n×(n× ·), where I is the identity matrix, so that the tangential1373

component of some vector b can be written as bt := −n× (n× b) = Tb.1374

Finally, in the derivation of numerical fluxes for HDG schemes with second order1375

tensor valued auxiliary variables, for conciseness and convenience we will use the1376

Kronecker product and vectorization operator [11, 17]. The Kronecker product is1377

typically denoted by the same symbol (⊗) as the tensor product. Because we use both1378

the tensor product and Kronecker product in this work, in order to avoid confusion we1379

will denote the Kronecker product by ⊗K (where the subscript refers to “Kronecker”).1380

For an arbitrary m×n matrix A and p× q matrix B, the Kronecker product A⊗KB1381

is defined by1382

A⊗KB =

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ,(A.2)1383

1384

or, more concisely, (A⊗KB)p(i−1)+k,q(j−1)+l = AijBkl. Among the useful properties1385

of the Kronecker product are the following:1386

(A⊗KB)
⊤
= A⊤⊗KB⊤,(A.3)1387

(A⊗KB) (C⊗KD) = (AC)⊗K (BD) .(A.4)13881389

The vectorization operator, vec, maps a matrix to a vector that is composed of the1390

columns of the matrix “stacked” on top of each other. For example a 3×3 matrix L is1391

mapped to the column vector vec (L) = (L11;L21;L31;L12;L22;L32;L13;L23;L33). A1392

convenient relationship between the Kronecker product and the vectorization operator1393

is1394

vec (ABC) =
(
C⊤⊗KA

)
vec (B) .(A.5)13951396
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Appendix B. Characterization of HDG Schemes for the Stokes Equa-1397

tions.1398

For conforming finite element methods, it is a relatively easy task to determine the1399

form that the matrix structure will take. For the Stokes equations with homogeneous1400

Dirichlet boundary conditions, a conforming finite element method looks like: find1401

(uh, ph) ∈ V h ×Qh ⊂ H1
0 (Ω)× L2

0(Ω) such that1402

1

Re
(∇uh,∇v)Ω − (ph,∇ · v)Ω = (f ,v)Ω ,(B.1)1403

− (∇ · uh, q)Ω = 0,(B.2)14041405

for all (v, q) ∈ V h ×Qh for some stable finite element space pair (V h, Qh). Here the1406

letters V h and Qh are reused and are not meant to refer to (2.5), and L2
0(Ω) refers1407

to functions in L2(Ω) with zero average. It is clear that the matrix associated with1408

(B.1) will take the form1409 [
A B⊤

B 0

]{
U
P

}
= F.(B.3)1410

1411

For the HDG schemes for the Stokes equations in section 2, it is not clear what form1412

the condensed global system will take just by looking at the weak form of the HDG1413

scheme. In this appendix, we prove the properties of the condensed global matrices1414

for the Stokes HDG schemes discussed in section 2.1415

B.1. Characterization of Formulation 2.5. In the following, we characterize1416

the statically condensed global system of the Stokes HDG scheme Formulation 2.5,1417

which uses the ûh flux (2.16) and the augmented Lagrangian modification for well-1418

posedness of the local solver. The following characterization sheds light on the matrix1419

system associated with this formulation. Toward this goal, we define the following1420

local solvers, where S is a stabilization tensor defined in (2.25).1421

For µ ∈ V̂
i

h, we define (Lµ
h ,u

µ
h , p

µ
h ) in Gh × V h ×Qh as the solution to1422

Re (Lµ
h ,G)Th

+ (uµ
h ,∇ ·G)Th

− ⟨µ,Gn⟩∂Th\∂ΩD
= 0,(B.4a)1423

− (∇ · Lµ
h ,v)Th

+ (∇pµh ,v)Th
+ ⟨S (uµ

h − µ) ,v⟩
∂Th\∂ΩD

+ ⟨Suµ
h ,v⟩∂ΩD

= 0,(B.4b)1424

1

∆τ
(pµh , q)Th

− (uµ
h ,∇q)Th

+ ⟨µ · n, q⟩∂Th\∂ΩD
= 0,(B.4c)1425

1426

for all (G,v, q) in Gh × V h ×Qh.1427

For U ∈ Pk(∂ΩD)
d
, we define

(
LU
h ,u

U
h , p

U
h

)
in Gh×V h×Qh as the solution to1428

Re
(
LU
h ,G

)
Th

+
(
uU
h ,∇ ·G

)
Th
− ⟨U ,Gn⟩∂ΩD

= 0,(B.5a)1429

−
(
∇ · LU

h ,v
)
Th

+
(
∇pUh ,v

)
Th

+
〈
SuU

h ,v
〉
∂Th\∂ΩD

(B.5b)1430

+
〈
S
(
uU
h −U

)
,v
〉
∂ΩD

= 0,1431

1

∆τ

(
pUh , q

)
Th
−
(
uU
h ,∇q

)
Th

+ ⟨U · n, q⟩∂ΩD
= 0,(B.5c)1432

1433

for all (G,v, q) in Gh × V h ×Qh.1434
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For g ∈ L2(Ω), we define (Lg
h,u

g
h, p

g
h) in Gh × V h ×Qh as the solution to1435

Re (Lg
h,G)Th

+ (ug
h,∇ ·G)Th

= 0,(B.6a)1436

− (∇ · Lg
h,v)Th

+ (∇pgh,v)Th
+ ⟨Sug

h,v⟩∂Th
= (g,v)Th

,(B.6b)1437

1

∆τ
(pgh, q)Th

− (ug
h,∇q)Th

= 0,(B.6c)1438
1439

for all (G,v, q) in Gh × V h ×Qh.1440

For r ∈ Qh, we define (Lr
h,u

r
h, p

r
h) in Gh × V h ×Qh as the solution to1441

Re (Lr
h,G)Th

+ (ur
h,∇ ·G)Th

= 0,(B.7a)1442

− (∇ · Lr
h,v)Th

+ (∇prh,v)Th
+ ⟨Sur

h,v⟩∂Th
= 0,(B.7b)1443

1

∆τ
(prh, q)Th

− (ur
h,∇q)Th

=
1

∆τ
(r, q)Th

,(B.7c)1444
1445

for all (G,v, q) in Gh × V h ×Qh.1446

The local solvers (B.4)–(B.7) can be shown to be well-posed in an identical manner1447

to how the well-posedness of the local solver of Formulation 2.5 is shown in section 2.1448

At this point, we are in a position to state the main result.1449

Theorem B.1. (characterization of condensed global system for Formulation 2.5)1450

The combined jump condition and Neumann boundary condition (2.31d) can be writ-1451

ten as1452

a
(
ûi,k
h , v̂

)
= l (v̂) ,(B.8)1453

1454

where1455

a
(
ûi,k
h , v̂

)
:=

(
ReL

ûi,k
h

h ,Lv̂
h

)
Th

+
1

∆τ

(
p
ûi,k

h

h , pv̂h

)
Th

+

〈
Su

ûi,k
h

h ,uv̂
h

〉
∂ΩD

(B.9)1456

+

〈
S

(
u
ûi,k

h

h − ûi,k
h

)
,uv̂

h − v̂

〉
∂Th\∂ΩD

1457

1458

and1459

l1 (v̂) := −⟨fN , v̂⟩∂ΩN
+
〈
−LûD

h

h n+ p
ûD

h

h n+ Su
ûD

h

h , v̂
〉
∂Th\∂ΩD

(B.10)1460

+
〈
−Lf

hn+ pfhn+ Suf
h , v̂

〉
∂Th\∂ΩD

1461

+

〈
−L

1
∆τ pk−1

h

h n+ p
1

∆τ pk−1
h

h n+ Su
1

∆τ pk−1
h

h , v̂

〉
∂Th\∂ΩD

.1462

1463

Proof. Due to the linearity of the local solver (2.31a)–(2.31c), we can decompose1464

the volume solution to (2.31a)–(2.31c) as1465

(
Lk
h,u

k
h, p

k
h

)
=

(
L
ûi,k

h

h ,u
ûi,k

h

h , p
ûi,k

h

h

)
+
(
L
ûD

h

h ,u
ûD

h

h , p
ûD

h

h

)
1466

+
(
Lf
h ,u

f
h , p

f
h

)
+

(
L

1
∆τ pk−1

h

h ,u
1

∆τ pk−1
h

h , p
1

∆τ pk−1
h

h

)
.1467

1468
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That is,
(
Lk
h,u

k
h, p

k
h

)
is the sum of the solutions to (B.4)–(B.7) with µ = ûi,k

h , U = ûD
h ,1469

g = f , and r = 1
∆τ p

k−1
h . Then, the combined jump and Neumann boundary condition1470

(2.31d) can be written as1471

−
〈
−Lûi,k

h

h n+ p
ûi,k

h

h n+ S

(
u
ûi,k

h

h − ûi,k
h

)
, v̂

〉
∂Th\∂ΩD

1472

−
〈
−LûD

h

h n+ p
ûD

h

h n+ Su
ûD

h

h , v̂
〉
∂Th\∂ΩD

−
〈
−Lf

hn+ pfhn+ Suf
h , v̂

〉
∂Th\∂ΩD

1473

−
〈
−L

1
∆τ pk−1

h

h n+ p
1

∆τ pk−1
h

h n+ Su
1

∆τ pk−1
h

h , v̂

〉
∂Th\∂ΩD

= −⟨fN , v̂⟩∂ΩN
.1474

1475

It remains to show−
〈
−Lûi,k

h

h n+ p
ûi,k

h

h n+ S

(
u
ûi,k

h

h − ûi,k
h

)
, v̂

〉
∂Th\∂ΩD

= a
(
ûi,k
h , v̂

)
1476

as defined by (B.9). In (B.4a) take µ = v̂ and G = L
ûi,k

h

h , in (B.4b) take µ = ûi,k
h1477

and v = uv̂
h, and in (B.4c) take µ = v̂ and q = p

ûi,k
h

h . Summing the result, we have1478 (
ReL

ûi,k
h

h ,Lv̂
h

)
Th

+
1

∆τ

(
p
ûi,k

h

h , pv̂h

)
Th

+

〈
S

(
u
ûi,k

h

h − ûi,k
h

)
,uv̂

h

〉
∂Th\∂ΩD

1479

+

〈
Su

ûi,k
h

h ,uv̂
h

〉
∂ΩD

−
〈
L
ûi,k

h

h n, v̂

〉
∂Th\∂ΩD

+

〈
p
ûi,k

h

h , v̂ · n
〉

∂Th\∂ΩD

= 0.1480

1481

Therefore,1482 〈
L
ûi,k

h

h n, v̂

〉
∂Th\∂ΩD

−
〈
p
ûi,k

h

h , v̂ · n
〉

∂Th\∂ΩD

1483

−
〈
S

(
u
ûi,k

h

h − ûi,k
h

)
, v̂

〉
∂Th\∂ΩD

= a
(
ûi,k
h , v̂

)
.1484

1485

We can conclude from Theorem B.1 that the condensed global system will take1486

the form1487

AÛk = F k−1.14881489

Inspecting (B.9), we can see that the block matrix A is symmetric and positive semi-1490

definite. We can further claim that A is positive definite. To support this claim1491

we must show a
(
ûi,k
h , ûi,k

h

)
= 0 ⇒ ûi,k

h = 0. Indeed, a
(
ûi,k
h , ûi,k

h

)
= 0 implies1492

L
ûi,k

h

h = 0, p
ûi,k

h

h = 0, u
ûi,k

h

h = 0 on ∂ΩD, and u
ûi,k

h

h = ûi,k
h on Eh\∂ΩD. Then, with1493

µ = ûi,k
h in (B.4a), integrating by parts reveals that u

ûi,k
h

h is elementwise constant,1494

and therefore globally constant since u
ûi,k

h

h = ûi,k
h on Eh\∂ΩD. Since ∂ΩD ̸= ∅ then1495

u
ûi,k

h

h = 0 and therefore ûi,k
h = 0.1496

B.2. Characterization of Formulation 2.6. In the following, we characterize1497

the statically condensed global system of the Stokes HDG scheme Formulation 2.6,1498

which uses the ûh flux (2.16) and the average edge-pressure modification for well-1499

posedness of the local solver. The following characterization sheds light on the matrix1500

system associated with this formulation. Toward this goal, we define the following1501

local solvers, where S is a stabilization tensor defined in (2.25).1502
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For µ ∈ V̂
i

h, we define (Lµ
h ,u

µ
h , p

µ
h ) in Gh × V h ×Qh as the solution to1503

Re (Lµ
h ,G)Th

+ (uµ
h ,∇ ·G)Th

− ⟨µ,Gn⟩∂Th\∂ΩD
= 0,(B.11a)1504

− (∇ · Lµ
h ,v)Th

+ (∇pµh ,v)Th
+ ⟨Suµ

h ,v⟩∂ΩD
+ ⟨S (uµ

h − µ) ,v⟩
∂Th\∂ΩD

= 0,
(B.11b)

1505

− (uµ
h ,∇q)Th

+ ⟨µ · n, q − q⟩∂Th\∂ΩD
+
〈
p̄µh , q

〉
∂Th

= 0,(B.11c)1506
1507

for all (G,v, q) in Gh × V h ×Qh.1508

For β ∈ P0(∂Th), we define
(
Lβ
h,u

β
h, p

β
h

)
in Gh × V h ×Qh as the solution to1509

Re
(
Lβ
h,G

)
Th

+
(
uβ
h,∇ ·G

)
Th

= 0,(B.12a)1510

−
(
∇ · Lβ

h,v
)
Th

+
(
∇pβh,v

)
Th

+
〈
Suβ

h,v
〉
∂Th

= 0,(B.12b)1511

−
(
uβ
h,∇q

)
Th

+
〈
¯
pβh, q

〉
∂Th

− ⟨β, q⟩∂Th
= 0,(B.12c)1512

1513

for all (G,v, q) in Gh × V h ×Qh.1514

For U ∈ Pk(∂ΩD)
d
, we define

(
LU
h ,u

U
h , p

U
h

)
in Gh×V h×Qh as the solution to1515

Re
(
LU
h ,G

)
Th

+
(
uU
h ,∇ ·G

)
Th
− ⟨U ,Gn⟩∂ΩD

= 0,(B.13a)1516

−
(
∇ · LU

h ,v
)
Th

+
(
∇pUh ,v

)
Th

+
〈
SuU

h ,v
〉
∂Th\∂ΩD

(B.13b)1517

+
〈
S
(
uU
h −U

)
,v
〉
∂ΩD

= 0,1518

−
(
uU
h ,∇q

)
Th

+ ⟨U · n, q⟩∂ΩD
+
〈
p̄Uh , q

〉
∂Th

= 0,(B.13c)1519
1520

for all (G,v, q) in Gh × V h ×Qh.1521

For g ∈ L2(Ω), we define (Lg
h,u

g
h, p

g
h) in Gh × V h ×Qh as the solution to1522

Re (Lg
h,G)Th

+ (ug
h,∇ ·G)Th

= 0,(B.14a)1523

− (∇ · Lg
h,v)Th

+ (∇pgh,v)Th
+ ⟨Sug

h,v⟩∂Th
= (g,v)Th

,(B.14b)1524

− (ug
h,∇q)Th

+
〈
p̄gh, q

〉
∂Th

= 0,(B.14c)1525
1526

for all (G,v, q) in Gh × V h ×Qh.1527

The local solvers (B.11)–(B.14) can be shown to be well-posed in an identical1528

manner to how the well-posedness of the local solver of Formulation 2.6 is shown in1529

section 2.1530

At this point, we are in a position to state the main result.1531

Theorem B.2. (characterization of condensed global system for Formulation 2.6)1532

The combined jump condition and Neumann boundary condition (2.35d) with the1533

additional condition (2.35e) can be written as1534

a
(
ûi
h, v̂
)
+ b (v̂, ρh) = l1 (v̂) ,(B.15a)1535

−b
(
ûi
h, ψ

)
= l2 (ψ) ,(B.15b)1536

1537
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where1538

a
(
ûi
h, v̂
)
:=
(
ReL

ûi
h

h ,Lv̂
h

)
Th

+
〈
Su

ûi
h

h ,uv̂
h

〉
∂ΩD

(B.16)1539

+
〈
S
(
u
ûi

h

h − ûi
h

)
,uv̂

h − v̂
〉
∂Th\∂ΩD

,1540
1541
1542

b (v̂, ψ) := −⟨v̂ · n, ψ⟩∂Th\∂ΩD
,(B.17)1543

1544
1545

l1 (v̂) := −⟨fN , v̂⟩∂ΩN
,+
〈
−LûD

h

h n+ p
ûD

h

h n+ Su
ûD

h

h , v̂
〉
∂Th\∂ΩD

(B.18)1546

+
〈
−Lf

hn+ pfhn+ Suf
h , v̂

〉
∂Th\∂ΩD

,1547
1548

and1549

l2 (ψ) := −
〈
ψ, ûD

h · n
〉
∂ΩD

.(B.19)1550
1551

Proof. Due to the linearity of the local solver (2.35a)–(2.35c), we can decom-1552

pose the volume solution to (2.35a)–(2.35c) as (Lh,uh, ph) =
(
L
ûi

h

h ,u
ûi

h

h , p
ûi

h

h

)
+1553

(Lρh

h ,uρh

h , pρh

h ) +
(
L
ûD

h

h ,u
ûD

h

h , p
ûD

h

h

)
+
(
Lf
h ,u

f
h , p

f
h

)
. That is, (Lh,uh, ph) is the sum1554

of the solutions to (B.11)–(B.14) with µ = ûi
h, β = ρh, U = ûD

h , and g = f . Then,1555

the combined jump and Neumann boundary condition (2.35d) can be written as1556

−
〈
−Lûi

h

h n+ p
ûi

h

h n+ S
(
u
ûi

h

h − ûi
h

)
, v̂
〉
∂Th\∂ΩD

(B.20)

1557

− ⟨−Lρh

h n+ pρh

h n+ Suρh

h , v̂⟩
∂Th\∂ΩD

−
〈
−LûD

h

h n+ p
ûD

h

h n+ Su
ûD

h

h , v̂
〉
∂Th\∂ΩD

1558

−
〈
−Lf

hn+ pfhn+ Suf
h , v̂

〉
∂Th\∂ΩD

= −⟨fN , v̂⟩∂ΩN
.1559

1560

It remains to show that −
〈
−Lûi

h

h n+ p
ûi

h

h n+ S
(
u
ûi

h

h − ûi
h

)
, v̂
〉
∂Th\∂ΩD

= a
(
ûi
h, v̂
)

1561

as defined by (B.16) and that −⟨−Lρh

h n+ pρh

h n+ Suρh

h , v̂⟩
∂Th\∂ΩD

= b (v̂, ρh) as1562

defined by (B.17).1563

Step 1: Taking q equal to a (nonzero) elementwise constant in (B.12c) gives1564

¯
pβh = β(B.21)15651566

and1567

−
(
uβ
h,∇q

)
Th

= 0.(B.22)1568
1569

Then setting (G,v, q) =
(
Lβ
h,u

β
h, p

β
h

)
in (B.12a), (B.12b), and (B.22), we conclude1570

by summing the results that1571 (
ReLβ

h,L
β
h

)
Th

+
〈
Suβ

h,u
β
h

〉
∂Th

= 01572
1573

This manuscript is for review purposes only.



NEW HDG METHODS FOR THE STOKES AND OSEEN EQUATIONS 45

and therefore that Lβ
h = 0, and uβ

h = 0 on ∂Th. Integrating what remains of (B.12a)1574

by parts, we conclude that uβ
h is elementwise constant and therefore zero. Then what1575

remains of (B.12b) implies that pβh is elementwise constant, and therefore pβh = β.1576

Summarizing, we have that for any β in P0(∂Th), that
(
Lβ
h,u

β
h, p

β
h

)
= (0,0, β).1577

Therefore −⟨−Lρh

h n+ pρh

h n+ Suρh

h , v̂⟩
∂Th\∂ΩD

= b (ρh, v̂) .1578

Step 2: Taking q equal to a (nonzero) constant in (B.11c) gives1579

p̄µh = 0(B.23)15801581

and1582

− (uµ
h ,∇q)Th

+ ⟨µ · n, q − q⟩∂Th\∂ΩD
= 0.(B.24)1583

1584

In (B.11a) take µ = v̂ and G = L
ûi

h

h , in (B.11b) take µ = ûi
h and v = uv̂

h, and in1585

(B.24) take µ = v̂ and q = p
ûi

h

h . Summing the result, and recalling (B.23), we have1586 (
ReL

ûi
h

h ,Lv̂
h

)
Th

+
〈
Su

ûi
h

h ,uv̂
h

〉
∂ΩD

+
〈
S
(
u
ûi

h

h − ûi
h

)
,uv̂

h

〉
∂Th\∂ΩD

(B.25)1587

−
〈
L
ûi

h

h n, v̂
〉
∂Th\∂ΩD

+
〈
p
ûi

h

h , v̂ · n
〉
∂Th\∂ΩD

= 0.1588
1589

Therefore,1590 〈
L
ûi

h

h n, v̂
〉
∂Th\∂ΩD

−
〈
p
ûi

h

h , v̂ · n
〉
∂Th\∂ΩD

−
〈
S
(
u
ûi

h

h − ûi
h

)
, v̂
〉
∂Th\∂ΩD

= a
(
ûi
h, v̂
)
.1591

1592

We can conclude from Theorem B.2 that the condensed global system will take1593

the form1594 [
A B⊤

−B 0

]{
Û
ρ

}
=

{
F1

F2

}
.1595

1596

Inspecting (B.16), we can see that the block matrix A is symmetric and positive1597

semi-definite. We can further claim that A is positive definite. To claim this we must1598

show a
(
ûi
h, û

i
h

)
= 0 ⇒ ûi

h = 0. Indeed, a
(
ûi
h, û

i
h

)
= 0 implies L

ûi
h

h = 0, u
ûi

h

h = 01599

on ∂ΩD, and u
ûi

h

h = ûi
h on Eh\∂ΩD. Then, with µ = ûi

h in (B.11a), integrating by1600

parts reveals that u
ûi

h

h is elementwise constant, and therefore globally constant since1601

u
ûi

h

h = ûi
h on Eh\∂ΩD. Since ∂ΩD ̸= ∅, then u

ûi,k
h

h = 0 and therefore ûi
h = 0.1602

B.3. Characterization of Formulation 2.7. In the following, we characterize1603

the statically condensed global system of the Stokes HDG scheme Formulation 2.7,1604

which uses the (ût
h, f̂h) flux (2.18). The following characterization sheds light on1605

the matrix system associated with this formulation. Toward this goal, we define the1606

following local solvers, where1607

f
ût,i

h

h := −n ·
[
L
ût,i

h

h n

]
+ p

ût,i
h

h n,1608

fµh := −n · [Lµ
hn] + pµhn,16091610

etc.1611
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For µ ∈ V̂
t,i

h , we define (Lµ
h ,u

µ
h , p

µ
h ) in Gh × V h ×Qh as the solution to1612

Re (Lµ
h ,G)Th

− (∇uµ
h ,G)Th

+ ⟨Tuµ
h ,Gn⟩

∂ΩD
(B.26a)1613

+ ⟨Tuµ
h − µ,Gn⟩

∂Th\∂ΩD
+

〈
1

τn
fµh ,−n · [Gn]

〉
∂Th

= 0,1614

(Lµ
h ,∇v)Th

− (pµh ,∇ · v)Th
+
〈
−Lµ

hn+ τtTuµ
h ,v

t
〉
∂ΩD

(B.26b)1615

+
〈
−Lµ

hn+ τt (Tuµ
h − µ) ,vt

〉
∂Th\∂ΩD

= 0,1616

(∇ · uµ
h , q)Th

+

〈
1

τn
fµh , q

〉
∂Th

= 0,(B.26c)1617

1618

for all (G,v, q) in Gh × V h ×Qh.1619

For γ ∈ F̂ i
h, we define (Lγ

h,u
γ
h, p

γ
h) in Gh × V h ×Qh as the solution to1620

Re (Lγ
h,G)Th

− (∇uγ
h,G)Th

+ ⟨Tuγ
h,Gn⟩

∂Th
(B.27a)1621

+

〈
1

τn
(fγh − γ) ,−n · [Gn]

〉
∂Th\∂ΩN

+

〈
1

τn
fγh ,−n · [Gn]

〉
∂ΩN

= 0,1622

(Lγ
h,∇v)Th

− (pγh,∇ · v)Th
(B.27b)1623

+
〈
−Lγ

hn+ τtTuγ
h,v

t
〉
∂Th

+ ⟨γ,v · n⟩∂Th\∂ΩN
= 0,1624

(∇ · uγ
h, q)Th

+

〈
1

τn
(fγh − γ) , q

〉
∂Th\∂ΩN

+

〈
1

τn
fγh , q

〉
∂ΩN

= 0,(B.27c)1625

1626

for all (G,v, q) in Gh × V h ×Qh.1627

For U ∈ V̂
t

h(∂ΩD), we define
(
LU
h ,u

U
h , p

U
h

)
in Gh ×V h ×Qh as the solution to1628

Re
(
LU
h ,G

)
Th
−
(
∇uU

h ,G
)
Th

+
〈
TuU

h ,Gn
〉
∂Th\∂ΩD

(B.28a)1629

+
〈
TuU

h −U ,Gn
〉
∂ΩD

+

〈
1

τn
fUh ,−n · [Gn]

〉
∂Th

= 0,1630 (
LU
h ,∇v

)
Th
−
(
pUh ,∇ · v

)
Th

+
〈
−LU

h n+ τtTuU
h ,v

t
〉
∂Th\∂ΩD

(B.28b)1631

+
〈
−LU

h n+ τt
(
TuU

h −U
)
,vt
〉
∂ΩD

= 0,1632 (
∇ · uU

h , q
)
Th

+

〈
1

τn
fUh , q

〉
∂Th

= 0,(B.28c)1633

1634

for all (G,v, q) in Gh × V h ×Qh.1635

For F ∈ F̂h(∂ΩN ), we define
(
LF
h ,u

F
h , p

F
h

)
in Gh × V h ×Qh as the solution to1636

Re
(
LF
h ,G

)
Th
−
(
∇uF

h ,G
)
Th

+
〈
TuF

h ,Gn
〉
∂Th

(B.29a)1637

+

〈
1

τn
fFh ,−n · [Gn]

〉
∂Th\∂ΩN

+

〈
1

τn

(
fFh − F

)
,−n · [Gn]

〉
∂ΩN

= 0,1638 (
LF
h ,∇v

)
Th
−
(
pFh ,∇ · v

)
Th

(B.29b)1639

+
〈
−LF

hn+ τtTuF
h ,v

t
〉
∂Th

+ ⟨F,v · n⟩∂ΩN
= 0,1640 (

∇ · uF
h , q

)
Th

+

〈
1

τn
fFh , q

〉
∂Th\∂ΩN

+

〈
1

τn

(
fFh − F

)
, q

〉
∂ΩN

= 0,(B.29c)1641

1642
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for all (G,v, q) in Gh × V h ×Qh.1643

For g ∈ L2(Ω), we define (Lg
h,u

g
h, p

g
h) in Gh × V h ×Qh as the solution to1644

Re (Lg
h,G)Th

− (∇ug
h,G)Th

+ ⟨Tug
h,Gn⟩

∂Th
+

〈
1

τn
fgh ,−n · [Gn]

〉
∂Th

= 0

(B.30a)

1645

(Lg
h,∇v)Th

− (pgh,∇ · v)Th
+
〈
−Lg

hn+ τtTug
h,v

t
〉
∂Th

= (g,v)Th
(B.30b)1646

(∇ · ug
h, q)Th

+

〈
1

τn
fgh , q

〉
∂Th

= 0,(B.30c)1647

1648

for all (G,v, q) in Gh × V h ×Qh.1649

The local solvers (B.26)–(B.30) can be shown to be well-posed in an identical1650

manner to how the well-posedness of the local solver of Formulation 2.7 is shown in1651

section 2.1652

At this point, we are in a position to state the main result.1653

Theorem B.3. (characterization of condensed global system for Formulation 2.7)1654

The jump conditions (2.49d) and (2.49e) can be written as1655

a
(
ût,i
h , v̂

t
)
+ b

(
v̂t, f̂ ih

)
= l1

(
v̂t
)
,(B.31a)1656

−b
(
ût,i
h , ĝ

)
+ d

(
f̂ ih, ĝ

)
= l2 (ĝ) ,(B.31b)1657

1658

where1659

a
(
ût,i
h , v̂

t
)
:=

(
ReL

ût,i
h

h ,Lv̂t

h

)
Th

+

〈
τt

(
Tu

ût,i
h

h − ût,i
h

)
,Tuv̂t

h − v̂t

〉
∂Th\∂ΩD

(B.32)

1660

+

〈
1

τn
f
ût,i

h

h , f v̂
t

h

〉
∂Th

+

〈
τtTu

ût,i
h

h ,Tuv̂t

h

〉
∂ΩD

,1661

1662
1663

d
(
f̂ ih, ĝ

)
:=
(
ReL

f̂i
h

h ,Lĝ
h

)
Th

+
〈
τtTu

f̂i
h

h ,Tuĝ
h

〉
∂Th

(B.33)1664

+

〈
1

τn

(
f
f̂i
h

h − f̂
i
h

)
, f ĝh − ĝ

〉
∂Th\∂ΩN

+

〈
1

τn
f
f̂i
h

h , f ĝh

〉
∂ΩN

,1665

1666
1667

b
(
v̂t, ĝ

)
:=
(
ReLv̂t

h ,L
ĝ
h

)
Th

−
(
∇uv̂t

h ,L
ĝ
h

)
Th

−
(
Lv̂t

h ,∇u
ĝ
h

)
Th

+
(
pv̂

t

h ,∇ · u
ĝ
h

)
Th

(B.34)

1668

+
(
∇ · uv̂t

h , p
ĝ
h

)
Th

+
〈
Tuv̂t

h ,L
ĝ
hn
〉
∂Th

+
〈
Lv̂t

h n,Tuĝ
h

〉
∂Th

1669

−
〈
τtTuv̂t

h ,Tuĝ
h

〉
∂Th

+

〈
1

τn
f v̂

t

h , f ĝh

〉
∂Th

,1670

1671
1672

l1

(
v̂t
)
:= −

〈
TfN , v̂

t
〉
∂ΩN

+
〈
−LûD

h

h n+ τtTu
ûD

h

h , v̂t
〉
∂Th\∂ΩD

(B.35)1673

+
〈
−Lf̂N

h

h n+ τtTu
f̂N
h

h , v̂t
〉
∂Th\∂ΩD

+
〈
−Lf

hn+ τtTuf
h , v̂

t
〉
∂Th\∂ΩD

,1674
1675
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and1676

l2 (ĝ) := −⟨uD · n, ĝ⟩∂ΩD
+

〈
u
ûD

h

h · n+
1

τn
f
ûD

h

h , ĝ

〉
∂Th\∂ΩN

(B.36)1677

+

〈
u
f̂N
h

h · n+
1

τn
f
f̂N
h

h , ĝ

〉
∂Th\∂ΩN

+

〈
uf
h · n+

1

τn
ffh , ĝ

〉
∂Th\∂ΩN

.1678

1679

Proof. Due to the linearity of the local solver (2.49a)–(2.49c), we can decompose1680

the volume solution to (2.49a)–(2.49c) as1681

(Lh,uh, ph) =

(
L
ût,i

h

h ,u
ût,i

h

h , p
ût,i

h

h

)
+
(
L
f̂i
h

h ,u
f̂i
h

h , p
f̂i
h

h

)
1682

+
(
L
ûD

h

h ,u
ûD

h

h , p
ûD

h

h

)
+
(
L
f̂N
h

h ,u
f̂N
h

h , p
f̂N
h

h

)
+
(
Lf
h ,u

f
h , p

f
h

)
.1683

1684

That is, it is the sum of the solutions to (B.26)–(B.30) with µ = ût,i
h , γ = f̂ ih,1685

U = ût,D
h , F = f̂Nh , and g = f . Then, the jump conditions and partial boundary1686

condition imposition (2.49d) and (2.49e) can be written as1687

−
〈
−Lût,i

h

h n+ τt

(
Tu

ût,i
h

h − ût,i
h

)
, v̂t

〉
∂Th\∂ΩD

−
〈
u
ût,i

h

h · n+
1

τn
f
ût,i

h

h , ĝ

〉
∂Th\∂ΩN

1688

−
〈
−Lf̂i

h

h n+ τtTu
f̂i
h

h , v̂t
〉
∂Th\∂ΩD

−
〈
u
f̂i
h

h · n+
1

τn

(
f
f̂i
h

h − f̂
i
h

)
, ĝ

〉
∂Th\∂ΩN

1689

−
〈
−LûD

h

h n+ τtTu
ûD

h

h , v̂t
〉
∂Th\∂ΩD

−
〈
u
ûD

h

h · n+
1

τn
f
ûD

h

h , ĝ

〉
∂Th\∂ΩN

1690

−
〈
−Lf̂N

h

h n+ τtTu
f̂N
h

h , v̂t
〉
∂Th\∂ΩD

−
〈
u
f̂N
h

h · n+
1

τn
f
f̂N
h

h , ĝ

〉
∂Th\∂ΩN

1691

−
〈
−Lf

hn+ τtTuf
h , v̂

t
〉
∂Th\∂ΩD

−
〈
uf
h · n+

1

τn
ffh , ĝ

〉
∂Th\∂ΩN

1692

= −
〈
TfN , v̂

t
〉
∂ΩN

− ⟨uD · n, ĝ⟩∂ΩD
.1693

1694

It remains to show that −
〈
−Lût,i

h

h n+ τt

(
Tu

ût,i
h

h − ût,i
h

)
, v̂t

〉
∂Th\∂ΩD

= a
(
ût,i
h , v̂

t
)

1695

as defined by (B.32), that −
〈
u
f̂i
h

h · n+ 1
τn

(
f
f̂i
h

h − f̂ ih
)
, ĝ
〉
∂Th\∂ΩN

= d
(
f̂ ih, ĝ

)
as de-1696

fined by (B.33), that −
〈
u
ût,i

h

h · n+ 1
τn
f
ût,i

h

h , ĝ

〉
∂Th\∂ΩN

= −b
(
ût,i
h , ĝ

)
as defined by1697

(B.34), and that −
〈
−Lf̂i

h

h n+ τtTu
f̂i
h

h , v̂t
〉
∂Th\∂ΩD

= b
(
v̂t, f̂ ih

)
as defined by (B.34).1698

Step 1: In (B.26a) take µ = v̂t and G = L
ût,i

h

h , in (B.26b) take µ = ût,i
h and1699

v = uv̂t

h , and in (B.26c) take µ = v̂t and q = p
ût,i

h

h . Summing the result, we have1700 (
ReL

ût,i
h

h ,Lv̂t

h

)
Th

+

〈
1

τn
f
ût,i

h

h , f v̂
t

h

〉
∂Th

+

〈
τtTu

ût,i
h

h ,Tuv̂t

h

〉
∂ΩD

(B.37)1701

+

〈
τt

(
Tu

ût,i
h

h − ût,i
h

)
,Tuv̂t

h

〉
∂Th\∂ΩD

−
〈
L
ût,i

h

h n, v̂t

〉
∂Th\∂ΩD

= 0.1702

1703
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Therefore,

〈
L
ût,i

h

h n, v̂t

〉
∂Th\∂ΩD

−
〈
τt

(
Tu

ût,i
h

h − ût,i
h

)
, v̂t

〉
∂Th\∂ΩD

= a
(
ût,i
h , v̂

t
)
.1704

Step 2: In (B.27a) take γ = f̂ ih and G = Lĝ
h, in (B.27b) take γ = ĝ and v = u

f̂i
h

h ,1705

and in (B.27c) take γ = f̂ ih and q = pĝh. Summing the result, we have1706 (
ReL

f̂i
h

h ,Lĝ
h

)
Th

+
〈
τtTu

f̂i
h

h ,Tuĝ
h

〉
∂Th

+

〈
1

τn
f
f̂i
h

h , f ĝh

〉
∂ΩN

(B.38)1707

+

〈
1

τn

(
f
f̂i
h

h − f̂
i
h

)
, f ĝh

〉
∂Th\∂ΩN

+
〈
u
f̂i
h

h · n, ĝ
〉
∂Th\∂ΩN

= 0.1708

1709

Therefore, −
〈
u
f̂i
h

h · n, ĝ
〉
∂Th\∂Ω

−
〈

1
τn

(
f
f̂i
h

h − f̂ ih
)
, ĝ
〉
∂Th\∂Ω

= d
(
f̂ ih, ĝ

)
.1710

Step 3: In (B.27) take γ = ĝ and (G,v, q) =

(
−Lût,i

h

h ,u
ût,i

h

h ,−pû
t,i
h

h

)
. Summing1711

the result, we have1712

−
(
Lĝ
h,L

ût,i
h

h

)
Th

+

(
Lĝ
h,∇u

ût,i
h

h

)
Th

+

(
∇uĝ

h,L
ût,i

h

h

)
Th

(B.39)1713

−
(
∇ · uĝ

h, p
ût,i

h

h

)
Th

−
(
pĝh,∇ · u

ût,i
h

h

)
Th

−
〈
Lĝ
hn,Tu

ût,i
h

h

〉
∂Th

1714

−
〈
Tuĝ

h,L
ût,i

h

h n

〉
∂Th

+

〈
τtTuĝ

h,Tu
ût,i

h

h

〉
∂Th

−
〈

1

τn
f ĝh , f

ût,i
h

h

〉
∂Th

1715

+

〈
1

τn
ĝ, f

ût,i
h

h

〉
∂Th\∂ΩN

+

〈
ĝ,u

ût,i
h

h · n
〉

∂Th\∂ΩN

= 0.1716

1717

Therefore, −
〈
u
ût,i

h

h · n, ĝ
〉

∂Th\∂ΩN

−
〈

1
τn
f
ût,i

h

h , ĝ

〉
∂Th\∂ΩN

= −b
(
ût,i
h , ĝ

)
.1718

Step 4: In (B.26) take µ = v̂t and (G,v, q) =
(
L
f̂i
h

h ,−uf̂i
h

h , p
f̂i
h

h

)
. Summing the1719

result, we have1720 (
L
f̂i
h

h ,Lv̂t

h

)
Th

−
(
L
f̂i
h

h ,∇uv̂t

h

)
Th

−
(
∇uf̂i

h

h ,Lv̂t

h

)
Th

(B.40)1721

+
(
∇ · uf̂i

h

h , pv̂
t

h

)
Th

+
(
p
f̂i
h

h ,∇ · uv̂t

h

)
Th

+
〈
L
f̂i
h

h n,Tuv̂t

h

〉
∂Th

1722

+
〈
Tu

f̂i
h

h ,Lv̂t

h n
〉
∂Th

−
〈
τtTu

f̂i
h

h ,Tuv̂t

h

〉
∂Th

+

〈
1

τn
f
f̂i
h

h , f v̂
t

h

〉
∂Th

1723

−
〈
L
f̂i
h

h n, v̂t
〉
∂Th\∂ΩD

+
〈
τtTu

f̂i
h

h , v̂t
〉
∂Th\∂ΩD

= 0.1724
1725

Therefore,
〈
L
f̂i
h

h n, v̂t
〉
∂Th\∂ΩD

−
〈
τtTu

f̂i
h

h , v̂t
〉
∂Th\∂ΩD

= b
(
v̂t, f̂ ih

)
.1726

We can conclude from Theorem B.3 that the condensed global system will take1727

the form1728 [
A B⊤

−B D

][
Û t

F̂

]
=

[
F1

F2

]
.1729

1730
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Inspecting (B.32) and (B.33), we can see that the block matrices A and D are sym-1731

metric and positive semi-definite. We can further claim that the matrix D is positive1732

definite. To claim this we must show d
(
f̂ ih, f̂

i
h

)
= 0⇒ f̂ ih = 0. Indeed, d

(
f̂ ih, f̂

i
h

)
= 01733

implies L
f̂i
h

h = 0, p
f̂i
h

h = f̂ ih on Eh\∂ΩN , p
f̂i
h

h = 0 on ∂ΩN , and Tu
f̂i
h

h = 0 on Eh. Then,1734

with γ = f̂ ih in (B.27b), integrating by parts reveals that p
f̂i
h

h is elementwise constant,1735

and therefore globally constant since p
f̂i
h

h = f̂ ih on Eh\∂ΩN . If ∂ΩN ̸= ∅, then p
f̂i
h

h = 01736

and therefore f̂ ih = 0. Otherwise, constraining one value of f̂ ih to zero gives that1737

ph = f̂ ih = 0. In this case, we can only claim positive definiteness for the D matrix1738

that results from reducing the matrix by the one constrained degree of freedom.1739

Appendix C. Additional Fluxes for the Oseen Equations.1740

In section 3, we derived HDG schemes for the Oseen equations, where four dif-1741

ferent fluxes can be used. These four fluxes are based on four different forms of the1742

upwind flux. These four forms of the upwind flux are not the only ways we can express1743

the upwind flux, but they are the four that we know lead to well-posed HDG schemes1744

when used on all faces of the mesh skeleton. When the problem being solved has1745

boundary conditions on − 1
Re [∇u]n+ pn, or its normal or tangential components, it1746

could be feasible to use an HDG flux that directly approximates these quantities so1747

that the boundary conditions can be directly prescribed to the hatted trace variables.1748

We present three numerical fluxes in this appendix that can serve such a purpose.1749

First we rewrite the numerical flux (3.8) using the identities (3.17).1750

The −L∗n + p∗n flux: The quantity u∗ can be eliminated from (3.8) so that1751

(3.8) can be written as1752

F ∗
n =


−
(
u+

(
1

τO
t +m

2

T+ 1
τO
n +m

2
N
)
[− (L− L∗)n+ (p− p∗)n]

)
⊗ n,

−L∗n+ p∗n+mu

+m
(

1
τO
t +m

2

T+ 1
τO
n +m

2
N
)
(− (L− L∗)n+ (p− p∗)n) ,

u · n+ 1
τO
n +m

2
[−n · [(L− L∗)n] + (p− p∗)]

 .(C.1)1753

1754

The (Tu∗, h∗) flux: The quantities TL∗n and Nu∗ can be eliminated from1755

(3.8) so that (3.8) can be written as1756

F ∗
n =


−
(
Tu∗ +Nu+ 1

τO
n +m

2
(−n · [Ln] + p− h∗)n

)
⊗ n,

h∗n−TLn+mNu+ m
2 Tu∗ + m

2 Tu
+τOt T (u− u∗) +m 1

τO
n +m

2
(−n · [Ln] + p− h∗)n,

u · n+ 1
τO
n +m

2
(−n · [Ln] + p− h∗)

 ,(C.2)1757

1758

where h∗ := −n · [L∗n] + p∗.1759

The (Nu∗,TL∗) flux: The quantities N (−L∗n+ p∗n) and Tu∗ can be elimi-1760

nated from (3.8) so that (3.8) can be written as1761

F ∗
n =


−
(
Nu∗ +Tu− 1

τO
t +m

2

(L− L∗)n
)
⊗ n,

−NLn+ pn−TL∗n+ m
2 Nu∗ + m

2 Nu+mTu
+τOn N (u− u∗)−m 1

τO
t +m

2

T (L− L∗)n,

u∗ · n

 .(C.3)1762

1763

As before, in order to define the numerical flux (3.18) we append a subscript h1764

to the terms in (C.1)–(C.3), replace the starred quantities on the right side of (C.1)–1765
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(C.3) with hatted unknown quantities residing on the mesh skeleton, and replace τOt1766

and τOn with τt and τn. The following numerical fluxes are the result.1767

The ĥh flux (where ĥh approximates −L∗ñ+ p∗ñ):1768

F ∗
n,h :=


−
(
uh +

(
1

τt+
m
2
T+ 1

τn+
m
2
N
)(
−Lhn+ phn− sgnĥh

))
⊗ n,

−sgnĥh +mu

+m
(

1
τt+

m
2
T+ 1

τn+
m
2
N
)(
−Lhn+ phn− sgnĥh

)
,

uh · n+ 1
τn+

m
2

[
−n · (Lhn) + ph − ĥh · ñ

]

 .(C.4)1769

1770

The (ût
h, ĥh) flux (where ĥh approximates −n · [L∗n] + p∗):1771

F ∗
n,h =


−
(
ût
h +Nuh + 1

τn+
m
2

(
−n · [Lhn] + ph − ĥh

)
n
)
⊗ n,

ĥhn−TLhn+mNu+ m
2 û

t
h + m

2 u
t
h

+τtT (uh − ûh) +m 1
τn+

m
2

(
−n · [Lhn] + ph − ĥh

)
n,

uh · n+ 1
τn+

m
2

(
−n · [Lhn] + ph − ĥh

)

 .(C.5)1772

1773

The (ûñh, ĥ
t

h) flux (where ûñh approximates u∗ · ñ and ĥ
t

h approximates −TL∗ñ):1774

F ∗
n,h =


−
(
ûñhñ+ ut

h + 1
τt+

m
2

(
−Lhn− sgnĥ

t

h

))
⊗ n,

−NLhn+ phn+ sgnĥ
t

h + m
2 û

ñ
hñ+ m

2 Nuh +mTuh

+τn
(
Nuh − ûñhñ

)
+m 1

τt+
m
2

(
−TLhn− sgnĥ

t

h

)
,

sgnûñh

 .(C.6)1775

1776
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