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Preface

This book began years ago when I joined the Data Warehousing Team. We read the 
books and articles by Ralph Kimball and Bill Inmon. We spent years understand-
ing the full meanings and ramifications of Data Warehousing concepts and meth-
ods. We lived with our successes and we lived with our failures. That is what sets 
this book apart from other Data Warehouse literature—the perspective of a data 
warehouse analyst who has created data warehouses and then lived with them.

When I began in Data Warehousing in 2000, I understood the concepts and 
principles easily enough. They made sense. Making those Data Warehouse con-
cepts and principles happen in a data warehouse was an entirely different matter. 
I searched the Data Warehousing literature and found many pockets of very help-
ful information. Over the years, I have collected and assimilated those pockets 
of information. Colleagues have given me opportunities to share and refine those 
pockets of knowledge. Eventually, they melded together to form a single cohesive 
and holistic approach to Data Warehousing. That single approach is the subject and 
content of this book.

I invite you to agree or disagree, accept or modify the methods presented in this 
book as you apply them to your data warehouse. If you agree and accept the meth-
ods in this book, they will serve you well. If, however, you disagree and modify 
the concepts and methods in this book, you will find concepts and methods that 
more closely fit your data warehouse. Either way, you will find a set of concepts and 
methods, either from this book or in response to this book, which will serve you 
well in your data warehouse. After all, that is the purpose of this book— to answer 
the question: “How do I build a data warehouse?”

Thank you for reading Building and Maintaining a Data Warehouse. I enjoyed 
writing this book. Writing it was an opportunity to capture in one document the 
concepts, principles, and methods that are common throughout Data Warehousing. 
Writing such a book, without the normal pressures and deadlines of a data ware-
house development project, has also given me the opportunity to reflect on and con-
sider all aspects of Data Warehousing. My intention is that, as you read this book, 
you will also gain insights into Data Warehousing beyond the obvious databases 
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and tables, and that reading this book will be as much or more of a learning and 
understanding experience for you as writing it was for me.
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Introduction

Purpose
The purpose of this book is answer the question: “How?” How can a data ware-
house team build a data warehouse, a data warehouse that actually works? It’s very 
easy to build a data warehouse that incorporates all the Data Warehousing concepts 
and principles, and, yet, is useless. But, how to build a data warehouse that provides 
the answers needed by all the data warehouse customers, when they need it? That’s 
difficult.

Building and Maintaining a Data Warehouse provides a cohesive and holistic 
approach to building a data warehouse. Written from the perspective of having 
created a successful data warehouse as well as a failed data warehouse, Building and 
Maintaining a Data Warehouse presents the success factors that should be achieved 
along with the failure factors that should be avoided. The Data Warehouse Philoso-
phy presents, in Chapter 2, the concepts and principles that are the foundation of 
every data warehouse. In the chapters following, as data warehousing methods are 
presented and explained, these methods are presented within the context of the 
concepts and principles in the Data Warehouse Philosophy. By doing so, the Data 
Warehouse Philosophy provides a consistent focus.

Audience
Building and Maintaining a Data Warehouse is intended for four groups of people. 
First, those considering the creation of a data warehouse will find this book very 
helpful in scoping the work and magnitude of a data warehouse. Building a data 
warehouse is like building a house. Most of the work necessary to build a house, 
and a data warehouse, is neither visible nor obvious when looking at the com-
pleted product. Thus, an enterprise considering their first data warehouse will not 
perceive all the work necessary to create one by visiting existing data warehouses. 
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Building and Maintaining a Data Warehouse opens the hood and exposes the bits 
of work necessary to build a data warehouse.

The second are those who are currently building a data warehouse. Having 
jumped into Data Warehousing without the help of Building and Maintaining a 
Data Warehouse, a data warehouse team can become quickly overwhelmed. The 
areas of a data warehouse are presented individually and in sequence. By under-
standing how each piece of a data warehouse fits in the entire data warehouse, a 
data warehouse team is able to focus on each piece, making each piece fit correctly 
in its data warehouse.

The third are those who have a data warehouse. Having moved to the main-
tenance and support stage of a data warehouse, a data warehouse team begins to 
understand the relevance and impact of gaps in their data warehouse. Building and 
Maintaining a Data Warehouse identifies the pieces of the puzzle that fill those gaps, 
and how those pieces fill their gaps. Recognizing that a gap exists is the first step. 
Understanding where that gap exists is the second step. Building and Maintaining 
a Data Warehouse can guide a data warehouse team through these two steps to the 
third step: filling the gap.

Finally, the managers and planners who define the scope of a data warehouse are 
the fourth group of people. The success of a data warehouse begins in the planning 
stages, where the scope and boundaries of a data warehouse are defined. Building 
and Maintaining a Data Warehouse provides the big picture perspective necessary 
to understand the work inside the scope and boundaries.

Organization
The organization of Building and Maintaining a Data Warehouse is from general 
to specific, and left to right. Chapter 1 presents, in summary, an entire data ware-
house. For those new to Data Warehousing, this provides a general outline and 
context for all the detailed elements of a data warehouse. Chapter 2 presents Data 
Warehousing concepts and principles that are the foundation of every data ware-
house. These two chapters present the general information necessary to understand 
the detailed information presented in the subsequent chapters.

Chapters 3 through 10 present the detailed elements of a data warehouse and 
the work necessary to create a data warehouse, from left to right. Beginning with 
source data, Building and Maintaining a Data Warehouse follows the flow of data 
from its source to its home in a data warehouse to its use and consumption by data 
warehouse customers. These chapters present the nuts and bolts of a data ware-
house. The methods presented in each subject area are presented so that they can 
be assimilated and incorporated individually as well as within the context of a 
holistic approach. These chapters serve as instructions, advice, examples, and refer-
ence material.
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Time to Build a Data Warehouse
The best way to begin any endeavor, including a data warehouse, is to learn from 
those who have gone before. That is the approach of Building and Maintaining a 
Data Warehouse. Beginning with the foundation laid by Data Warehousing pio-
neers and visionaries Ralph Kimball and Bill Inmon, Building and Maintaining 
a Data Warehouse presents the knowledge, insights, and lessons learned of Data 
Warehousing. Having learned the concepts, principles, and methods from two 
decades of Data Warehousing, it’s time to build a data warehouse.
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Chapter 1

The Big Picture: 
An Introduction to 
Data Warehousing

Introduction
In 1977, Jimmy Carter was President of the United States, Star Wars hit the big 
screen, and Apple Computer, Inc. introduced the world to the first personal com-
puter. Four years later, Ronald Reagan was president, Prince Charles and Lady 
Diana married, and IBM began selling its IBM PC. From that beginning, com-
puting power started moving from the mainframe to the desktop. Soon thereafter, 
spreadsheets and word processing applications began their journey to replace clip-
boards and typewriters. By 1985, Mikhail Gorbachev was the leader of the Soviet 
Union, New Coke hit the shelves, and data was going everywhere. Even inside the 
mainframe computers, data was finding its own home. Supervisors, managers, and 
executives alike were no longer able to look at a single clipboard to find out how the 
business was performing. The data was hopelessly entrenched in applications and 
nooks and crannies that would never again see the light of day. Such was the origin 
of Decision Support Systems.
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Decision Support Systems
Decision Support Systems allowed managers, supervisors, and executives to once 
again see the clipboard with all its information. The information, which previously 

had been on a clipboard, had become 
a report, either printed on paper or 
displayed on a screen. One report 
revealed one single business area. 
Another report revealed a different 
business area. By 1992, Windows® 3.1 
was in the stores and Ralph Kimball 
and Bill Inmon were figuring out how 
to gather data from two business areas 
and figuring out how to warehouse 
the data of an enterprise (Figure 1.1).

Kimball and Inmon, working sep-
arately, arrived at a common set of guide-
lines (or principles). These principles are:

Subject Orientation: Data will 
be grouped by subject, rather than 
author, department, or physical loca-
tion. So, all manufacturing data goes 
together, and the sales data, and the 
promotions data, etc., regardless of 
where it came from.
Data Integration: Even though data comes from separate applications, 
departments, etc., differences should be smoothed out so they have the same 
look and feel.

Form: When two data elements (e.g., phone numbers) have different lay-
outs (e.g., 123-123-1234 and (123) 123-1234), one layout will be super-
imposed on both of them.
Function: When two data elements identify the same thing (e.g., a ham-
mer) with two different names (e.g., part 32G and part B49), these two 
names will be replaced with one name.
Grain: When two data elements apply different hierarchies (e.g., region 
and district) to the same thing, or different levels of detail (e.g., miles and 
feet), the two data elements will be resolved to the same level of hierarchy 
or detail.

Nonvolatility: Unlike the data in operational applications, which is dis-
carded once the company is finished using it, the data in a data warehouse 
will remain in the warehouse.

n

n

−

−

−

n

 
Ralph Kimball was a co-creator of the 
Xerox Star Workstation, the world’s first 
commercially viable GUI application.  
Ralph was the founder and CEO of Red 
Brick Systems, the group which cre-
ated an extremely fast RDBMS targeted 
specifically for data warehousing.  When 
he authored The Data Warehouse Lifecycle 
Toolkit, Ralph introduced the Dimension-
al Data Model (discussed in Chapter 5, 
Database Design).

 
Bill Inmon was the creator of the 
Corporate Information Factory and 
Government Information Factory.  
In so doing, Bill also established 
many of the principles of Data 
Warehousing. 
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Time Variant: All data has a context at a moment in time. A data warehouse 
will keep that context. So, all data from 1995 will retain its context within 
1995.
One Version of the Truth: The proliferation of data in the 1980s and 1990s 
yielded many copies of the same data. Only the one, true gold, standard copy 
of each data element would be included in a data warehouse.
Long-Term Investment: A data warehouse should be flexible enough to 
absorb changes in the company and the world, and scalable enough to grow 
with the company. By doing so, a data warehouse can add value to the com-
pany for a long time.

Dimensional and Third Normal Form Data Models
Kimball and Inmon arrived at the same set of principles, yet each used completely 
different designs. Kimball created the Dimensional Data Model (Figure 1.2).

Also known as the Star Schema (because it resembles a star), a Dimensional 
Data Model has a distinct shape. In the middle is a Fact table (a Fact is an event, 
transaction, or something that happens at a single moment in time). Surrounding 
the Fact table are Dimension tables. Each Dimension table holds all the permu-
tations of a single hierarchy of the company (e.g., geography: city, county, state, 
region, district, etc.; or time: second, minute, hour, day, fiscal week, payroll week, 
fiscal quarter, etc.).

Bill Inmon preferred the Third Normal Form Data Model (Figure 1.3). Rather 
than capture hierarchies and relationships in Dimension tables, the Third Normal 
Form allowed the data to have the same flexibility as the company.

Within the data warehousing community, a debate emerged. Which was bet-
ter, the Dimensional Data Model or the Third Normal Form data model? By the 
twenty-first century, the answer was clear — both. Both designs had their strengths 
and their weaknesses. Rather than apply a “one size fits all” mindset, data ware-
house designers learned to apply the strengths and avoid the weaknesses of both in 
each situation.

Storing the Data
While the debate between Dimensional Data Model and Third Normal Form 
Data Model was still going on, the data warehousing community was also deciding 
how to physically store the data. Three methods were found: a central Enterprise 
Data Warehouse (EDW), several distributed Data Marts, and an Operational Data 
Store (ODS).

The central EDW held all the data from all the business subjects in one data-
base (Figure 1.4). The Data Mart held one subject area only (Figure 1.5). If another 
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subject area were needed, then that would be another Data Mart. The best method 
of feeding data to a Data Mart was to integrate that data into an Enterprise Data 
Warehouse first and then send the data on to its Data Mart.

The Operational Data Store (Figure 1.6) lives on the other side of the EDW and 
retrieves operational data from the business, integrates the data, and stores the data 
in its own database. Unlike the EDW, the data in an ODS is volatile. Volatile means 
the ODS only stores the value for a data element (e.g., balance on hand) that is true 
at real-time (e.g., balance on hand as of right now). This is different from the non-
volatile data in an EDW (e.g., balance on hand for every day for the past two years). 
When an ODS is present, the EDW can gather its data from the ODS rather than 
from the business. There’s no need to ask the business the same question twice.

Transaction Event

Time
�ing
Place
Person
Equipment

Equipment Dimension

Equipment
Equipment Name
Equipment Description
Equipment Purpose

Place Dimension

Place
Place Name
Place Address
Place Purpose

�ing Dimension

�ing
�ing Name
�ing Weight
�ing Height

Person Dimension

Person
Person Name
Person Class
Person Type

Time Dimension
Date
Time
Week
Month
Year

Figure 1.2  Dimensional Data Model.
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The set of applications that gather data from the business and bring that data into 
the data warehouse are called extract, transform, and load (ETL) applications. The 
ETL analyst is responsible for making the data warehouse philosophy happen.

Data Integration: ETL applications integrate the data from the business, 
regardless of its origin, form, function, or grain.
Nonvolatility: ETL applications introduce new data without destroying old 
data.
Time Variant: ETL applications store the data with a key structure that 
points to a timeframe.
One Version of the Truth: ETL applications reference only the one gold 
standard for every data element.
Long-Term Investment: Populate data into a data warehouse, realizing the 
long-term flexibility of the data warehouse design.

Data Availability 
The data inside a data warehouse is of no use to a business without a way to use that 
data. Business Intelligence Reporting, also known as BI Reporting, is a set of appli-
cations by which a business can harness data and information in a data warehouse. 
Data is individual bits of facts and figures. By itself, data tells the business very 
little. Information is the compilation of individual bits of data into an observation 
or conclusion, which adds value to the business.

BI Reporting includes various methods by which data and information can be 
available to the business. Predefined reports, a staple of all information systems, can 
disseminate answers to the same questions (e.g., who, how many, where) on a daily 
basis. Interactive reports allow the business to ask a new question, or revise an exist-
ing question, and then receive the answer. OLAP (online analytical processing) 
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Purchasing
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Figure 1.4  Enterprise Data Warehouse (EDW).
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EDW

Sales Manufacturing

LogisticsPersonnel

Marketing

Purchasing

ODS

Marketing

Operational
Application

Business
Unit

Figure 1.6  Operational Data Store.
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Figure 1.5  EDW and Data Marts.
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reporting allows business analysts to drill up and down, left and right in stream of 
consciousness analysis. Using the Internet, all of these reporting options are avail-
able online. The next frontier of BI Reporting is data mining, the search for correla-
tions in the business, which cannot be seen.

Metadata provides the background and context, which gives concrete meaning 
to the facts and figures in a data warehouse. Every four years, on the first Tues-
day of November, all Americans use the same metadata — the number of voting 
precincts reporting. With 50 percent of the precincts reporting, no one believes 
the result. With 75 percent of the precincts reporting, we begin to take the result 
seriously. When 90 percent of the precincts have reported their numbers, we turn 
the TV off and go to bed; the election is over. Metadata in a data warehouse works 
the same way.

How complete is the data?
What is the formula for that number?
When did the new numbers come in?

Like the number of precincts reporting, metadata in a data warehouse gives mean-
ing and context to data.

Monitoring Data Quality
Finally, data quality is the continuous effort to monitor the accuracy, complete-
ness, and confidence of the data in a data warehouse. The world is full of surprises, 
and some of them affect the data in a data warehouse. Only the naïve assume the 
business and its data warehouse live in a perfect world where nothing goes wrong. 
Diligently monitoring data before it enters the data warehouse, the goal is to deliver 
data and information from which a business can derive its strategic and tactical 
decisions with confidence.

The explosion of data and information truly was an explosion. The facts and 
figures of business found their own homes in accounting systems, inventory data-
bases, and a myriad of home-grown applications, all of which help run the busi-
ness. Data warehousing gathers and integrates that disparate data so the business, 
through its data, can be seen in one place.

n
n
n
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Chapter 2

Data Warehouse 
Philosophy

Introduction
A data warehouse is an asset of an enterprise and exists for the benefit of an entire 
enterprise. It does not exist for the benefit of a single entity (e.g., business unit, 
individual customer, etc.) to the exclusion of all others in the enterprise. As such, 
data in a data warehouse does not conform specifically to the preferences of any 
single enterprise entity. Instead, a data warehouse is intended to provide data to the 
entire enterprise in such a way that all members can use the data in the warehouse 
throughout its lifespan.

Traditionally, an information system succeeds by satisfying specific require-
ments of a specific customer. A data warehouse, however, succeeds by satisfying 
the data needs of an entire enterprise, not just one entity. The “one size fits all” 
approach to data positions a data warehouse to fail in its mission to provide data to 
the whole enterprise. All data warehouses would fail in this mission were it not for 
the foundational principles created by the data warehousing pioneers and visionar-
ies Ralph Kimball and Bill Inmon.

In the 1990s, Kimball and Inmon created and documented the concepts and 
principles of data warehouses, which today are the foundation of all data ware-
houses. These concepts and principles will not immediately equip a reader to design 
and develop a data warehouse; however, they will equip a reader to understand the 
reasons and intentions underlying data warehouse design. For that reason, these 
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12  n  Building and Maintaining a Data Warehouse

concepts and principles are collectively known as the data warehouse philosophy. The 
concepts and principles within the data warehouse philosophy guide the design and 
development of a data warehouse.

Inclusion of all elements of the data warehouse philosophy is not mandatory 
for the success of a data warehouse. Awareness of the elements of this philosophy, 
however, increases its success and value. A data warehouse designer may choose 
to include or exclude elements of the data warehouse philosophy. Such decisions 
should be made from the context of cognitive understanding of the philosophy.

The elements of the data warehouse philosophy are explained in the following 
sections. Those elements are:

Enterprise Data
Subject Orientation
Integration
Nonvolatility
Time Variant
Single Version of the Truth
Long-Term Investment and Return on Investment (ROI)

Enterprise Data
A data warehouse should include data that is applicable to the enterprise. The value 
and relevance of a data warehouse is rooted in that data. If members of the enter-
prise perceive as superfluous or irrelevant the data in a data warehouse, those same 
members will cast that perception onto the data warehouse. This principle is not as 
restrictive as it seems. Frequently, data that is acted on by a single business unit is 
also relevant to the remainder of the enterprise. For example:

The Accounting Department uses tax codes; members of other departments 
understand the relevance of tax codes to the enterprise.
The Manufacturing Department uses part numbers; members of other depart-
ments understand the relevance of part numbers to the enterprise.

Tax codes are not directly applicable to the Manufacturing Department; however, 
they understand tax codes are relevant to the enterprise. Part numbers may not be 
directly applicable to the Accounting Department; however, they understand that 
part numbers are relevant to the enterprise.

Data that is not relevant to the enterprise is localized in its relevance. Localized 
relevance renders data irrelevant to the enterprise. For example:

The Accounting Department maintains a list of notary publics in its office.

n
n
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Data Warehouse Philosophy  n  13

The Manufacturing Department keeps a list of machinists who own and use 
their own tools, including a designation for United States and metric tools.

The names and availability of notary publics are handy in the Accounting Depart-
ment, but irrelevant to the rest of the enterprise. Likewise, a list of machinists and 
their tools helps the shop foreman assign individual tasks, but has little relevance 
to the rest of the enterprise.

Subject Orientation
Data in a data warehouse is organized around the business subjects of the enter-
prise.1 Operational data is organized by its physical manifestations, including file 
names, job schedules, and application dependencies. A data warehouse does not 
present data, which reflects the physical manipulation of operational data. Instead, 
a data warehouse presents data, which reflects major subject areas within the enter-
prise.2 For example:

Business Entities
Customers
Vendors
Agents

Business Processes
Sales
Receiving
Manufacturing
Distribution

Subject orientation of data allows a data warehouse to maintain its overall 
architecture throughout its lifespan. Individual data elements may change in the 
enterprise and in the data warehouse. The subject orientation of a data warehouse 
enables a data warehouse to absorb inevitable changes without drastic changes to 
its architecture.3

Data Integration
The data in a data warehouse is presented in a uniform manner. Uniformity allows 
data warehouse customers to query data across subject areas without traversing 
through data translations or look-ups from other data sources.4 By integrating its 
data, a data warehouse presents a consistent and seamless statement of the enter-
prise, which relieves data warehouse customers of the need to reconcile differences 
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and inconsistencies within data from disparate business areas. Data integration 
occurs in multiple ways, which can be combined into the following three groups:

Form
Function
Grain

Form
Data form includes the types and layouts of data.5 These are the way data is 
expressed. Disparate business units may express similar data elements in different 
ways. For example:

Money can be expressed as currency or integer data types.
Phone numbers can be expressed as (123) 123-1234 or 123-123-1234 or 
123.123.1234.
Names can be expressed as First Last or Last, First.

In a data warehouse, the disparate expressions of similar data elements (e.g., 
money, phone number, names, etc.) are integrated into a single form, which creates 
consistency within a data warehouse. This helps data warehouse customers query 
across business subjects.

Function
Function includes the substance and meaning of the data within the data element. 
Codes and cryptic values often differ between business units and must be recon-
ciled so the entire organization can leverage these codes and values. For example:

Part Status = 32B: In the Manufacturing Department, 32B means the manu-
facturing part is on back-order. This translation needs to be provided to oth-
ers in the enterprise.
Closing Code = 32B: In the Accounting Department, 32B means the finan-
cial statement is out of balance and cannot be closed. This translation needs 
to be provided to others in the enterprise.

Business units may use the same code or value with two distinct and sepa-
rate meanings. For example, in the Accounting Department, 32B means “Out of 
Balance,” while in the Manufacturing Department, 32B is a jacket size. Business 
units may use different codes or values with the same meaning. For example, the 
Marketing Department refers to a 30-second TV spot as a promotion, while the 
Distribution and Logistics Department refers to the same 30-second TV spot as an 
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advertisement. In such cases, disparate data from business units must be integrated 
into one data element, which expresses the function of both.

Grain

Grain refers to the unit of measurement at which data is expressed.6 Business units 
may store data using different units of measurement:

Purchasing measures product by the barrel.
Transportation measures product by the shipload.
Sales measures product by the gallon.

In this scenario, a data warehouse will reconcile these different units of mea-
surement, which will allow the integration of data from the Purchasing, Transpor-
tation, and Sales business units.

Grain can also refer to a hierarchical level. Individual people, objects, and events 
are organized into hierarchical groups. Business units may store data using different 
hierarchical groupings of people, objects, and events:

A captain commands a vessel in the Third Fleet.
Captain Roy P. Jones commands a vessel in the Third Fleet.
A captain commands the USS Hawkins.
Captain Roy P. Jones commands the USS Hawkins.

In this scenario, a data warehouse will reconcile these different levels of hier-
archical grouping, which will allow the integration of data from the Personnel 
Department and the Third Fleet.

Grain of data has two physical implications for a data warehouse. First, fine 
grain data expresses more detailed information, but at a cost. The increased detail 
consumes increased resources to capture, store, and retrieve. Second, a data ware-
house cannot provide data to customers at a grain lower than the grain at which it 
is stored.7

A data warehouse must integrate the Form, Function, and Grain of data from 
disparate business units. Once integrated, data warehouse customers can traverse 
data within business subjects from across the enterprise.

Nonvolatility
Data, once written to a data warehouse, is never deleted or updated.8 Operational 
applications manipulate data to reflect only the current state of a business unit. A 
data warehouse reflects both the historical and current state of the enterprise by 
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inserting new rows.9 A data warehouse retains historical rows as well as the most 
recent rows, which allows a data warehouse to present data in the context of the 
past and the present. Nonvolatility allows a data warehouse to express the enter-
prise across time, by retaining that data.10

Time Variant
A data warehouse expresses the events of the enterprise across time.11 Nonvolatile 
historical data allows a data warehouse to express historical enterprise events in 
their historical context. For example:

During the month of January, Fred was the manager of store #1024. January 
net profit for the store totaled $140,000.
During the month of February, Alice was the manager of store #1024. Febru-
ary net profit for the store totaled $70,000.
During the present month, George is the manager of store #1024.

The presence of historical data allows analysis and comparison of these three 
store managers, even though they occurred at different times. An analyst can ask 
such questions as:

What was the profitability of store #1024 when Fred was the manager?
What was the profitability of store #1024 when Alice was the manager?
What is the profitability of store #1024 now that George is the manager?

These questions can be answered by translating these questions into a surrogate 
question based on a simultaneous and coincidental event (e.g., the month).

What was the profitability of store #1024 in January?
What was the profitability of store #1024 in February?
What is the profitability of store #1024 in the current month of March?

Stores will not normally (in fact, rarely) change store managers on a sched-
ule that coincides with the change of the month. So, a business analyst cannot 
expect to track the performance of store managers by tracking months, expecting 
each month to represent a different store manager. A data warehouse facilitates the 
answers to the real questions (e.g., How profitable was each manager?) by allow-
ing a business analyst to track the performance of the managers, regardless of the 
historical context. The historical data in a data warehouse provides answers to ques-
tions of historical events and conditions in this context, based on the events or 
conditions. A data warehouse does not require its customers to translate historical 
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questions into their historical context because the data in a data warehouse has 
already framed its data in its historical context.

Time variant data allows a data warehouse to express the enterprise as of a 
moment in time.12 That moment in time has a grain. A moment in time can be 
expressed as a millisecond, minute, hour, day, week, month, year, etc. In the con-
text of digital versus analog, Time is analog. Information systems, however, can 
only capture Time digitally. Every expression of Time, therefore, is a digital repre-
sentation of analog Time; hence, Time expressed as a millisecond, minute, hour, 
day, week, month, year, etc.13

Historical data allows a data warehouse to express the enterprise from three 
different historical contexts:15

As It Was: In this context, a data warehouse can express states of the enter-
prise at the moment they occurred, including the moment the state began 
and ended. For example:

Fred was the manager of store #1024 during the month of January.
Alice was the manager of store #1024 during the month of February.
George is the manager of store #1024 now.

As It Is: In this context, a data warehouse can superimpose the current (i.e., 
now) state of the enterprise over the entire history of the enterprise. All his-
torical data is still present in the data warehouse, but not used in the result set 
returned to the data warehouse customer. For example:

George (the current manager) has always been the manager of store 
#1024.

As If Nothing Changed: In this context, a data warehouse can superimpose 
a historical state of the enterprise over subsequent periods of the enterprise. 
All current (i.e., now) data is still present in the data warehouse, but not used 
in the result set returned to the data warehouse customer. For example:

Fred was the manager of store #1024 during the month of January.
Alice was the manager of store #1024 during the month of February.
Alice (not George) is the manager of store #1024 now.

Ralph Kimball authored these three variations of Time Variance. He named 
them Type 1, Type 2, and Type 3.15 These three names have since become part of 
the data warehousing lexicon.

Type 1 (As it is): Cast all of history so the enterprise looks as it does now.
Type 2 (As it was): Express historical data as it was, with each data value as 
of its moment in history, retaining its context in time.
Type 3 (As if nothing changed): Cast the enterprise to look as if a change 
had not occurred.
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The retention of nonvolatile historical data allows a data warehouse to express 
the enterprise within a historical context. This Time Variant principle is a signifi-
cant difference from operational applications, which function in the now, rather 
than the past.

One Version of the Truth
For every question that can be answered by data, an enterprise will derive a myriad 
answers. For example:

Q: How many widgets were assembled?
A: Total number of widgets assembled — 32,000
A: Total widgets net of scrap — 31,195
A: Total widgets adjusted by Activity Costing — 32,120
A: Total widgets approved by Quality Control — 31,148

These different answers illustrate the confusion that occurs when business units 
look at a question (How many widgets were assembled?) and actually see more than 
just that one question.

Q: How many widgets were physically assembled?
Q: How many widgets were successfully assembled?
Q: How much assembly activity occurred in conjunction with the widgets?
Q: How many widgets were assembled and approved by Quality Control?

A data element stores the answer to a question. The question is the definition 
of that data element. A data warehouse must define every data element so that all 
members of the enterprise will associate one and only one question with that data 
element. Having narrowed a data element down to one and only one question, a 
data warehouse must also provide one and only one answer to the question posed 
by that data element. By doing so, a data warehouse provides the truth (i.e., the 
true answer to the question posed by a data element) and only one version of that 
truth.16

The One Version of the Truth principle allows a data warehouse to express the 
entire enterprise. When all members of an enterprise look at a data element with a 
single understanding of its meaning, then members of the enterprise can use a data 
warehouse as a shared point of communication across the enterprise.
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Long-Term Investment
A data warehouse achieves it greatest ROI through longevity and stability. As the 
number of subject areas integrated into a data warehouse increases, a data ware-
house increases its expression of the enterprise. As time variant history accumulates 
in a data warehouse, it increases its ability to answer historical questions. A data 
warehouse must, therefore, be designed and developed as a long-term investment.

A data warehouse team cannot build the entire data warehouse in a single 
project. The cost would be too high and the delivery schedule would be too slow. 
Instead, a data warehouse begins with one or two business subjects (e.g., sales, 
transportation, manufacturing, etc.). Then, each subsequent data warehouse devel-
opment effort adds another business subject, or a subset of a large or complex sub-
ject. Each individual data warehouse project should last only six to nine months. 
When the duration of an individual data warehouse project exceeds nine months, 
management typically begins to question the ROI of the project. As multiple indi-
vidual data warehouse projects integrate multiple business subjects into a single 
data warehouse, that data warehouse presents a picture of the enterprise, a picture 
which becomes more complete and comprehensive as each business subject is added 
to that data warehouse. A data warehouse, therefore, is a long-term investment 
with a long-term horizon. In fact, a data warehouse may never express the entire 
enterprise. The success of a data warehouse is not its ability to express the entire 
enterprise; rather, the success of a data warehouse is its ability to return value to the 
enterprise using the business subjects included in that data warehouse.

The very first data warehouse project of an enterprise defines the enterprise-level 
architecture of the data warehouse. The decisions made during the first data ware-
house project will lay the foundation for all subsequent data warehouse projects 
within the enterprise. Physically, these decisions will lay the foundation for the 
platforms and infrastructures that will be the data warehouse. Logically, these deci-
sions lay the foundation for the subject areas, entities, attributes, and processes as 
they are captured in a data warehouse. These architectural and foundational deci-
sions will enable, or prevent, the data warehouse and its customers as they include 
new and additional subject areas in subsequent development efforts. The long-term 
nature of a data warehouse means the “return” of a data warehouse exists signifi-
cantly beyond the “investment.” If done correctly, the investment should be of a 
short duration, and the return should extend for years, if not decades.
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Chapter 3

Source System Analysis

Introduction
A data warehouse expresses the enterprise through its data. An enterprise can be 
any organization capable of funding, owning and operating a data warehouse,  
including a corporation, educational institution, department or extremely solvent 
individual. A data warehouse expresses an enterprise, much like a mirror expresses 
a reflection, by reflecting the subject areas, entities, attributes and processes of that 
enterprise by the data structures in the data warehouse and the data which is inte-
grated into those data structures. Applications retrieve data from the enterprise and 
load this data into a data warehouse. That expression of the enterprise, therefore, 
begins within the enterprise; begins with the data within the enterprise. To express 
the enterprise via a data warehouse, a data warehouse designer must understand the 
enterprise, its environment, processes, and the data within the enterprise as well as 
the data surrounding the enterprise.

Source system analysis (Figure 3.1) is thought by some to be strictly a tool 
dedicated to the design of data acquisition and integration applications.1 To the 
contrary, source system analysis provides significant insight and understanding of 
the enterprise and its data, which is vital to the success of all phases of data ware-
house design and development. A data warehouse cannot express the enterprise 
at any level (data model, data acquisition and integration, or business intelligence 
reporting) without a thorough and insightful understanding of the enterprise and 
its data.
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Source system analysis is exactly that: an analysis of the enterprise via an analysis 
of its data. During source system analysis, a data warehouse designer focuses solely 
on the enterprise, with no thought whatsoever of how it will be expressed in a data 
warehouse. The Source System Analysis methods, which are discussed in the follow-
ing sections, are intuitively easy to understand and perform. These analysis methods 
remove preconceptions about enterprise data that are the result of familiarity with 
that data. At the end of Source System Analysis, a data warehouse designer should 
understand the agents, entities, and processes of the enterprise, yet be no closer to the 
design of a data warehouse.

An early and common mistake in data warehouse design is the use of Source 
System Analysis to search for source data within the enterprise. When a data ware-
house designer is confident that he or she possesses sufficient knowledge of the 
enterprise to create a data model, which captures and expresses the enterprise, 
Source System Analysis is then used to search for data that fits the definition of the 
data warehouse. This backward approach results in a data warehouse that expresses 
the data warehouse designer’s preconceptions rather than the enterprise’s. Having 
put the cart before the horse, the data warehouse designer has designed a square 
hole and uses Source System Analysis to search for a square peg to fill it. Invari-
ably, this misuse of Source System Analysis results in an abbreviated and errone-
ous understanding of the enterprise and a misstatement of the enterprise in a data 
warehouse,1 and possibly rework that is significant. The discrepancies created by 
this backward approach may eventually require the data warehouse team go back 
to Source System Analysis to revisit the data within the enterprise.

The source system itself may be an obstacle to Source System Analysis. No 
human endeavor ever results in perfection. This truth applies to architecture, medi-
cine, and information systems. The subject matter expert (SME) who is in charge 
of, and responsible for, a source system may prefer to simply tell about the source 
system, rather than expose the source system to the scrutiny of a Source System 
Analysis. There may be a valid reason for this hesitation— or there may not. Either 
way, the data warehouse designer performing the Source System Analysis will need 
to employ comforting and reassuring social skills, possibly political skills, or some 
other tactic. But, the bottom line is the data warehouse designer must be allowed 
to query and survey the enterprise data, not just a summary or description of the 
enterprise data.2 Without the information provided by a survey of the enterprise 
data, the design of a data warehouse cannot continue and cannot be considered 
complete.

Source System Analysis examines enterprise data for its informational con-
tent—the meaning of the data and how it captures and expresses that meaning. 
This examination is discussed in the following sections: Source System Analysis 
Principles and Source System Analysis Methods. The Principles explain what the 
data warehouse designer is looking for. The Methods explain how the data ware-
house designer examines the source system.
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Source System Analysis Principles
System of Record
Entity Data
Transaction Data
Snapshot Data

Source System Analysis Methods
Data Profile
Data Flow
Data State
System of Record

Source System Analysis Principles
Source System Analysis principles identify what the data warehouse designer is 
looking for when examining enterprise data. These are the questions that guide the 
examination of a source system. Enterprise data is observed for its operational con-
tent as well as for its nature and interaction within the enterprise.

System of Record
Frequently, separate business units and applications within an enterprise will main-
tain their own copy of a set of data. A data element central to the core function of 
an enterprise may be copied within every business unit. In this maze of copies, the 
Source System Analysis is looking for the point of origin,3 the one dataset, applica-
tion, etc., that is recognized by the enterprise as the authoritative expression of that 
data element.4

An enterprise may divide a data element among multiple systems of record. This 
may happen for operational or political reasons. For example:

The enterprise manufactures replacement automobile parts. The search for an 
authoritative expression of those automobile parts yields multiple systems of 
record:

Drivetrain parts (domestic)
Drivetrain parts (import)
Chassis parts (domestic)
Chassis parts (import)
Body parts (domestic)
Body parts (import)

The enterprise sells home improvement products through a series of retail 
outlets. A search for an authoritative expression of those retail outlets yields 
multiple systems of record:

n
−
−
−
−

n
−
−
−
−

n

−
−
−
−
−
−

n
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Retail outlets (West Division)
Retail outlets (East Division)
Retail outlets (recently merged, but not yet integrated)

These examples of multiple Systems of Record should lead the data warehouse 
designer to ask two questions: Do the multiple Systems of Record indicate 
that the single data element (e.g., product, retail outlet) is actually multiple 
data elements? If so, then the single data element (e.g., product, retail outlet) 
is actually a bit of language shorthand, which combines separate data ele-
ments to make discussing them easier. Members of the enterprise will use 
shorthand language to render their documentation and discussions cleaner 
and easier (for those in the enterprise) to understand. This is similar to the 
common practice of referring to a dog as a dog. Within the word dog is a 
myriad individual species. But, rather than name all the species, we simply 
use the word dog.
Do the multiple Systems of Record indicate that a single data element is 
fragmented within the enterprise and must be recombined into a complete 
and cohesive data element in the data warehouse? If so, then Source System 
Analysis has identified an early requirement for the data acquisition and inte-
gration phase of data warehouse design and a risk to the quality of data in the 
data warehouse.

Source System Analysis includes a search for those datasets, applications, etc. 
that are the original and authoritative expression of the data within the enterprise. 
This search will provide insights into enterprise data elements and their point of 
origin.

Entity Data

Source System Analysis includes a search for the data that defines, describes, and 
qualifies the entities of the enterprise.5 Enterprise entities include the physical and 
logical members, agents, facilities, and resources within an enterprise. An excel-
lent way to identify entities within the enterprise is to document all the business 
processes of the enterprise using only simple sentences with no pronouns. Using 
this method, the nouns (names and proper titles) are most likely the entities of the 
enterprise. The difficulty of this method is understanding the business processes of 
the enterprise well enough to document them with simple sentences. This method 
will yield two classes of entities: physical and logical.

Physical entities can be touched and include machines, buildings, people, 
and hardware. These are the people and facilities that are the material mani-

−
−
−

n

n

n
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festation of the enterprise. Physical entities can be uniquely identified (e.g., 
part number, employee number, facility number, etc.). Instances of physical 
entities can also be identified (e.g., lot number, vehicle identification number, 
serial number, etc.). Physical entities can also be described and qualified (e.g., 
color, region, size, etc.).
Logical entities cannot be touched and include calendar, class, type, and sta-
tus. Although they cannot be touched, logical entities are equally real and 
relevant to the enterprise. These are the concepts, constructs, and hierarchies 
that organize and enhance the meaning of enterprise events and entities. 
Logical entities can be uniquely identified (e.g., regulatory statutes, organiza-
tional hierarchy, etc.); however, instances of logical entities cannot exist and, 
therefore, cannot be uniquely identified. Logical entities can be described 
and qualified, the same as physical entities.

Without a logical “weekday” entity, all days would be the same day.
Without a logical “geography” entity, all places would be here, and none 
there.

We use logical entities on a daily basis with a tangible perception of their reality. 
So, it may seem a bit odd to think of a day or job title as a logical construct. But, 
they are. While one company defines Sunday as the first day of the week, another 
defines Sunday as the last day of the week. While one job title imbues specific 
authority, another job title does not. By these logical constructs (e.g., business week 
and chain of authority) a company is able to organize itself.

Entities, both physical and logical, can identify themselves. Also, entities can 
describe and qualify each other by their association. For example:

Building #10 can identify itself as a unique physical facility as well as identify 
the location of employee #AB-132.
Employee #AB-132 can identify himself or herself as a unique person as well 
as identify the manager of the Parts Department.
The Parts Department can identify itself as a unique enterprise department as 
well as identify the retail distributor of all products within the class “Replace-
ment Parts.”
The class “Replacement Parts” can identify itself … and so on.

Entity data manifests itself in multiple forms. The form may mislead the data 
warehouse designer. The function and form of entity data must be considered 
together. Later, during data warehouse design, this information will be vital to an 
accurate data warehouse design. The permutations of function and form discussed 
below are:

Arithmetic Data
Absolute Arithmetic Data

n

−
−

n

n

n

n

n
n
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Relative Arithmetic Data
Numeric Data That Isn’t Arithmetic
Alphanumeric Data

This list of function and form permutations is not exhaustive. It does, how-
ever, demonstrate that you can’t judge a book by its cover and you can’t assume an 
entity’s function from its form.

Arithmetic Data

Arithmetic data applies a measurement to an entity. Such measurements include 
miles per hour, units of work, length, etc. Arithmetic data is applied to an entity 
and, therefore, is not an entity or entity identifier. An arithmetic description of an 
entity must be accompanied by a unit of measurement, otherwise, the measurement 
has no meaning. The unit of measure identifies the rate of movement (speed), activ-
ity (work), or existence (physical dimensions) identified by the arithmetic data.6

The unit of measurement can be either explicit or implicit. An explicit unit of 
measurement is expressed by an accompanying unit of measure data element (e.g., 
liters, dollars, units, etc.). A unit of measurement is implicit when arithmetic data 
is accompanied by a unit of measure, which is assumed, implied, or expressed by 
alternative means. For example:

Assumed unit of measure
Age (in years)
Distance (in miles)

Implied unit of measure
2 × 4 piece of wood (in inches)
24 × 7 (in hours and days)

Unit of measure by alternative means
The name of a data element is the unit of measure—a field named “Miles” 
indicates the unit of measure is Miles.
The meaning of a data element is a formula—miles/hour = a field named 
“Miles Per Hour” indicates the unit of measure is miles per hour.

The data type of arithmetic data can be misleading. Enterprise applications may 
use large numeric data types to store small numbers. A large data type will allow 
large numbers, regardless of its intended use. During Source System Analysis, a 
data warehouse designer will look for discrepancies between each data type and 
its use. Eventually, when least expected, an enterprise application will write a large 
number into a large numeric data type. If the data warehouse is not aware of, and 
prepared for, this circumstance, the large number will become a problem for a data 
warehouse.

n
n
n

n
−
−

n
−
−

n
−

−
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Absolute Arithmetic Data

Absolute arithmetic measurements are arithmetic measurements that are complete 
within themselves. They express completely an arithmetic measurement within a 
transaction event. For example:

The amount of currency consumed in a transaction.
The quantity of products purchased in a transaction.

In these cases, the amount and quantity express completely the currency and quan-
tity in a transaction and, therefore, are absolute.

Relative Arithmetic Data

Relative arithmetic measurements are arithmetic measurements that are incom-
plete within themselves. They are incremental and require a context arithmetic 
value. Without a context, Relative Arithmetic Data has no meaning. For example:

Balance on Hand was increased by two units. This does not tell the new 
BoH.
Federal Reserve increased prime interest rates by 0.25 percent. This does not 
tell the new prime interest rate.

In these cases, the amount and quantity are relative to a previous arithmetic value, 
which is the context. Given that context, and only in that context, Relative Arith-
metic Data has meaning.

Numeric Data That Isn’t Arithmetic

Data written in a numeric data type may not necessarily apply a measurement to an 
enterprise entity. Such cases can include codes (e.g., zip code), flags (e.g., 1 = on), 
or unique identifiers (e.g., version number, sequence number, etc.). Nonarithmetic 
data does not require an accompanying unit of measure (explicit or implicit). In the 
context of nonarithmetic data, the inclusion of a unit of measure would be non-
sense (e.g., part number 321145 liters).

Nonarithmetic numeric data usually occurs when the enterprise needs to 
uniquely identify multiple instances of an entity. Common examples include build-
ing number, part number, and employee number. The numbers used to identify 
such enterprise entities do not have arithmetic properties.

This information will be useful in data warehouse design. If these numbers are 
brought into the data warehouse as numeric data, data warehouse customers will 
be tempted to perform arithmetic operations on them. Also, if a source system uses 

n
n

n

n
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a large numeric data value (e.g., a 32-digit unique identifier), the data warehouse 
Relational Database Management System (RDBMS) will consume unnecessary 
space if it tries to store this data value as a 32-digit number. Since the 32-digit 
unique identifier has no arithmetic properties, the data warehouse RDBMS can 
conserve its resources by storing the data value as a 32-character text value.

Alphanumeric Data

Data written as alphanumeric data type provides names, codes, and text descriptions, 
which identify, describe, and qualify enterprise entities. Alphanumeric data has no 
arithmetic or measurement properties. The meaning of alphanumeric data corre-
sponds to the meaning of the text inside the data element.

An enterprise application may choose to write only numbers into an alphanu-
meric data element. During Source System Analysis, a data warehouse designer 
will look for discrepancies between each data type and its use. Eventually, when 
least expected, an enterprise application will write an alphanumeric character into 
an alphanumeric data type, which had previously stored only numbers. If the data 
warehouse trusts the enterprise to write only numbers into an alphanumeric data 
type, without preparing for the possibility of alphanumeric data, the alphanumeric 
data will become a problem for that data warehouse.

Granularity
The grain of data is determined by its level of detail,7 hierarchical depth,8 or mea-
surement precision.

The level of detail refers to the specificity and uniqueness by which data iden-
tifies an enterprise entity, or instance of an enterprise entity. Data that identi-
fies the exact person involved in a transaction is more granular than data that 
identifies the job class of that person.
Hierarchical depth refers specificity and uniqueness within the context of an 
enterprise organizational structure. The top of the hierarchy is least granular. 
The bottom of the hierarchy is most granular and closest to uniquely identify-
ing a specific instance of an enterprise entity.
A measurement that uses a small unit of measure (e.g., millimeter) is more 
precise and granular than a measurement that uses a larger unit of measure 
(e.g., meter).

A data warehouse designer must be aware of the grain of all source data ele-
ments. Grain is relevant to the design of a data warehouse because separate business 
units may use the same entity at different grains. When a data warehouse juxta-
poses entities from across the enterprise, the least granular entity or measurement 

n

n

n
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is the grain of that juxtaposition. Data warehouse customers, from those business 
units as well as others, will have an expectation of the grain of data with which they 
work. The grain of data in a data warehouse, therefore, must be a designed decision, 
which can be understood by the enterprise.

Latency
Latency refers to the time gap between an enterprise event (e.g., a new entity is 
created, an existing entity changes state, a transaction occurs, etc.) and its expres-
sion in enterprise data. Latency is built into the business and operating cycles of an 
enterprise. For example:

Transactions occur throughout the day, but are uploaded once each night.
Payroll updates are accumulated throughout the week and applied prior to 
generating payroll checks.
Purchase orders are placed online in a real-time user interface.

Latency determines the earliest moment data will be available to the data ware-
house. Data cannot appear in a data warehouse until it first appears in the enterprise. 
The latency built into enterprise data is an important consideration, as it directly affects 
the earliest moment data will be available in a data warehouse.

Transaction Data
Transaction data is also known as Event data. Transaction and Event data identify 
the moment when an enterprise performs its primary functions. Again, a good 
way to identify Transactions or Events within the enterprise is to document all the 
business processes of the enterprise, using only simple sentences with no pronouns. 
Using this method, the verbs are most likely the transactions of the enterprise. The 
difficulty of this method is understanding the business processes of the enterprise 
well enough to document them with simple sentences. For example:

Sales: The moment when a retail enterprise sells something.
Manufacturing: The moment when an assembly plant builds something.
Service: The moment when a consulting firm provides a service.

Transaction and Event data also identify the moment when an enterprise 
performs those secondary functions, which enable it to perform its primary 
functions.

Sales
Primary: The moment when a retail enterprise sells something.

n
n

n

n
n
n

n
−
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Secondary: The moment when product is ordered.
Secondary: The moment when product is delivered.
Secondary: The moment when product is invoiced.
Secondary: The moment when the invoice is paid.
Secondary: The moment when product is received.
Secondary: The moment when product is placed on the shelf.

Manufacturing
Primary: The moment when an assembly plant builds something.

Secondary: The moment when an order is received.
Secondary: The moment when parts are ordered.
Secondary: The moment when parts are delivered.
Secondary: The moment when parts are invoiced.
Secondary: The moment when the invoice is paid.
Secondary: The moment when product is assembled.
Secondary: The moment when product is inspected by Quality 
Control.
Secondary: The moment when product is certified by Quality 
Control.

Service
Primary: The moment when a consulting firm provides a service.

Secondary: The moment when a customer is identified.
Secondary: The moment when a customer requests a service.
Secondary: The moment when a consultant is identified.
Secondary: The moment when a consultant signs a contract.
Secondary: The moment when a customer interviews a consultant.
Secondary: The moment when a customer accepts a consultant.
Secondary: The moment when a customer signs a contract.
Secondary: The moment when a consultant begins work for a 
customer.
Secondary: The moment when a consultant ends work for a 
customer.

Typically, Transaction data includes the following elements:

Who: The entities that are active during the enterprise event. In an enterprise 
event, the active entities may be people, corporations, governments, or gov-
ernment agencies. Typically, active entities have the free will (unless acting by 
proxy) to participate or not participate in the event.
Action: The function (primary or secondary) that was performed. The Action 
is the activity (e.g., buy, sell, deliver, etc.) that was performed by the active 
entities in the event.
What: The entities that are passive during the enterprise event. In an enter-
prise event, the passive entities may be product, property, or logical entities. 
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Passive entities have no free will and cannot choose to participate or not 
participate in the event.
Where: The geographic place of the Action.
When: The temporal time of the Action.
Why: The meaning or motivation for the event. Of all the elements of Trans-
action data, Why is most optional. Enterprise entities may not be required 
to reveal a reason or motivation. Sometimes a reason is included for manage-
ment oversight. In such cases, the reason is probably a fabrication.

Snapshot Data

Snapshot data expresses the cumulative effect of a series of transactions or events 
over a range of time. For example:

Web site hits per hour
Ball bearings assembled per hour

Snapshot data may be used when the individual events (e.g., Web site hits per 
hour) are simultaneously too insignificant individually and numerous collectively 
to justify the capture and storage of each individual event. If the operational system 
is not able to uniquely identify each individual instance of a Transaction or Event, a 
data warehouse will also be unable to uniquely identify each individual instance of 
a Transaction or Event. Snapshot data may also be used when the enterprise specifi-
cally requires cumulative data (e.g., ball bearings assembled per hour).

Snapshot data is less granular than individual Transaction data. During Source 
System Analysis, no judgments should be made regarding which data (Snapshot or 
Transaction) will be included in a data warehouse. Instead, Source System Analysis 
should only document the presence of either data (Snapshot or Transaction). The 
decision to include either or both will be made during data warehouse design, not 
Source System Analysis.

Source System Analysis Methods
The methods and activities of Source System Analysis are a search to understand 
how the enterprise and its data interact. System documentation provides informa-
tion about how an enterprise system is intended and expected to behave. This is 
a good start. But, it is only a start. Source System Analysis should document this 
information. The intended and expected behavior and interaction of enterprise data 
is a good baseline from which to start. Source System Analysis, however, should 
also document how an enterprise system misbehaves, creating unexpected data and 
results.9

n
n
n

n
n

AU6462.indb   32 2/7/08   9:52:38 AM



Source System Analysis  n  33

Source System Analysis is a data warehouse designer’s opportunity to find 
those pockets of the enterprise system that are fraught with anomalies. The reason 
is simple. Most members of an enterprise do not know about the anomalies that 
already exist in enterprise applications and data. If anomalous enterprise data is 
integrated into a data warehouse, data warehouse customers will perceive the data 
warehouse to be the source and cause of the anomalous data. They never saw the 
anomalous data in their enterprise data, but, now they see the anomalous data in a 
data warehouse. The data warehouse, therefore, must be the cause of the anomalous 
data and should not be trusted or used. Source System Analysis is, therefore, the 
first opportunity to protect the quality of the data in a data warehouse, which also 
protects the data warehouse.

Data Profile

A Data Profile provides multiple cross sections of enterprise data. These cross sec-
tions fall into four basic groups: Data Stores, Data Elements, Data Entities, and 
Data Model. Each group is intended to provide a cross section description of enter-
prise data in terms of where data is stored (inventory of Data Stores), what is stored 
in the data (inventory of Data Elements), how the data is grouped (inventory of 
Data Entities), and how the data elements relate to each other (Data Model).

Inventory of Data Stores: This is a list of the physical hardware on which 
the enterprise places its applications and data. This will provide information 
about the availability, nature, interface, and security requirements of enter-
prise data.

Servers: The physical platforms that do the work of the enterprise. The 
inventory should indicate the physical location of servers, operating sys-
tems, applications, and interface requirements.
Databases: The physical storage of enterprise data. The inventory should 
include the operating system, database system, and version, and a list of 
physical databases, tables, views, macros, etc. For each data structure, 
the inventory of databases should provide the Data Definition Language 
(DDL), including constraints and relationships.
Directories: The physical placement of data in directories. The inventory 
should include a list of network locations, directories and subdirectories, 
and the files they contain.
Files: The physical placement of data in datasets. The inventory should 
include a list of files, including file name, path, and layout.
Physical and logical partitions: The physical work of the enterprise is 
divided among various servers. Sometimes this division of work is physi-
cal and sometimes the division is logical. The inventory should indicate 
the physical location of the work of the enterprise.
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Caveat: Any published discussion of the physical manifestations of hard-
ware and software is obsolete before it hits the shelf because hardware 
and software technology changes constantly. So, if at the reading of this 
book, the physical manifestations in this chapter (e.g., servers, databases, 
files, etc.) are no longer in common use, then please apply the goal of an 
Inventory of Data Stores (identify the physical objects and geographic 
locations on which source system data resides) to the physical hardware 
or software in use.

Inventory of Data Elements
Name: The name by which applications reference a data element. Members 
of the enterprise may have shorthand names for a data element (e.g., the 
Item file, the list of Items, etc.). Source System Analysis should reconcile all 
the shorthand names for each physical data element.
Format: The layout or DDL for each data element. A single data element 
may have multiple layouts (e.g., COBOL Redefines, Structured Query 
Language (SQL) Substring, etc.). The layout should indicate all of the 
layouts for each data element.
Domain of values: When a data element has a known set of values (e.g., 
Yes or No, Male or Female, provinces of Canada, etc.), the inventory 
should provide a list of those values.10

Range of values: When a data element has an infinite and bounded set 
of values (e.g., Product cost, Assembly throughput, etc.), the inventory 
should provide the upper and lower boundary values.
Frequency of distinct values: A list of distinct values and the number 
of occurrences of each. In SQL, Select Field_1, count(*) as Freq from 
Table 1 group by Field_1. The results of a list of distinct values and their 
frequency are often surprising to both the data warehouse designer and 
the SME. This method has the potential to reveal unexpected data and 
data anomalies.

Most frequent distinct values: The distinct values that occur most 
often. These are typically the expected and accepted values. In SQL, 
Select Field_1, count(*) as Freq from Table 1 Group by Field_1 Order 
by Freq Desc.
Least frequent distinct values: The distinct values that occur least 
often. These are typically the unexpected and anomalous values. In 
SQL, Select Field_1, count(*) as Freq from Table 1 Group by Field_1 
Order by Freq Asc.

Histogram of enterprise activity: The data in enterprise systems 
chronicles the activity (e.g., manufacturing, sales, contracts, etc.) 
of the enterprise. This activity occurred through time, across 
geographic locations, and within hierarchical levels of the enter-
prise. A histogram of this activity will reveal trends and patterns 
within the enterprise. Time, geography, and hierarchy are not 
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the only possible histograms, just the most universally helpful. 
Another histogram may prove to be equally or more revealing 
and helpful.

Activity by time (e.g., years, months, days): A histogram of enterprise 
activity by calendar years, months, and days will reveal the cardinal-
ity of enterprise activity as represented in time by the data of the 
enterprise. Invariably, some data will predate the enterprise because 
some operational application will not prevent someone from input-
ting a date value in the 1800s, or some data will show future activ-
ity because another operational application will not prevent someone 
from inputting a date in the 2900s. A histogram of enterprise activity 
in time will highlight such aberrations in enterprise data.
Activity by geography (e.g., region, large municipality, small munici-
pality): A histogram of enterprise activity by physical geographic loca-
tions will reveal the cardinality of enterprise activity as represented 
geographically by the data of the enterprise. Invariably, some data 
will show states, provinces, and countries that do not exist because 
some operational application does not validate input geographic val-
ues, and the multiple permutations and abbreviations of states, prov-
inces, and countries are nearly infinite and can be found somewhere 
in enterprise data. A histogram of enterprise activity by physical geo-
graphic locations will highlight such aberrations in enterprise data.
Activity by hierarchy (e.g., corporation, division, department, subde-
partment): A histogram of enterprise activity by the hierarchical level 
of the enterprise entities (e.g., people, buildings, products) involved 
in the activity will reveal the cardinality of enterprise activity as rep-
resented hierarchically by the data of the enterprise. Invariably, some 
data will reference unknown or nonsense hierarchies or no hierarchy 
at all because some operational application does not validate input 
hierarchical values. Typically, corporate reports based on key perfor-
mance indicators (KPIs) will identify to management hierarchical 
data that is incorrect. Underneath the radar of KPI reports, however, 
often lurks another set of data with incorrect hierarchical values. A 
histogram of enterprise activity by hierarchy will highlight such aber-
rations in enterprise data.

Inventory of Data Entities: Enterprise entities (e.g., people, building, prop-
erty) are recorded in enterprise systems as data. The inventory of data elements 
will identify the methods by which enterprise data identifies each entity and 
records its attributes.

Core data element: An individual and unique entity as defined in enter-
prise data. The inventory should include the unique identifier for a Core 
entity and an explanation of what makes that identifier unique.
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Combined data elements that define a Logical entity: A logical entity may 
be an intersection of multiple Core data elements. For example:

Project Team: Multiple people from disparate departments brought 
together to achieve a single goal. The Core entities are the individual 
people.
Product Offering: Multiple individual products merchandised as one 
logical unit. The Core entities are the individual products.
Facility Groups: Multiple individual facilities from various geographic 
regions, which are grouped together based on common shared demo-
graphic criteria. The Core entities are the individual facilities.

The inventory should include the unique identifier for a Logical entity, an 
explanation of what makes that identifier unique, and how Core entities are 
associated to a Logical entity.

Descriptive data elements: The attributes of a Core or Logical data element 
may be stored in an associated data element. The inventory should include 
descriptive data and its association with a data element.
Associative data elements: The associations between multiple Core or 
Logical data elements may be stored in an associative data element. The 
inventory should indicate the associative data element(s) and the method 
by which it associates data elements to each other.

Data Model of the Source System: Enterprise system documentation will 
probably include data models. These should be included in the data profile 
in conjunction with the inventories of data entities and data elements. If, 
however, an enterprise system does not have a data model (Logical, Physical, 
or otherwise), the data warehouse designer should create one. The Logical 
and Physical data models will prove to be beyond value through the design 
of a data warehouse and data acquisition applications.11 If a data warehouse 
designer does not have sufficient knowledge of enterprise systems to model 
the enterprise data, then the Source System Analysis has not delivered infor-
mation sufficient to allow the design of a data warehouse. The Source Sys-
tem Data Model should, at a minimum, include a Logical and Physical data 
model.

Logical: A Logical data model typically indicates the business under-
standing and meaning of the data within the enterprise. The Logical data 
model will indicate the relationships by which entities are grouped and 
associated.
Physical: A Physical data model indicates the data structures within which 
enterprise data is physically stored. The Physical data model should indi-
cate the Primary key/Foreign key relationships between data structures.

The purpose of a Data Profile is to provide a cross section of enterprise data. 
Typically, an enterprise will have too much data for every row to be reviewed and 
understood within the context of the enterprise. A sufficient number of “slices” of 
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enterprise data will provide more insight into the enterprise and its data than could 
be garnered by a review of every row or record in the enterprise.

Data Flow Diagram
The Data Flow Diagram method (Figure 3.2) that is used to design a source sys-
tem is also used during Source System Analysis. After the data profile identifies 
enterprise data elements, the Data Flow Diagram identifies where the data comes 
from, goes to, and by what transport mechanism it moves. The Data Flow Diagram 
should include all the names and descriptions of the physical environment provided 
by the data profile. In addition to the names and descriptions of the physical envi-
ronment, a Data Flow Diagram will add the dimensions of time, sequence, and 
movement to the Source System Analysis.

In a Data Flow Diagram, a data warehouse designer reverse-engineers the move-
ment of data within the enterprise. This is the opportunity to discover the lifespan 
and location of data as it is used by enterprise systems. For example:

A file is deleted by the operational application that reads it.
Data is appended to previously existing data, permanently blending the two 
sets of data together.
Data only occurs in the form of asynchronous messages.
A file is only available on the other side of a file transfer protocol (FTP) 
firewall.

A Data Flow Diagram is intended to discover these and other aspects of the 
physical movement of enterprise data. Typically, the diagram requires many pages 
of diagrams to document the flow of data in an enterprise. The movement of a data 
element should ideally be captured in a single page of a Data Flow Diagram.

Data State Diagram
The Data State Diagram (Figure 3.3) is used to capture the various business mean-
ings of a data element as it flows through the Data Flow Diagram. After the Data 
Flow Diagram identifies where the data comes from, goes to, and by what transport 
mechanism the data moves, the Data State Diagram identifies the business mean-
ing, the relevance to the enterprise of a data element at each point in its journey 
through the enterprise.

A Data State Diagram is built from the Data Flow Diagram. In addition to the 
names and descriptions of the physical environment, a Data State Diagram indi-
cates the relevance of a data element to the enterprise (Table 3.1).

A Data State Diagram also includes any physical indications of each state 
(Table 3.2).

n
n

n
n

AU6462.indb   37 2/7/08   9:52:39 AM
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As data flows through the enterprise, its meaning and relevance change. 
Throughout the life of a data element, what are all the business meanings (i.e., 
states) of that data element? When and where do these business meanings occur? 
A Data State Diagram is the opportunity to discover the answers to these ques-
tions. At the conclusion of the Data Profile, Data Flow Diagram, and Data State 
Diagram, a data warehouse designer is prepared to identify the System of Record 
for each enterprise entity.
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Setup
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Yes
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Figure 3.2  Data Flow Diagram.

AU6462.indb   38 2/7/08   9:52:39 AM



Source System Analysis  n  39

System of Record

The identification of the System of Record is the reason Source System Analysis is 
directly associated with the data acquisition and integration applications, otherwise 
known as ETL (extract, transfer, and load) applications. ETL applications retrieve 
data from the enterprise. An ETL design must answer the question: “Where do I 
get the enterprise data from that will go into the data warehouse?” The answer to 
this question is the System of Record. These Profiles, Data Flow Diagrams, and 
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Figure 3.3  Data State Diagram.
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Data State Diagrams allow a data warehouse designer to discover the authoritative 
point of origin for each enterprise entity at any given state. That authoritative point 
of origin is the System of Record.

The Data Profile, Data Flow Diagram, and Data State Diagram are intended 
to allow significant discovery of the enterprise and its data. This information is 
significant for the upcoming data warehouse design activities. The Data Model 
of the data warehouse will derive much of its design from the Data Profile, Data 
Flow Diagram, and Data State Diagram. The Business Intelligence Reporting will 
use the information from the Data Profile, Data Flow Diagram, and Data State 
Diagram to communicate its expression of the enterprise, so that the members of 
the enterprise can understand it. Data Quality applications will rely heavily on the 
expectations and anomalies discovered in the Data Profile, Data Flow Diagram, 
and Data State Diagram. Metadata will be based directly on these three entities.

Business Rules
Finally, the Source System Analysis is the opportunity to document the business 
rules that govern data in the source system. The Data Profile, Data Flow Diagram, 
Data State Diagram, and System of Record provide the best opportunity to identify 
the business rules of the source system. These business rules come in three basic 
varieties:

Table 3.1  Data State
Data Element Data State

Product Proposed

Manufacturing Design Finalized

Invoice Paid in Full

 Table 3.2  Physical Indications of Data State
Data Element Data State Physical Indications

Product Proposed Product approvals are empty

Manufacturing Design Finalized Manufacturing design documents 
were moved to the directory named 
“Final”

Invoice Paid in Full The box marked “Paid in Full” is 
checked (i.e., set to yes/on)
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Intrarecord Business Rules: Column A + Column B = Column C. The busi-
ness rule exists entirely within each individual record. All the data and infor-
mation necessary to validate the business rule is present in a single record or 
row. An Intrarecord business rule can only be validated one record at a time 
because that business rule applies to only one record at a time.
Intradataset Business Rules: Row 1. Column A + Row 2. Column A = Row 
3. Column B. The business rule spans across records within a set of data, but 
still remains within the set of data. All the data and information necessary 
to validate the business rule is present in a single set of data. An Intradataset 
business rule can only be validated one dataset at a time because that business 
rule applies to only one dataset at a time.
Cross Dataset Business Rules: File 1. Column A = Table 2. Column B. The 
business rule spans across sets of data within a source system. The data, there-
fore, may not be available in the source system. The data may be late arriving, 
deleted, or renamed. Cross Dataset business rules, therefore, require more 
effort to define and validate.

Business rules will be used to create the Data Quality validations of inbound 
data from the source system. So, any data elements from the source system that 
should maintain a consistent behavior, and can affect the data warehouse, should 
be included in the list of Business Rules.

Closing Remarks
Thus far, this discussion of Source System Analysis has not addressed the require-
ments of the data warehouse customer or the preferences of the enterprise. Typi-
cally, budget and time constraints restrict the Source System Analysis activities. If, 
however, a data warehouse designer has been so fortunate as to be allowed to per-
form most, if not all, of the Source System Analysis activities, that data warehouse 
designer has the enterprise knowledge and context necessary to effectively discuss 
customer requirements and preferences.

Rarely does an enterprise create a data warehouse as its initial decision support. 
Typically, decision support systems evolve and mature along with the enterprise. 
Eventually, the enterprise is simultaneously ready to invest in, and benefit from, a 
data warehouse. By that time, an enterprise already has a decision support system 
of some sort, official or unofficial. Source System Analysis provides the opportunity 
to locate and identify previous decision support systems. Knowledge of previous 
decision support systems is important. Individual members of the enterprise will 
compare the data from a data warehouse to data from a previous decision support 
system. Any differences between the data from a previous decision support system 
and the data from a data warehouse will be perceived as errors and flaws in the data 
warehouse. At the moment a data warehouse is released to the enterprise, the data 
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warehouse team must be prepared to identify and explain all differences between 
the data warehouse and any previous decision support system. Without a statement 
of the differences, members of the enterprise will probably perceive the data ware-
house to be incorrect, but, with a statement of the differences and explanations, 
members of the enterprise will probably perceive the differences to be intentional 
by the design of the data warehouse, and probably accept those differences and the 
data warehouse.
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Chapter 4

Relational Database 
Management 
System (RDBMS)

Introduction
Few things in life are certain—death and taxes are two of them. Another certainty 
is that a data warehouse has to be stored on a Relational Database Management 
System (RDBMS)(Figure 4.1). The reason is very simple. A RDBMS allows indi-
vidual data elements to be combined in an almost infinite set of permutations.1 
Ad hoc reporting, a key advantage of a data warehouse can only be performed by 
a platform that accommodates an almost infinite set of data permutations, such 
as a RDBMS. But, we need to go back to the 1970s to understand the value and 
versatility of the RDBMS.

Relational Set Theory
The patent for the ENIAC (electronic numerical integrator and computer) was filed 
on June 26, 1947.2 Since then the volume of data stored and processed on computing 
platforms has continued to grow. From 1947 onward data was stored in a flat format. 
Records could not be joined to each other. So, records had to be complete within 
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themselves. This flat format architecture resulted in significant data redundancy, as 
seen in Figure 4.2. For example, every record had to include an item description to 
provide a text definition of the item number.

Hierarchical databases significantly reduced data redundancy by isolating each 
data element in its own file. The complete statement of purchase activity, as shown 
in Figure 4.2, would be reassembled by reading the data from a parent file and then 
reading related data from a child file (Figure 4.3). The data from each “read” would 
be stored in internal memory and processed by a procedural computer program. 
The reduced data redundancy also reduced the data volume. The introduction of 
Read functions, by which a complete set of data can be assembled, rendered the 
data accessible only by way of a procedural application (e.g., COBOL). The result 
was reduced redundancy, reduced volume, and reduced accessibility.

In June 1970, Dr. E. F. Codd proposed a solution to all three problems (redun-
dancy, volume, and accessibility) when he published his groundbreaking article 
“A Relational Model of Data for Large Shared Data Banks.”3 Dr. Codd’s article 

Sue Smith Purchase March 4, 2007 1234-ab Computer Keyboard
Sue Smith Purchase March 4, 2007 2345-cd Backup Tape
John Jones Purchase March 5, 2007 1234-ab Computer Keyboard
John Jones Purchase March 6, 2007 2345-cd Backup Tape
John Jones Purchase March 7, 2007 2345-cd Backup Tape

Name Date Item Number Item DescriptionActivity

Figure 4.2

Sue Smith Purchase March 4, 2007 1234-ab
Sue Smith Purchase March 4, 2007 2345-cd
John Jones Purchase March 5, 2007 1234-ab
John Jones Purchase March 6, 2007 2345-cd
John Jones Purchase March 7, 2007 2345-cd

Sue Smith 123 Elm Lane Oakland CA
John Jones #4 Terrace Dr. Seattle WA

Read

Read

Read

Read
Read

Read

Read

Read Read

Read

Name Activity Date Item Number

Name Address City State

Item Number
1234-ab Computer Keyboard
2345-cd Backup Tape

Item Description

Figure 4.3  Hierarchical Database Architecture.
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introduced relations and normalization, which are the basis of all RDBMSs. Rela-
tions and normalized data rendered large volumes of data accessible by the use of 
Structured Query Language (SQL). By 1995, Ralph Kimball had documented and 
published the direct connection between large volumes of normalized data in a 
relational database and the almost infinite permutations of data elements, which 
make the ad hoc reporting of a data warehouse possible.4 A data warehouse, there-
fore, must be stored on a RDBMS.

RDBMS Product Offerings
Relational databases offer a wide selection of features and functions. Primarily, 
these features and functions include some permutation of data volume, through-
put, and price (Figure 4.4). Data volume and throughput are inversely related. As 
data volumes increase, a RDBMS requires more time to process the additional data. 
Throughput is directly related to price. The processing capacity required to increase 
throughput also increases costs. Data volume is also directly related to price. The 
data storage required to increase data volume also increases the costs.

Data volume and throughput are the primary features by which to compare 
RDBMS product offerings. RDBMS products will typically fit one of the following 
permutations of features:

Data Volume
�roughput

Price Price

Figure 4.4  RDBMS primary features.
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High Disk Capacity
Large number of CPUs

Result:
Able to store and process large data volumes
Able to quickly perform functions and operations

Moderate number of CPUs
Result:

Able to store and process large data volumes
Able to perform functions and operations with moderate speed

Moderate Disk Capacity
Large number of CPUs

Result:
Able to store and process moderate data volumes
Able to quickly perform functions and operations

Moderate number of CPUs
Result:

Able to store and process moderate data volumes
Able to perform functions and operations with moderate speed

The decision to purchase a RDBMS should include consideration of expected 
data volume and throughput. By matching expected data volume and throughput 
against the accepted price, an enterprise can select the RDBMS that best meets its 
data warehousing needs, budget, goals, and plans.

This activity of matching volume and throughput to disk capacity and CPUs 
(central processing units) is a bit tricky. RDBMS vendors need sales revenue to 
keep their businesses afloat. They will represent the minimum cost for the mini-
mum hardware (i.e., disks and CPUs) necessary to achieve the storage capacity 
and throughput required by the customer. Then the customer realizes they did 
indeed purchase the minimum hardware, which was within the budget, and which, 
coincidentally, achieves minimum performance. That customer soon has another 
decision to make—scrap the minimum hardware already purchased and start over 
with another RDBMS, or purchase the incremental hardware necessary to achieve 
the desired performance. The money for the previously purchased hardware has 
already been invested and cannot be considered in any future costs. So, invari-
ably, the least cost option is the purchase of the incremental hardware necessary to 
achieve the desired performance. Therefore, when matching the hardware required 
to achieve the desired performance, include all possible extenuating circumstances. 
For example:

Many customers simultaneously contending for resources on the RDBMS.
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Load jobs loading tables A, B, and C while many customers are using all the 
other tables.
Backup jobs backing up tables A, B, and C while many customers are using 
all the other tables.
Applications querying large volumes of data on the RDBMS.

If these answers are not available, then an alternative question is: At what den-
sity of processes, operations, and data volume will the RDBMS become pegged at 
100 percent capacity? In other words, if the matching of requirements to hardware 
cannot be achieved by starting from maximum processes, maximum operations, 
and maximum data volumes, which lead to RDBMS capacity, then go the other 
way, from maximum RDBMS capacity to the processes, operations, and data vol-
umes, which achieved that maximum RDBMS capacity. If either of these questions 
can be answered, the RDBMS customer will most likely have the information nec-
essary to make the right selection the first time and not require a second purchase.

RDBMS product offerings often include other features and functions, such as:

Security: Protect the data from unauthorized access.
Reliability: Redundant array of independent disks (RAID)5 reduce the 
downtime of the RDBMS and reduce the loss of data.
OLAP: Online analytical process.
Procedural Language: Allow the creation and use of native computer 
programs.
Graphical User Interface (GUI): Present a user-friendly interface to the 
RDBMS.

Features such as these are relevant in varying degrees to the success of a data 
warehouse. All of these features, however, are secondary to the primary features—
data volume and throughput. A RDBMS vendor proposing a product offering 
that is weak in data volume or throughput will try to sell a RDBMS based on 
secondary features.

The decision to purchase a RDBMS is an investment decision. The enterprise 
should expect a Return On Investment (ROI) from the creation of a data ware-
house. The best case scenario, therefore, is to purchase the data volume, throughput 
capacity, and other RDBMS features key to the success of the data warehouse for a 
price low enough to allow a reasonable ROI.

Residual Costs

RDBMS hardware can be, and often is, purchased. The cost of the hardware, 
therefore, quickly becomes a “sunk cost.” The money and hardware asset trade 
sides of the balance sheet and the cost of the hardware become irrelevant. The 
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operating system (OS) and RDBMS application, however, are not purchased, 
they are licensed. Future maintenance and support of the RDBMS is purchased 
annually. The cost of licensing, support, and maintenance, therefore, are not sunk 
costs, they are continuing costs. The negotiated purchase of a RDBMS should also 
include fixed pricing of all costs (e.g., licensing, support, and maintenance) for as 
long as possible. This will define a significant portion of the cost of ownership of a 
data warehouse, which will be included in the ROI of a data warehouse.

Licensing

A License Agreement outlines the terms and conditions by which an enterprise is 
allowed to use the OS and RBMS, and the price that the enterprise will pay for this 
privilege. Typically, the price of a License Agreement is directly based on one, but 
not all, of the following:

The number of physical CPUs in the RDBMS hardware
The number of individual logon IDs
The number of concurrent logon IDs active on the RDBMS at one time
A fixed price for the entire site

The willingness of a RDBMS vendor to negotiate the terms of a License Agree-
ment is inversely proportionate to the size of the RDBMS hardware purchased.

Support and Maintenance

Support typically refers to RDBMS assistance troubleshooting and the solving 
of problems with the RDBMS. Maintenance typically refers to the resolution of 
hardware problems, and installation of future code (OS and RDBMS) updates. 
A RDBMS vendor will offer a menu of options for the support and maintenance, 
which will be provided by the RDBMS vendor. The rule of thumb for these options 
is simple:

Increased involvement by the RDBMS vendor will cost the enterprise 
increased money.
Decreased involvement by the RDBMS vendor will cost the enterprise less 
money.

Extensibility

Extensibility refers to the architected ability to increase the data storage and process-
ing throughput of a RDBMS by adding additional hardware (e.g., disk drives and 
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CPUs). An OS or RDBMS has a maximum capacity. Until that maximum capacity 
has been reached, every addition to the RDBMS hardware (e.g., disk drives and CPUs) 
is expected to improve the performance of the data warehouse.

Knowledge of the maximum capacity or maximum extensibility of a RDBMS 
is extremely helpful, especially during the negotiation of the purchase of the hard-
ware. A data warehouse team must know the fully extended and maximum capac-
ity of a RDBMS when negotiating the purchase and licensing of a RDBMS.

Over time, the price for license, support, and maintenance will increase. The 
negotiated license, support, and maintenance agreements should lock down the 
price of these services for a duration as far into the future as possible.

Connective Capacity

Applications interact with a RDBMS via a connectivity interface. The methods 
by which a RDBMS allows external applications to interact with the data within 
that RDBMS is known as Connective Capacity (or Connectivity). The standard 
method, an open database connectivity (ODBC), is provided to establish a SQL-
based connection by which external applications can interact with the data in a 
RDBMS.

To create a competitive advantage, RDBMS vendors include Connectivity 
methods in addition to ODBC, with enhanced features and capacity. The decision 
to purchase a RDBMS must include a match between the Connectivity provided 
by a RDBMS and the Connectivity required by the applications that will interact 
with the data in a data warehouse.

Closing Remarks
A data warehouse must reside on a RDBMS. The question is: which RDBMS? A 
data warehouse designer selects a platform and RDBMS based on many factors, 
such as:

How will the customers connect to the RDBMS?
How will the customers use the RDBMS?
How will the data acquisition and integration applications connect to the 
RDBMS?
How will the data acquisition and integration applications load data into the 
RDBMS?
What are the goals and plans of the enterprise regarding the data 
warehouse?
What is the current hardware budget?
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What primary and secondary features of the RDBMS product offerings are 
within the hardware budget?

These and other similar factors are the considerations taken when selecting a 
RDBMS. The right answer may not be the biggest, fastest, or most highly rated 
RDBMS. Like a carpenter looking for a specific tool, a data warehouse designer is 
looking for the right tool for the right job.
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Chapter 5

Database Design

Introduction
Database Design is the first true design activity of a data warehouse (Figure 5.1). 
In the preceding chapter, Source System Analysis was the primary analysis activity. 
The information provided by this analysis, describing and defining the entities and 
processes within the enterprise, is the information on which the Database Design is 
based. A data warehouse designer organizes the entities and processes of the enter-
prise, via the principles in the Data Warehouse Philosophy, in the form of databases, 
tables, and views. Equally important is the usage patterns by which data warehouse 
customers will use a data warehouse. Discussed in Chapter 10 (Data Warehouse 
Customers), customers and their usage patterns also influence the design of a data 
warehouse. These two considerations, Source System Analysis and customer usage 
patterns, taken together identify the resources (i.e., source data) and requirements 
(i.e., usage patterns) of a data warehouse.

Database design simultaneously encompasses three architectural decisions. The 
first decision has been made—the data warehouse will reside on a Relational Data-
base Management System (RDBMS). The remaining questions, in relation to Data 
Models and Data Architecture, are more difficult to answer.

Data Model: How will the data be organized within relational tables? What 
are the subject areas? What are the entities? How will they relate? What will 
they mean?

n
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Data Architecture: How will the relational tables be organized? Will they 
reside in a single central data warehouse, or will they reside in distributed 
data marts? Will an Operational Data Store be included?

These design decisions have significant influence on each other. Every permuta-
tion of RDBMS platform, data integration volumes and throughput, BI Reporting 
data volumes and throughput, and data warehouse customer needs will suggest its 
own optimal combination of Data Architecture and Data Model. Some in the data 
warehousing community will declare a “best practice” Data Architecture and Data 
Model. Data warehousing, however, is not a “one size fits all” decision support sys-
tem. Data warehousing, instead, requires an understanding of the enterprise and 
the data warehouse customers. In between the enterprise and the customers is data. 
The big picture question is:” “What should that data look like?”

The following sections will explain the methods used in data warehousing to 
organize data within tables. Data Architecture will explain how tables are orga-
nized within databases. The combined result of a Data Model and Data Architec-
ture is a data warehouse design. The individual deliverables in a data warehouse 
design include:

Conceptual Data Model
Logical Data Model
Physical Data Model
Data Architecture

These are discussed in the following sections.

Data Modeling Methodology
Data modeling methodology includes three phases: Conceptual, Logical, and Phys-
ical Data Models. They are created in that sequence. A Conceptual Data Model is 
a prerequisite for a Logical Data Model, which is a prerequisite for a Physical Data 
Model. The physical database and table structures are based directly on the data 
structures outlined in the Physical Data Model.

Conceptual Data Model: How will the enterprise be organized within the 
data warehouse? The Conceptual Data Model defines the subject areas and 
major entities.
Logical Data Model: Which entities exist within each subject area? How will 
those entities relate to each other? The relationships extend beyond just pri-
mary key/foreign key relationships. They include Super Type, Subtype, Attri-
bute, and Associative Entities.1
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Physical Data Model: Databases hold the data of a data warehouse. How will 
that data be assigned to columns, which are inside tables that are organized 
into databases that collectively hold the data of a data warehouse? Though not 
quite the Data Definition Language (DDL) of the tables and databases, the 
Physical Data Model is very close to the DDL of the tables and databases.

Data modeling can occur in one of two sequences: Top-to-Bottom and Bot-
tom-to-Top. The Top-to-Bottom approach begins with the top level Conceptual 
Data Model. The Logical Data Model derives from the Conceptual Data Model, 
and the Physical Data Model derives from the Logical Data Model. The Bottom-
to-Top approach begins with the detailed Physical Data Model. The Logical Data 
Model explains the rationale behind the Physical Data Model, and the Concep-
tual Data Model explains the context of the Logical Data Model. Both methods 
can be equally successful. The discussion that follows will use the Top-to-Bottom 
approach, which begins with the Conceptual Data Model.

Conceptual Data Model

The Conceptual Data Model identifies the main subject areas of a data warehouse.2 
Implicitly, the Conceptual Data Model also identifies the boundary of a data ware-
house because any subject area not included in the Conceptual Data Model is not 
included in the data warehouse. The Conceptual Data Model provides an overall 
map to a data warehouse. The applicable subject area can identify the location of 
data within a data warehouse.

The definition of a subject area within the Conceptual Data Model is not a 
binding statement that the data, tables, and possibly database for that subject area 
will be created. Data warehouse development best occurs in iterative slices of devel-
opment, not all at once. Taken all at once the immediate cost of a data warehouse is 
too high. Without the opportunity to generate return on investment (ROI), a data 
warehouse development budget will be cut and data will be descoped. The result 
would be a fully implemented data warehouse, which is missing some of its parts. 
The better, as well as tried and true, method is iterative development. Iterative 
development creates one subject area, or a portion of a subject area, at a time. This 
allows an initial subject area to be created with a reasonable budget, and to generate 
ROI, which justifies the budget for the development of subsequent subject areas.

Slicing along two axes can slice an enterprise into subject areas: business pro-
cesses and business entities. These two axes work well because they facilitate the 
creation of mutually exclusive subject areas, which helps avoid confusion about the 
subject areas. The importance of these axes is that the Logical and Physical Data 
Models for each subject area will be based directly on a subject area in the Concep-
tual Data Model. Information from the source system analysis guides the selection 
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of subject areas that best express the structure and nature of the enterprise. Possible 
subject areas for Business Process subjects are listed in Table 5.1.

An enterprise will typically have more than one major business process. Major 
business processes are the first addition to a Conceptual Data Model (Figure 5.2). 
Each major business process is listed with its subordinate areas. The example in 
Table 5.2 shows the major business processes manufacturing and shipping, and their 
subordinate areas. Major business processes are not related. The entities, which will 
relate these business processes, will be added later.

Manufacturing

Metalwork
Electronics/Electrical
Chemistry
Upholstery
Energy
Inventory

Shipping

Transportation
Warehousing
Scheduling
Picking
Packing
Invoicing

Figure 5.2  Conceptual Data Model processes.

Table 5.1  Business Processes
Subject Areas by Business Process

Subject Area Definition Examples

Sales The exchange of a product or 
service for a fee

Retail transactions
Consulting contract

Manufacturing The value-adding assembly of 
a product from materials and 
ingredients

Automotive assembly
Furniture carpentry

Billing Invoicing, collecting, and 
posting the money owed to 
the enterprise

Accounts Receivable
Collection agency

Receiving Accepting and storing 
materials or product from a 
supplier

Warehouse dockIn-store 
delivery

Shipping Delivery of product to retail or 
wholesale outlets or 
customers

Delivery trucking
Third-party transportation
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The selection of major business process subject areas can occur by two 
methods.

One to Multiple: Select one major business process. Add subordinate busi-
ness processes. As the number of subordinate business processes exceeds the 
meaning of the major business area, create new major subject areas, which 
encompass them. Move the subordinate business areas to a new or previ-
ously existing major business area. As subordinate business areas accumulate, 
assign them to a major business process, which naturally groups them.
Multiple to Few: Select all possible major business areas. Add subordinate 
business areas to each major business process. Identify and consolidate redun-
dant subordinate business processes. As major business processes decline in 
significance by losing subordinate business processes, move all subordinate 
business processes to remaining major business processes, and remove the 
unpopulated major business areas.

The selection of major business processes is iterative and multidirectional. Before 
the selection of all major and subordinate business processes in a Conceptual Data 
Model is complete, both methods (One to Multiple and Multiple to Few) will be 
utilized in the selection process.

The subject areas of an enterprise are also sliced by the business entities within, 
and possibly around, the enterprise. These are the physical and logical objects by 

n
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Table 5.2  Subject Areas by Business Entity
Subject Areas by Business Entity

Subject Area Definition Examples

Facilities Physical plants that house 
enterprise operations

Store
Warehouse

Capital Equipment Materials, tools, and hardware 
that contribute to the 
functions of the enterprise

Forklift
Display cabinet
Drill and drill bits

Product The object of a retail or 
wholesale sales transaction

Automobile
Groceries

Customer The participant in a sales 
transaction who receives a 
product or service

Grocery shopper
Corporate buyer

Supplier The vendor who provides to 
the enterprise materials and 
ingredients used in the 
business of the enterprise

Automobile parts 
manufacturer

Wholesale broker
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which the enterprise achieves its business functions. Possible subject areas for Busi-
ness Entity subjects are shown in Table 5.2.

Major business entities are the second addition to a Conceptual Data Model 
and an enterprise will typically have more than one. Each major business entity 
is listed with its subordinate entities. The example in Figure 5.3 shows the major 
entity areas: Product, Facilities, and Capital Equipment, and their subordinate 
entities.

Major business entities relate to each other. Capital Equipment is located in 
a Facility and used to manufacture a Product. Facilities are used to shelter the 
manufacture of a Product. Major entities also relate and connect major business 
processes, as seen in Figure 5.4. Manufacturing and Shipping both handle Product. 
Manufacturing and Shipping both use Capital Equipment inside Facilities.

A subordinate entity can occur multiple times in a Conceptual Data Model. In 
the Conceptual Data Model in Figure 5.4, the entity Function occurs three times 
and the entity Inventory occurs twice. This is normal. As a Conceptual Data Model 
is expanded into a Logical and then Physical Data Models, this phenomenon will 
occur many times. Eventually, as the Physical Data Model is normalized, remov-
ing redundancy, redundant entities will be consolidated. The consolidated entity 
will be referenced within each subject area. This highlights the need for consistent 
entity names. For every instance of business meaning, use the same entity name. 
You don’t want to discover redundant data after a data warehouse has been imple-
mented, and someone remarks, “Hey, did you know these two tables have different 
names, but the same data?” This situation can be worse: If the two tables do not 

Product
Function
Regulation
Composition
Minimum ROI
Retail/Wholesale
Inventory

Facilities
Function
OSHA Regulation
Real Estate
Dimensions
Capacity
Staffing

Capital Equipment
Function
Description
OSHA Regulation
Complement
Materials
Technology

Figure 5.3  Conceptual Data Model entities.
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have exactly the same rows. The first defense against such confusion is consistent 
entity names.

A Conceptual Data Model will require numerous iterations of brainstorming, 
model, review, model, brainstorming, model, etc. Conceptual Data Modeling is not 
just an activity that has been perpetuated for no apparent reason from the early days 
of data warehousing. Rather, a Conceptual Data Model is the first foundation of a 
data warehouse and provides the roadmap to a data warehouse via the subject areas 
of the enterprise. Details and enhanced meaning are added to that roadmap as it is 
transformed into a Logical Data Model.

Logical Data Model

A Logical Data Model presents the entities and relationships of the enterprise. Log-
ical Data Modeling uses Entity Relationship Diagram notation.3 An Entity Rela-
tionship Diagram visually displays the relations between the entities of a enterprise. 
A Logical Data Model achieves this visual display by focusing on each major subject 

Manufacturing
Metalwork
Electronics/Electrical
Chemistry
Upholstery
Energy
Inventory

Product
Function
Regulation
Composition
Minimum ROI
Retail/Wholesale
Inventory

Facilities
Function
OSHA Regulation
Real Estate
Dimensions
Capacity
Staffing

Capital Equipment
Function
Description
OSHA Regulation
Complement
Materials
Technology

Shipping
Transportation
Warehousing
Scheduling
Picking
Packing
Invoicing

Figure 5.4  Conceptual Data Model entities and processes.
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area from the Conceptual Data Model. Each major subject area of a Conceptual 
Data Model, therefore, will become a page by itself in a Logical Data Model. Each 
page will present all entities relevant to the major subject area. Using the Concep-
tual Data Model in Figure 5.4, a Logical Data Model would include five pages.

Manufacturing
Shipping
Product
Capital Equipment
Facilities

A Logical Data Model enhances the information already available in a Concep-
tual Data Model by including five categories of information.

Logical (Primary) Key
Attribute
Primary Key/Foreign Key Relation
Cardinality
Super types and subtypes

Additional information may be included. That additional information, how-
ever, should not replace or alter the following five categories of information.

Logical (Primary) Key

What identifies each instance of an entity? Given that piece of information, a per-
son can search the enterprise and always identify the same instance of an entity. The 
Logical Key does not identify an entity; rather, a Logical Key identifies an instance 
of an entity. For example:

Facilities: An individual building
Capital Equipment: An individual lathe
Shipping: An individual invoice

The Logical Key is usually referred to as the Primary Key. The term Primary 
Key is also used in other forms of data modeling, including the upcoming dis-
cussion of Physical Data Modeling. The Primary Key of a Logical Data Model is 
similar to, but not exactly the same as, the Primary Key of a Physical Data Model. 
During this discussion of Logical Data Modeling, the term Primary Key will refer 
explicitly to the Logical (Primary) Key.

n

n

n

n

n

n

n

n

n

n

n

n

n

AU6462.indb   61 2/7/08   9:52:49 AM



62  n  Building and Maintaining a Data Warehouse

Attribute

An Attribute is a nonidentifying aspect of an entity. An Attribute describes, but 
does not define, an individual instance of an entity. Rather, an attribute provides 
information about an entity, which enhances its meaning and relevance. Common 
attributes include:

Color
Size
Formula
Taxing Municipality

Primary Key/Foreign Key Relation

A Logical Data Model includes a representation of the method by which an instance 
of an individual entity is associated with an instance of another individual entity. 
The definition of a Logical Key for each instance of each entity is a prerequisite for 
the definition of an associative relation because each instance of both entities must 
be identified before they can be associated to each other.

A Primary Key/Foreign Key Relation exists between two and only two enti-
ties. A business scenario may require that multiple relations exist simultaneously 
for that business scenario to be valid. For the purposes of Logical Data Modeling, 
these multiple relations are seen as individual relations. Constraints, which exist in 
a business scenario, are business rules that will be enforced by applications and not 
by the Logical Data Model.

A Primary Key/Foreign Key Relation is achieved by embedding the Primary 
Key of a subordinate entity as a nonidentifying attribute in a superior entity. For 
example:

Real Estate (i.e., a building) has a Function. A Function describes a building. 
A Function, therefore, is subordinate to Real Estate. The Primary Key of a 
Function is embedded as a nonidentifying attribute of Real Estate.4

Capital Equipment (i.e., a car) has Features. A Feature describes a car. A Fea-
ture, therefore, is subordinate to Capital Equipment. The Primary Key of a 
Feature is embedded as a nonidentifying attribute of Capital Equipment.

The relation between two entities may not be obvious when defined in terms of 
a superior and subordinate entity. The superior/subordinate relation between two 
entities may be more clearly defined in terms of Cardinality.
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Cardinality

Cardinality refers to quantity, or the number of instances of something (i.e., 
marbles in a bag). In a Logical Data Model, Cardinality refers to the number of 
entity instances involved in a relation. Obviously, in many relations, the number of 
entity instances can change from one moment to the next. A Logical Data Model, 
therefore, makes no attempt to capture moment-by-moment the number of entity 
instances. Instead, a Logical Data Model categorizes the number of entity instances 
into four groups, which are show in Figure 5.5.

A relation is notated as a line that connects two, and only two, entities. The line 
represents the relation, and the entities at each end of the line are the only entities 
included in the relation. The Cardinality of each entity is notated by placing a Car-
dinality symbol at the end of the relation line. A Cardinality symbol applies to the 
entity it touches tangentially. Examples of relation lines with Cardinality symbols 
are shown in Figure 5.6.

Cardinality may help define the superior/subordinate relation between entities. 
The permutations of Cardinality and the inferences that can be drawn are shown 
in Table 5.3.

Cardinality refers to the number of instances of an entity included in a relation 
between two entities. Cardinality is categorized into the following four groups.

One
One or Zero
One or Many
One, Zero, or Many

If an entity has a higher Cardinality than its related entity, then that higher 
Cardinality entity is the subordinate entity. The lower Cardinality entity is the 

n
n
n
n

One 

One or Zero 

One or Many 

One, Zero, or Many

Figure 5.5  Cardinality symbols.
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One One to 

One to One or Zero 

One to One or Many 

One to One, Zero or Many 

One or Zero to One or Zero 

One or Zero to One or Many 

One or Zero to One, Zero, or Many

One or Many to One or Many 

One or Many to One, Zero, or Many

One, Zero, or Many One, Zero, or Manyto 

Figure 5.6  Cardinality permutations.

Table 5.3  Cardinality and Superior/Subordinate Relations
Entity A Entity B Superior Entity Subordinate Entity

One One n/a n/a

One One or Zero n/a n/a

One One or Many A B

One One, Zero, or Many A B

One or Zero One or Many A B

One or Zero One, Zero, or Many A B

One or Many One, Zero, or Many n/a n/a

One, Zero, or Many One, Zero, or Many n/a n/a
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superior entity. Many-to-Many and One-to-One Cardinalities do not indicate a 
superior/subordinate relation. Rather, Many-to-Many Cardinalities indicate the 
need for an associative table (see Physical Data Model below). And, One-to-One 
Cardinalities indicate a strong positive correlation, which may mean that the two 
entities joined by a One-to-One relation may actually be a single entity. So, Car-
dinality cannot be the sole source of information regarding superior/subordinate 
relations, but may cast the tie-breaking vote when you’re not quite sure which entity 
is superior and which is subordinate.

Super Types and Subtypes

Entities that are extremely similar, but not identical, can be grouped into a Super 
Type (Figure 5.7). An Entity with a distinct set of mutually exclusive variations can 
cast those variations as Subtypes of itself, making itself the Super Type. Either path 
toward a Super Type/Subtype set of entities resolves confusion about similar entities, 
so they can be included in a Logical Data Model simultaneously as one collective 
entity (Super Type) and individual entities (Subtypes).

Putting It All Together

Having identified the pieces (Primary Key, Primary Key/Foreign Key Relation, 
Attribute, Cardinality, and Super Type/Subtype) of a Logical Data Model, we are 
ready to put the pieces together. For the purpose of this discussion of Logical Data 
Modeling, we will use the Shipping subject area from the Conceptual Data Model 
in Figure 5.4. A Logical Data Model expands one subject area, exposing all it enti-
ties and relations, e.g., the list of entities shown in Table 5.4.

Notice that all attributes dealing with Date/Time and Price are listed as Event 
Data. This is showing that these are values derived at the moment of an enterprise 
event and not modeled as entities.5

Truck

Vehicle

Train
Plane

Figure 5.7  Vehicle Super Type.
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This expansion of the Shipping subject area yielded a set of Business Entities, 
which are listed in Table 5.5. If the entities yielded by expanding a subject area do 
not have a natural home in the Conceptual Data Model, that probably means the 
Conceptual Data Model is incomplete or incorrect; either way, the Conceptual 
Data Model must be updated to provide a natural home for all entities. If the enti-
ties yielded by expanding a subject area do have a natural home in the Conceptual 
Data Model, then probably the Conceptual Data Model is complete and correct.

Finally, the Business Processes (Warehousing and Transportation) and Business 
Entities (Product, Warehouse, Vehicle, Destination, Storage Slot, and Storage Pal-
let) are placed into a Logical Data Model of the Shipping subject area using Logi-
cal Data Modeling techniques (Primary Key, Primary Key/Foreign Key Relation, 

Table 5.4  Shipping
Shipping — Business Process

Transportation Business Process

Product Business Entity

Warehouse Business Entity

Vehicle Business Entity

Destination Business Entity

Departure Date/Time Event Data

Arrival Date/Time Event Data

Warehousing Business Process

Product Business Entity

Warehouse Business Entity

Storage Slot Business Entity

Storage Pallet Business Entity

Storage Date/Time Event Data

Table 5.5  Business Entities
Business Entities Subject Area

Product Product

Warehouse Shipping

Vehicle Shipping

Destination Shipping

Storage Slot Shipping

Storage Pallet Shipping
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Attribute, Cardinality, and Super Type/Subtype). A possible combined Logical 
Data Model of the Shipping subject area is shown in Figure 5.8.

A rule of thumb for Logical Data Models is that they don’t cross relation lines. 
If a Logical Data Model does cross relation lines, it probably means one of two 
things:

The Conceptual Data Model subject area on which the Logical Data Model 
is based includes too many entities.
The entities within the Logical Data Model are defined incorrectly.

n

n

Transportation

Product
Warehouse
Vehicle
Destination
Departure Date/Time
Arrival Date/Time

Product

Barcode
Description
Manufacturer
Supplier
Price

Warehouse

Building Number
Address
Dimensions
Capacity

Vehicle

Vehicle Number
Vehicle Type

Destination

Destination Number
Address
Customer Number

Storage Slot

Warehouse
Slot Number
Slot Location
Slot Dimensions

Storage Pallet

Warehouse
Pallet Number
Pallet Dimensions

Warehousing

Product
Warehouse
Storage Slot
Storage Pallet
Storage Date/Time

Airplane

Vehicle Number
Vehicle Type
Vehicle Description
Airline Service
Airport

Train

Vehicle Number
Vehicle Type
Vehicle Description
Train Service
Train Station

Truck

Vehicle Number
Vehicle Type
Vehicle Description
CDL Certification Required

Figure 5.8  Shipping Logical Data Model.
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While this rule of thumb may seem a bit constraining or arbitrary, Logical Data 
Models without crossed lines coincidentally tend to avoid confusion about the data 
and relations within a data warehouse.

The final installment of a Logical Data Model is a Logical Data Model Justifica-
tion, which is a text explanation by the data modeler of the entities and relations in 
a Logical Data Model. This is the data modeler’s opportunity to document reasons 
for including and excluding entities and relations as well as provide sample data. 
A Logical Data Model should address every entity and relation in a Logical Data 
Model. For example:

Destination (entity): This is the recipient of a Transportation. Typically, a 
Destination is a customer. The address must be included, otherwise, we don’t 
know the physical location to which product was transported.
Destination (one) to Transportation (many): A Destination may have never 
received a Transportation (i.e., a Product). Alternatively, a Destination may 
have received many Transportations (i.e., Products). A Transportation can be 
addressed to one, and only one, Destination.

The source system analysis should be complete before beginning the Logical 
Data Model. Information from the analysis feeds directly into the Logical Data 
Model. Specifically, the business subject areas discovered in the analysis are can-
didates for subject areas in the Conceptual Data Model, which become subject 
areas in the Logical Data Model. The Logical Data Model may reveal questions 
and gaps in the information provided by the analysis. That is normal. Rarely does 
a source system analysis provide all the required information. At that point, the 
ability to know information is missing is valuable on its own. When the entire 
Logical Data Model is finished, it should present in symbols and text the enterprise 
as explained in the analysis. A Logical Data Model should be reviewed against the 
analysis, which yielded the Conceptual Data Model on which the Logical Data 
Model is based. Discrepancies between the analysis and Logical Data Model should 
be resolved at this point.

Finally, Logical Data Modeling is an inexact science, or an art form, or both. 
From a single source system analysis, multiple Logical Data Models may be cre-
ated and all of them equally correct. So, there is no single right answer. In Logical 
Data Modeling, there are many right answers. The best approach to Logical Data 
Modeling, therefore, is practice. Like other skills, don’t wait until you need the skill 
to develop the skill. Develop the skill, and continue developing the skill, of Logical 
Data Modeling. That way, when you need it you have it.

n

n
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Physical Data Model
A Physical Data Model is a representation of the data structures that will hold the 
data in a data warehouse, and is directly based on a Logical Data Model. The struc-
tures of a Physical Data Model are databases, tables, and views. A Physical Data 
Model indicates the physical data types of all fields, and continues the display of 
relations that originally appeared in the prerequisite Logical Data Model.

Unfortunately, the notations of a Physical Data Model are very similar to the 
notations of a Logical Data Model. This similarity tends to cause confusion. The 
databases, tables, and views of a Physical Data Model are distinctly different from 
the entities and relations of a Logical Data Model. Whereas the entities and rela-
tions of a Logical Data Model represent an enterprise, the databases, tables, and 
views of a Physical Data Model represent physical data structures. The difference 
is similar to comparing the real estate listing for a house and the blueprint of the 
same house. Both provide some similar information, but with different meanings. 
Fortunately, no one confuses a real estate listing for a blueprint.

A major difference between Logical and Physical Data Models is the incorpo-
ration of the Data Warehouse Philosophy. Data elements that facilitate the Data 
Warehouse Philosophy are included in a Physical Data Model. Subject Orientation 
is the only part of the Data Warehouse Philosophy that is included in a Logical 
Data Model, and that happens because a Logical Data Model is based directly on 
a subject area of the Conceptual Data Model. A review of the elements of the Data 
Warehouse Philosophy will help incorporate the remaining elements of the Data 
Warehouse Philosophy into the physical data structures of a data warehouse.

Subject Orientation: The subject orientation was established by the Con-
ceptual Data Model and perpetuated by the Logical Data Model. The Physi-
cal Data Model continues the subject orientation of the data warehouse by 
instantiating one page of the Logical Data Model at a time. The creation of 
the Physical Data Model does not take three entities and relations from each 
page of the Logical Data Model to form a single page of the Physical Data 
Model. Rather, a page of the Physical Data Model addresses the entities and 
relations in a page of the Logical Data Model.
Data Integration: Thus far, the Conceptual and Logical Data Models have 
given no thought to the source of any data. The entire enterprise is considered 
as a whole. The data from the enterprise as displayed in a data warehouse, 
therefore, should be homogenous, as though the entire enterprise built its 
data the same way.

Form: All the data elements of similar function will look the same, such 
as,

Phone number
Employee IDs
Currency (i.e., money)

n

n

−

n
n
n
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Dates
Times
Timestamps
Building IDs
Product IDs

		  And, will all look the same, regardless of their origin in the enterprise.
Function: Data elements with similar functions will function the same 
way.

Binary data elements are a common source of disconnect. Applica-
tions in the enterprise may use the forms Y/N, Yes/No, 1/0, Y/null, 
Yes/null. A data warehouse will resolve all such fields to one form, 
possibly (but, not necessarily) Y/N.
Redundant data elements are another common source of disconnect. 
Applications across the enterprise may communicate the same func-
tion different ways. The identifier for a product could be: Prod_ID 
(Integer), Product_ID (Long Integer), UPC (Long Integer), etc. In 
the Physical Data Model, all of these disparate data elements will 
be resolved and consolidated into a single data element with a single 
data type.

Grain: Enterprise data encounters granularity primarily in two ways: 
measurement and hierarchy.

The measurement applied to similar data elements will be homog-
enous. For example, liquids will be measured by the liter, widgets 
will be counted by units, and gases will be measured by pounds per 
square inch (PSI).
The hierarchy applied to similar data elements will be homogenous. 
In this sense, hierarchy includes corporate, personnel, product, and 
calendar hierarchies. For example:

Throughput figures for a corporate region cannot be compared to 
throughput figures for a corporate division.
Total hours worked for a single facility cannot be compared to 
the total hours worked for the entire corporation.
The manufacturing figures for a Type A product cannot be com-
pared to the manufacturing figures for a Class 32B product.
Sales totals for a calendar week cannot be compared to sales totals 
for a calendar quarter.

For the comparison of measurements within a data warehouse to 
work correctly, they must be presented at the same hierarchical level 
of detail.

Data Integration is most necessary, and most difficult, in merged (or, soon 
to be merged) enterprises. The possible permutations of data form, function, 
and grain expand geometrically when organizations merge. In that situa-
tion, a data warehouse adds significant value to the enterprise by resolving, 
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reconciling, and integrating multiple heterogeneous data elements into a 
homogenous statement of the enterprise.
Nonvolatility: The Conceptual and Logical Data Models present the enter-
prise as a single slice or set of slices. The enterprise is not in motion and events 
happen only once. The Physical Data Model must be prepared for the enter-
prise to be in motion. Events happen many times in a single second/minute/
hour/day. A Physical Data Model must be constructed so that each instance 
of an Event can be distinctly identified from all the other Event instances, 
without any randomness (i.e., the data warehouse can find the same distinct 
Event instance every time it looks for that Event, never finding a different 
Event instance). Whereas operational applications are volatile in the sense 
that they retain only the instances of a data element needed to perform its 
functions (discarding the rest), a data warehouse is nonvolatile in the sense 
that it retains all instances of a data element.6

One Version of the Truth: A Physical Data Model has only one place for 
every entity, relation, and measurement in the data warehouse. A Physical 
Data Model does not allow a second opinion of the same data element. In 
the case of modified data elements (e.g., Price, Discount Price, Actual Price, 
etc.), each is considered a different data element. Logically, they answer dif-
ferent questions. The Logical Data Model should have allocated a one-to-one 
relationship between each individual data question and each individual data 
entity or relation. The Physical Data Model carries this forward to store the 
answer to one question, and only one question, in each data element.
Time Variant: Another aspect of the enterprise in motion is Time. Data 
Warehouse Philosophy intentionally and explicitly includes Time as a method 
to express an enterprise in motion. The Conceptual and Logical Data Mod-
els, which focus on subject areas, entities, and relations do not focus on the 
mechanics of Type 1, Type 2, and Type 3 time-variant Dimensions. Regard-
less, Time was always there, waiting to be included. The Physical Data Model 
is the point at which Time must become visible in a data warehouse. Time is a 
measurement and all the preceding elements of Data Warehouse Philosophy 
must be applied to Time.

Form: Time must be expressed in the same form throughout the data 
warehouse.
Function: Time must be applied to similar data elements the same way 
(absolute, relative, etc.) throughout the data warehouse.
Grain: Time must be expressed to similar data elements at the same level 
of precision throughout the data warehouse.
Nonvolatility: A Time measurement applied to a data element must be 
retained despite the presence of a subsequent Time measurement applied 
to the same data element.
One Version of the Truth: A Time measurement applied to a data element 
is the only Time measurement applied to that data element. Nowhere in 
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the data warehouse can be found an alternative Time measurement for an 
instance of a data element.

The purpose of Time Variance in a data warehouse is to allow a data ware-
house customer to identify an instance of an entity or an instance of an event 
at a moment in time in the past. Time was the hidden attribute of every entity 
and event. A data warehouse increases the granularity of its data by adding 
the attribute Time and its hierarchy to every entity and event. The attribute 
Time allows a data warehouse customer to identify the time-variant instance 
of every entity and event in a data warehouse, which allows that data ware-
house customer to see the enterprise as of a moment in time in the past.
Time as an attribute can be added to entities and events through three pri-
mary methods: Point and Range, Range and Point, and Time Key (a sur-
rogate key).7

Point and Range: In this method, a point-in-time data element is included 
in a row. Then that row can be found by searching on a specific point in 
time. That row and others from the same period can be found by search-
ing on a Range (i.e., where point-in-time is between Range Begin and 
Range End). A point-in-time data element works well with event data 
because an event occurs at a point in time. A point-in-time data element 
does not work well with an entity because an entity can exist over a long 
period of time, which would require many points-in-time data elements 
to represent that Range.
Range and Point: In this method, a Range data element (two inclusive 
time elements: Begin Time and End Time) is included in a row. Then, 
that row can be found by searching on any time within that Range (i.e., 
where Time Value is between Begin Time and End Time). A Range data 
element works well with entity data because entities exist over a period of 
time. A Range data element does not work well with Event data because 
an Event occurs at a single moment, whereas a Range encompasses many 
moments.
Time Key: In this method, the entity Time is recognized and captured 
in its own table. Each row is assigned a sequential Time Key. That Time 
Key is then used in the Point and Range and Range and Point methods 
listed above. The advantage of this approach is that it promotes the use of 
corporate, fiscal, government, and foreign calendars within a data ware-
house. The Time Key can be based on the number of seconds in a year 
(31,536,000) or the number of minutes in a year (525,600), depending 
on the required level of detail and precision in the Time dimension. Each 
second of the year can have its own Time Key. The first second of the 
year has the Time Key 1 and the last second of the year has the Time Key 
31,536,000. By appending the year to the front of the Time Key, first 
minute of the year 2007 (2,007,000,001) can be distinguished from the 
first minute of the year 2006 (2,006,000,001).
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Time is inexact and imprecise. No one can name the exact micro nano 
second that something happened. So, a data warehouse must agree on a 
lowest granularity of time. That lowest level of granularity should be the 
level of granularity used in the methods listed above.

Long-Term Investment: A data warehouse is an enterprise asset. The pur-
pose of any enterprise asset is to generate a ROI. An asset has two methods by 
which to increase its ROI. The first method is to increase its Return. A data 
warehouse increases its Return by improving enterprise decisions, yielding 
information as a competitive advantage. The second method is to reduce its 
Investment, which includes the Cost of Ownership. A data warehouse can 
increase its Cost of Ownership by inflexibility. If every time the enterprise 
changes its landscape, a data warehouse must modify its representation of the 
enterprise (at a cost of thousands of dollars each time), that data warehouse 
reduces its own ROI and viability as an enterprise asset. A Physical Data 
Model should yield a data warehouse flexible enough to express the enterprise 
in all its permutations. The primary method by which a Physical Data Model 
contributes to this flexibility is by normalizing hidden attributes out of an 
entity. For example, an enterprise uses the entity Truck to deliver product. 
Will the enterprise always use Truck to deliver product? In the future, the 
enterprise could use Car to deliver product or Third-Party Delivery or Partner 
Retail Store (allowing customers to pick up the product themselves). Product 
can get to the customer by any number of means. The enterprise can use one, 
none, or all of them. A data warehouse can be prepared for such changes 
by normalizing out the Type, Purpose, and Role from the entity Truck.8 
Normalized this way, the Truck entity becomes a Capital Equipment with 
the attributes Type = Truck, Purpose = Transportation, and Role = Deliver. 
Taken to the next level, the Capital Equipment (Type = Truck, Purpose = 
Transportation, and Role = Deliver) can be further abstracted.

Type = Truck could be abstracted further to Type = Vehicle and Subtype 
= Truck.
Role = Deliver should be removed from the Capital Equipment entity 
altogether and moved over to the event which captures the delivery.9 The 
reason for this move is that the Role of a Capital Equipment can be dif-
ferent in every event without changing the Capital Equipment. In one 
event, it could Role = Deliver and in another it could Role = Paperweight, 
with no modification to the Capital Equipment.
Purpose = Transportation should remain in the Capital Equipment entity. 
Purpose expresses the intended use of a piece of equipment, whereas Role 
expresses the actual use of that equipment. The intended purpose for a 
piece of equipment is a logical attribute of that equipment, regardless of 
what actually happens. The Purpose of Capital Equipment can change 
from Transportation to Training. Such a change would reflect on the 
Capital Equipment, but not on the event two weeks ago when that truck 
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was used to deliver boxes of product to a customer. Purpose, therefore, is 
a logical attribute of the entity and not the event.
This abstraction of Truck is achieved by going up one hierarchical level 
above Truck and then looking hierarchically down at Truck to find the 
questions it answers. Based on this example, an entity can have a Type, 
Subtype, and Purpose, which can be normalized in the Physical Data 
Model, and that entity can have a Role that can be normalized into its 
events.
The goal is flexibility. The process of normalizing out the hidden attributes 
of entities increases the flexibility of a data warehouse, which reduces its 
Cost of Ownership and increases its ROI and viability as an asset and 
long-term investment.

Having considered the infusion of Data Warehouse Philosophy (Subject Orien-
tation, Data Integration, Nonvolatility, Time Variance, One Version of the Truth, 
and Long-Term Investment) into the information provided by the Logical Data 
Model, a data warehouse designer is ready to begin creating a Physical Data Model. 
The question is which kind? Data warehousing has yielded three primary varieties 
of data warehouse: Dimensional Data Model, Third Normal Form, and Recursive 
Data Model.

Dimensional Data Model

A Dimensional Data Model casts data into two groups: Facts and Dimensions. 
Facts are also known as Events or Transactions. A Fact is something that happened. 
For example, a Fact can be a sales transaction, a manufacture event, or a published 
written statement. Dimensions are data that qualify or describe enterprise entities 
involved in a Fact.10 A dimension might include such attributes of an entity as Color, 
Brand, Date Placed in Service, Department, etc. When a Fact row is joined with 
such a Dimension row, we can answer such questions as: “What was the color of the 
thing involved in the event?” or “To which Department do we apply this event?” 
In that way, a Dimensional Data Model captures an event in a Fact table, and the 
attributes of entities involved in an event are captured in Dimension tables.

A Fact table incorporates the entities that were identified in the Logical Data 
Model. Typically, those entities include:

Time: An event happens at a moment in time
Place: An event happens in a place or space
Person: People are usually involved in events
Thing: Events are often focused on or around an object
Equipment: Participants in an event often use a tool or equipment
How: The action that was performed
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Why: Sometimes, but not always, a reason for the action is provided

This arrangement of a Fact table surrounded by Dimension tables has become 
known as a Star Schema because it looks like a star, which is shown in Figure 5.9. 
At the center is a Fact table surrounded by Dimension tables.

A Fact table joins to the surrounding Dimension tables using Primary Key/For-
eign Key relations.11 The Primary Key of a single row from a Dimension Row is 
embedded into a row in a Fact table. That way, a Fact row will join to one and only 
one row within each Dimension table. The relational integrity between a Fact table 
and its associated Dimension tables must be carefully guarded.

If a Fact row joins to multiple Dimension rows for a Primary Key/Foreign Key 
relation, the Fact rows returned by a query will multiply by a factor equaling the 
number of Dimension rows in the Primary Key/Foreign Key relation.

n

n

Transaction Event

Time
Thing
Place
Person
Equipment

Equipment Dimension
Equipment
Equipment Name
Equipment Description
Equipment Purpose

Place Dimension
Place
Place Name
Place Address
Place Purpose

�ing Dimension
Thing
Thing Name
Thing Weight
Thing Height

Person Dimension
Person
Person Name
Person Class
Person Type

Time Dimension
Date
Time
Week
Month
Year

Figure 5.9  Star schema.
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If a Fact row joins to zero Dimension rows for a Primary Key/Foreign Key 
relation, a query will return no rows, which include that Primary Key/For-
eign Key relation.

The Primary Key/Foreign Key joining between a Fact table and a Dimension 
table must occur at the same hierarchical grain. For instance, if the Fact table has a 
Product Key and the primary key of the Product Dimension is a Department Key, 
they cannot join. They can only join if the foreign key in the Fact table matches 
the hierarchical grain of the primary key of the Dimension table. If the Fact table 
has a Product Key and the primary key of the Product Dimension is also a Product 
Key, they can join.

The hierarchical grain at which a Dimension table joins to a Fact table is the 
lowest relevant level of that Dimension’s hierarchy. No Structured Query Lan-
guage (SQL) can summarize lower than the hierarchical grain of a Fact table. For 
instance, if the Fact table has a Product Key and the Dimension table has a Product 
Key and a Subproduct Key, the Dimension’s Subproduct Key will never be used. 
So, the lowest relevant hierarchical grain of a Dimension table is the hierarchical 
level at which it joins to a Fact table.

Ideally, a Dimension table contains in each row the entire hierarchy for a given 
Primary Key. For example, a Date Dimension row for the date August 27, 1993 
should include every hierarchical level (e.g., Week, Month, Quarter, Year, etc.) for 
that Date. A Facility Dimension row for Warehouse #253 should include every 
hierarchical level (e.g., Warehouse, Warehouse Group, Warehouse Class, Ware-
house Type, Warehouse Region, Warehouse District, Warehouse Division, etc.) 
for that warehouse. By including all hierarchical levels in a single row, a data ware-
house customer can summarize data at the Week and Warehouse Region, or Month 
and Warehouse Type, or Quarter and Warehouse Group without adding any new 
tables to the SQL. Once a Fact table can join to a Warehouse Dimension and a 
Date Dimension table, all the hierarchical information necessary to summarize at 
a higher level is already present.

Dimension tables are very flexible. Attributes, hierarchies, and hierarchical lev-
els can be added, removed, or changed by simply modifying the columns in a 
Dimension table. Rather than update five normalized tables, a single update to 
a single table can add a new hierarchy and the Dimension joins to that hierar-
chy. Immediately, the new hierarchy is available to any Fact table joined with that 
Dimension table.

Join Strategies

The Primary Key/Foreign Key joining between a Fact table and a Dimension table 
can occur by various permutations of Source Native Key, Surrogate Key, and Sur-
rogate Key Version. A Source Native Key is the identifier for an entity provided by 

n
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a source system (i.e., the enterprise). A Surrogate Key is a key generated by and for 
a data warehouse, and a Surrogate Version Key is a second sequential key, which 
distinguishes the individual instances of an entity. A Version Key is only applicable 
when all instances of an entity share the same Surrogate Key.
Source Native Key—The simplest method by which a Fact table can join with a 
Dimension table is by using the Source Native Key (Figure 5.10), in this example 
labeled “Thing.” Apparently, the enterprise has two unique identifiers: Chair and 
Table. As long as the Dimension table has only one row for the entity labeled Chair 
and only one row for the entity labeled Table, this method will work. This achieves 
only a Type 1 time-variant relation.12 The SQL WHERE clause joins only on the 
Thing field:

		  Fact.Thing = Dimension.Thing

Source Native Key with Dates—Time Variance can be added to the relation 
between the Fact and Dimension tables. In this example, each instance of Chair 
and Table are captured with their Begin and End Dates. The join between the Fact 
and Dimension tables must include the Source Native Key and Dates (Figure 5.11). 
This achieves only a Type 2 time-variant relation. The relational integrity of this 
approach includes the Date fields.

The Dimension table can have only one instance of Chair and Table on a single 
Date. If the Dimension table has two or more instances of Chair or Table on a 
single Date, the results from these Dimensional tables will be multiplied by a factor 
of the number of Dimension rows on a single Date.

A query can select a set of Fact rows across a range of dates. The Fact rows relate 
to Dimension rows on Source Native Key and dates. The SQL WHERE clause 
joins on the Thing and Date fields:

EquipmentDateThingPlace
March 13, 2007
March 15, 2007

April 2, 2007
April 4, 2007

Chair
Chair
Table
Table

Seattle, WA
St Paul, MN
Tampa, FL
Reno, NV

Fred
Susan

Joe
Alice

End DateBegin DateDescriptionThing

Fact Table

Dimension Table

Person
None

Repair Kit
Finishing Kit

None

Chair
Table

Mahogany Chair
Victorian Table

May 1, 2002
August 27, 1993

December 31, 9999
May 1, 2007

Figure 5.10  Source Native Key.
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		  Fact.Thing = Dimension.Thing
		  And Fact.Date between Dimension.Begin Date and Dimension.End Date

Data Warehouse Dates—A Dimension table can include multiple Date fields with 
distinct meanings. The use of multiple Date fields in a data warehouse is different 
from the multiple fields in an operational database. Typically, in an operational 
database, one Date field identifies when the data in a row became effective and 
another field identifies when the data in a row ceased being effective. These dates 
are basically operational metadata. A data warehouse will typically include addi-
tional metadata about each row. The additional Date metadata may include:

The date or timestamp when the data in a row was extracted from a source 
system
The date or timestamp when the data in a row was transformed and ready to 
load
The date or timestamp when the data in a row was loaded into the data 
warehouse
The date or timestamp on which the data warehouse considers the data in a 
row to be relevant to the enterprise, i.e., Begin Date
The date or timestamp on which the data warehouse considers the data in a 
row to no longer be relevant to the enterprise, i.e., End Date.

Notice that none of these Date fields are the Effective and Not Effective opera-
tional metadata Date fields. In the context of a data warehouse, the Effective and 
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n

n

n

n

Fact Table

Dimension Table

EquipmentDateThingPlace
March 13, 2007
March 15, 2007

April 2, 2007
April 4, 2007

Chair
Chair
Table
Table

Seattle, WA
St Paul, MN
Tampa, FL
Reno, NV

Fred
Susan

Joe
Alice

Person
None

Repair Kit
Finishing Kit

None

End DateBegin DateDescriptionThing
Chair
Chair
Chair

Table
Table
Table

Mahogany Chair
Pine Chair
Oak Chair

Victorian Table
Icelandic Table

Round Table

August 27, 1993
September 2, 2001

April 16, 2007

September 5, 2001
April 15, 2007
May 1, 2007

May 1, 2002
May 13, 2005

March 15, 2007

May 12, 2007
March 14, 2007

December 31, 9999

Figure 5.11  Source Native Key with Dates.
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Not Effective operational metadata Date fields are attributes of a row of data; they 
are not metadata of the data warehouse. In this discussion of Dates in a data ware-
house, the Begin Date and End Date fields are not the operational Effective and 
Not Effective Date fields. Rather, the Begin Date and End Date fields are the dates 
within which a row of data is/was relevant to the enterprise and, therefore, the data 
warehouse.

The operational Effective and Not Effective Date fields are relevant to the enter-
prise. So, why are they not used as the Relevant and Not Relevant Date fields in 
a data warehouse? The answer is that the operational Effective and Not Effective 
Date fields are not time variant (that sounds like a contradiction—Date fields are 
not time variant) and are volatile, whereas a data warehouse is time variant and 
nonvolatile. For example:

Restating the Past: An operational system can adjust dates in the past to 
document when something happened. These dates are retroactively relevant 
to the enterprise; however, they are not a true representation of the data values 
that were present within the enterprise when information was gathered and 
decisions made in the past. If a data warehouse wanted to represent restated 
data values from the past, they should include a date or timestamp showing 
when the retroactive restated data value was available.

Operational System: Fred was the manager of store #1024 from January 
1 through March 31.
Data Warehouse:

As of January, the data warehouse observed that Fred is the manager 
of store #1024; the Begin Date is January 1.
As of March, the data warehouse observed that Fred is no longer the 
manager of store #1024; the End Date is March 31.
As of April, the data warehouse observed that Alice is the manager of 
store #1024; the Begin Date is April 1.

Operational System: On April 14, an operational application adjusted 
the end of Fred’s term as manager of store #1024 to March 29 for payroll 
adjustment reasons.
Data Warehouse: As of April 14, Alice is still the manager of store #1024, 
and the Begin Date is still April 1.

Restating the Future: Operational applications plan for the future. The Fact 
tables report events that happened, which implicitly indicates transactions 
or events that have occurred in the past (not the future). Dimension tables, 
which join with Fact tables, will, therefore, only join on Dimension data val-
ues that correspond to the time variance of the Fact tables that indicate events 
that occurred in the past. Future events, therefore, are not relevant events to a 
data warehouse. Future plans, however, can be relevant to a data warehouse. 
At a moment in the past, a future event (e.g., fire extinguisher inspection, 
light bulb replacement, employee performance review, etc.) may be planned. 
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In that scenario, the event in the past is the planning of a future event. That 
planned future event may be updated multiple times between “now” and the 
planned future event. Each of those plan updates is a past event.

Operational System: As of April 20, an operational application plans to 
make George the manager of store #1024 beginning June 4.
Data Warehouse: As of April 20, Alice is still the manager of store #1024, 
and the Begin Date is still April 1.

Dates as Attributes: Operational entities (e.g., software license agreements, 
planned inspection dates, employee anniversary dates, etc.) are relevant to the 
enterprise as entity attributes. Date attributes, however, do not describe when 
something happened in the enterprise such that it will be recorded in a data 
warehouse. Rather, the appearance or removal of an attribute date is an event, 
which may be recorded in a data warehouse as either an event in a Fact table 
or an update to an entity in a Dimension table.

Operational System: As of March 11, the lease agreement for store #1024 
extends from January 1 through June 30.
Data Warehouse: As of March 11

The Lease Effective Date is January 1.
The Lease Not Effective Date is June 30.
The Begin Date is March 11.

Operational System: As of May 24, the lease agreement for store #1024 
extends from July 1 through December 31.
Data Warehouse: As of May 24

The Lease Effective Date is July 1.
The Lease Not Effective Date is December 31.
The Begin Date is May 24.
The End Date of the previous Lease row is May 23.

Data warehouse Begin and End Timestamp or Date fields work best as inclusive 
date fields. Inclusive dates mean the Begin Date is the first date on which a row is 
relevant, and the End Date is the last date on which a row is relevant. This method 
facilitates the use of a SQL BETWEEN statement when selecting relevant rows:

		  Where Event_Date between Begin_Date and End_Date

The ANSI standard for a BETWEEN statement stipulates the rows selected 
are inclusive of the data values in the BETWEEN statement. Therefore, inclusive 
Begin and End Date fields fit the ANSI standard.

The Source Native Key method works well when the uniqueness of the keys is 
enforced by the source system, which implicitly means the data warehouse extracts 
its dimension data from only one source system. If, however, a data warehouse 
extracts its dimension data from multiple source systems, the Source Native Key 
method fails because it cannot integrate the dimension data from multiple dispa-
rate source systems. When a data warehouse extracts dimension data from disparate 
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source systems, the disparate Source Native Keys must be integrated into a single 
set of keys: Surrogate Keys.
Surrogate Key—In a data warehouse that must represent disparate source systems, 
Surrogate Keys are used to combine and conform entity keys that are not coordi-
nated in the enterprise (Figure 5.12). If so, the Fact table can join the Dimension 
table using the generated Surrogate Key. This achieves only a Type 1 time-variant 
relation. This approach requires the Dimension table have only one row for each 
Surrogate Key, otherwise, the results from these tables will be multiplied by a factor 
of the number of rows the Dimension table has for a duplicated Surrogate Key. The 
SQL WHERE clause joins on the Thing Key field:

		  Fact.Thing Key = Dimension.Thing Key

Surrogate Key with Source Native Key—When the Surrogate Key in the Dimen-
sion table identifies the entity, but not the instance of the entity, the Source Native 
Key can be used to identify an individual instance of an entity (Figure 5.13). This 
method achieves a Type 2 time-variant relation without actually manipulating the 
Date fields. In this example:

The Surrogate Key 123 identifies the entity Chair, but the Source Native Key 
(Thing ID) must be included to identify the individual instance of Chair.
The Surrogate Key 234 identifies the entity Table, but the Source Native Key 
(Thing ID) must be included to identify the individual instance of Table.

The SQL WHERE clause joins on the Thing Key and Thing ID fields:

		  Fact.Thing Key = Dimension.Thing Key
		  And Fact.Thing ID = Dimension.Thing ID

Surrogate Key with Surrogate Key Version: Type 2 Join—When the Surrogate 
Key identifies the entity, but not the individual instance of an entity, a Surrogate 

n

n

Thing Key Date Equipment
March 13, 2007
March 15, 2007

April 2, 2007
April 4, 2007

Seattle, WA
St Paul, MN
Tampa, FL
Reno, NV

Fact Table

Dimension Table

Fred
Susan

Joe
Alice

123
123
234
234

123
234

Chair
Table

Mahogany Chair
Victorian Table

May 1, 2002
August 27, 1993

December 31, 9999
May 1, 2007

End DateBegin DateDescriptionThingThing Key

None
Repair Kit

Finishing Kit
None

Person Place

Figure 5.12  Surrogate Key.
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Key Version can be added (Figure 5.14). The combination of a Surrogate Key and 
a Surrogate Key Version creates a compound key relation (i.e., a Primary Key/For-
eign Key relation based on multiple fields) between the Fact and Dimension tables. 
This achieves a Type 2 time-variant relation. The SQL WHERE clause joins on the 
Thing Key and Thing Key Version fields:

		  Fact.Thing Key = Dimension.Thing Key
		  And Fact.Thing Key Version = Dimension.Thing Key Version

Surrogate Key with Surrogate Key Version: Type 1 Join—Taking the same Fact 
and Dimension tables, a Type 1 time-variant relation can be achieved if the most 

 Person Place Thing Key Thing Key Version Date Equipment
 Fred Seattle, WA 123 2 March 13, 2007 None
 Susan St Paul, MN 123 3 March 15, 2007 Repair Kit
 Joe Tampa, FL 234 2 April 2, 2007 Finishing Kit
 Alice Reno, NV 234 2 April 4, 2007 None

 Thing Key Thing Key Version Thing ID Description Begin Date End Date
 123 1 Chr_A23J Mahogany Chair May 1, 2002 May 12, 2005
 123 2 Chr_A23J Pine Chair May 13, 2005 March 14, 2007
 123 3 Chr_A23J Oak Chair March 15, 2007 December 31, 9999
 123 0 Chr_A23J Oak Chair

 234 1 Tbl_89RE Victorian Table August 27, 1993 September 5, 2001
 234 2 Tbl_89RE Icelandic Table September 2, 2001 April 15, 2007
 234 3 Tbl_89RE Round Table April 16, 2007 May 1, 2007
 234 0 Tbl_89RE Round Table

Fact Table

Dimension Table

Figure 5.14  Surrogate Key with Surrogate Key Version: Type 2 join.

 Person Place Thing Key Thing ID Date Equipment
 Fred Seattle, WA 123 Chr_B42Z March 13, 2007 None
 Susan St Paul, MN 123 Chr_B35X March 15, 2007 Repair Kit
 Joe Tampa, FL 234 Tbl_74CS April 2, 2007 Finishing Kit
 Alice Reno, NV 234 Tbl_74CS April 4, 2007 None

 Thing Key Thing ID Description Begin Date End Date
 123 Chr_A23J Mahogany Chair May 1, 2002 May 12, 2005
 123 Chr_B42Z Pine Chair May 13, 2005 March 14, 2007
 123 Chr_B35X Oak Chair March 15, 2007 December 31, 9999

 234 Tbl_89RE Victorian Table August 27, 1993 September 5, 2001
 234 Tbl_74CS Icelandic Table September 2, 2001 April 15, 2007
 234 Tbl_35XX Round Table April 16, 2007 May 1, 2007

Fact Table

Dimension Table

Figure 5.13  Surrogate Key with Source Native Key.
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recent record in the Dimension table is also written with Thing Key Version = 0 
(Figure 5.15). Notice the rows with Thing Key Version = 0 are identical to the rows 
with Thing Key Version = 3, except for the Begin Date and End Date fields. That 
is because the third version is the most recent. The Begin Date and End Date fields 
are irrelevant in the Thing Key Version = 0 rows because those rows create a Type 
1 Join, meaning all of history is cast as that Join. Having included the most recent 
row for each entity with Thing Key Version = 0, the SQL WHERE clause joins on 
the Thing Key and Thing ID fields:

		  Fact.Thing Key = Dimension.Thing Key
		  And 0 = Dimension.Thing Key Version

Surrogate Key with Surrogate Key Version: Type 3 Join—Taking the same Fact 
and Dimension tables, a Type 3 time-variant relation (Figure 5.16) can be achieved 
if the historical record that is superimposed over the enterprise is written with 
Thing Key Version = X.13 Notice the rows with Thing Key Version = X are identi-
cal to the rows with Thing Key Version = 1. That is because the first version is the 
version that the enterprise wishes to superimpose over other entity values. Having 
included the superimposed row for each entity with Thing Key Version = X, the 
SQL WHERE clause joins on the Thing Key and Thing ID fields:

		  Fact.Thing Key = Dimension.Thing Key
		  And X = Dimension.Thing Key Version

The advantage of using both a Surrogate Key and Surrogate Key version is that 
without any table changes, they facilitate Type 1, Type 2, and Type 3 time-variant 
relations.

 Person Place Thing Key Thing Key Version Date Equipment
 Fred Seattle, WA 123 2 March 13, 2007 None
 Susan St Paul, MN 123 3 March 15, 2007 Repair Kit
 Joe Tampa, FL 234 2 April 2, 2007 Finishing Kit
 Alice Reno, NV 234 2 April 4, 2007 None

 Thing Key Thing Key Version Thing ID Description Begin Date End Date
 123 1 Chr_A23J Mahogany Chair May 1, 2002 May 12, 2005
 123 2 Chr_A23J Pine Chair May 13, 2005 March 14, 2007
 123 3 Chr_A23J Oak Chair March 15, 2007 December 31, 9999
 123 0 Chr_A23J Oak Chair

 234 1 Tbl_89RE Victorian Table August 27, 1993 September 5, 2001
 234 2 Tbl_89RE Icelandic Table September 2, 2001 April 15, 2007
 234 3 Tbl_89RE Round Table April 16, 2007 May 1, 2007
 234 0 Tbl_89RE Round Table

Fact Table

Dimension Table

Figure 5.15  Surrogate Key with Surrogate Key Version: Type 1 join.
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Conformed Dimensions

Dimensional Data Modeling focuses on the business activities of an enterprise. 
Each Fact table captures instances of a specific business event. That business event 
can be a retail sales transaction, consulting contract negotiation, or completion of a 
manufacturing assembly. An enterprise has many such business events. Fact tables 
alone are designed to capture all business events.

Ideally, all business events in an enterprise will be able to share the same dimen-
sion tables. Consider the example in Figure 5.17 of an enterprise that manufactures 
and sells a product. This Dimensional Data Model has a Fact table for each of 
these business events: Manufacture and Sales. In this example, both Fact tables can 
share the Product, Place, and Date Dimension tables. These shared tables are called 
Conformed Dimensions.14 The Manufacture Fact table is not able to share the Store 
table because the manufacturing plant is not a store.

The hierarchy of Type = Store can be abstracted out of the Store Dimension 
table, yielding a Facility Dimension table (wherein rows can have Type = Store and 
Type = Manufacturing Plant). The new Facility Dimension table can now be Con-
formed (i.e., shared) between the two Sales and Manufacture Fact tables, which are 
displayed in Figure 5.18.

This practice of conforming dimensions so multiple Fact tables can be shared 
is relevant to the discussion above of a data warehouse as a long-term investment. 
A data warehouse can leverage its Dimension tables for multiple Fact tables, which 
reduces the cost of owning and operating a data warehouse.

 Person Place Thing Key Thing Key Version Date Equipment
 Fred Seattle, WA 123 2 March 13, 2007 None
 Susan St Paul, MN 123 3 March 15, 2007 Repair Kit
 Joe Tampa, FL 234 2 April 2, 2007 Finishing Kit
 Alice Reno, NV 234 2 April 4, 2007 None

 Thing Key Thing Key Version Thing ID Description Begin Date End Date
 123 1 Chr_A23J Mahogany Chair May 1, 2002 May 12, 2005
 123 2 Chr_A23J Pine Chair May 13, 2005 March 14, 2007
 123 3 Chr_A23J Oak Chair March 15, 2007 December 31, 9999
 123 0 Chr_A23J Oak Chair
 123 X Chr_A23J Mahogany Chair

 234 1 Tbl_89RE Victorian Table August 27, 1993 September 5, 2001
 234 2 Tbl_89RE Icelandic Table September 2, 2001 April 15, 2007
 234 3 Tbl_89RE Round Table April 16, 2007 May 1, 2007
 234 0 Tbl_89RE Round Table
 234 X Tbl_89RE Victorian Table

Fact Table

Dimension Table

Figure 5.16  Surrogate Key with Surrogate Key Version: Type 3 join.
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Junk Dimensions

Every enterprise has its odds and ends data. These are the data that have no hier-
archy, specific meaning, and probably no look-up reference data to provide a 
description or translation. Occasionally, this odds and ends data is needed in a data 
warehouse. Ralph Kimball created the concept of a Junk Dimension specifically for 
this circumstance.15

Product Dimension Table
Product ID
Product Description

Store Dimension Table
Store ID ?

Sales Fact Table Store Description Manufacture Fact Table
Product ID Product ID
Store ID Place Dimension Table Plant ID
Place ID Place ID Place ID
Date ID Place Description

Date Dimension Table
Date ID
Date
Week
Month
Year
Quarter

Time ID

Figure 5.17  Store Dimensions Not Conformed.

Product Dimension Table
Product ID
Product Description

Facility Dimension Table
Facility ID
Facility Type

Sales Fact Table Store Description Manufacture Fact Table
Product ID Product ID
Store ID Place Dimension Table Plant ID
Place ID Place ID Place ID

Time IDDate ID Place Description

Date Dimension Table
Date ID
Date
Week
Month
Year
Quarter

Figure 5.18  Conformed Dimensions.
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A Junk Dimension captures the odds and ends data of an enterprise, while 
making no attempt to apply a hierarchy or categorization scheme. The method to 
create a Junk Dimension is simple. Collect all such odds and ends data into a single 
Dimension table. Derive all permutations of the data values. To each row assign a 
sequential unique Surrogate Key, as seen in Figure 5.19.

In a Fact table that uses the odds and ends data, apply the Surrogate Key value 
from the Junk Dimension row that matches the permutation of junk data to each 
Fact row.

Different Grains

The bane of Dimensional Data Modeling is differing grains. This occurs when 
grain of a Fact table does not match the grain of an existing Dimension table.16 The 
goal is to share Dimension tables as much as possible, which contributes to the con-
sistency and power of a data warehouse. When a Dimension cannot be shared by a 
specific Fact table, rather than create a Dimension table only for that Fact table, a 
Bridge or Helper Table can complete the join.

Using the example in Figure 5.20, a Fact table on the left is at the Facility level 
of granularity, whereas the Fact table on the right is at the Warehouse Group level 
of granularity. The Facility level Fact table cannot join to Warehouse Group level 
the Fact table. So, a Warehouse Group Bridge table is constructed to allow the two 
Fact tables (grained at the Facility and Warehouse Group levels) to relate to each 
other. Bridge tables, such as the Warehouse Group Bridge table, allow Fact tables of 
different grains to combine disparate data into a single statement of information.

Multiple Results

A business may generate multiple results for a single event.17 Such instances include:

Multiple Answers: When your mechanic diagnoses three problems with your 
car.

n

Surrogate Key Beagle Code Buzzer Time Congo Rule Doggie Day Everlong
 SS 1 Left Monday Y
 ASFG 1 Left Tuesday N
 GFGF 2 Right Monday Y
 F 2 Left Tuesday Y
 RR 1 Left Wednesday N
 GRT 2 Right Wednesday N
 YJ 3 Right Thursday N
 JK 3 Right Monday Y
 DH 4 Left Monday Y
 F 3 Left Wednesday N
 RR 5 Right Friday N

1
2
3
4
5
6
7
8
9

10
11

Figure 5.19  Junk Dimension.
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Multiple Events: When one cell phone customer calls another cell phone cus-
tomer and both are billed for the same call.

In these situations, a Fact table joins to a Fact Result Set table (Figure 5.21), 
which is a one-to-many join. The Fact table has its one row. The Fact Result Set 
table has multiple rows, one for each result of the business event. The Fact Result 
Set table then joins to Dimension tables.

Factless Fact

A business event may not necessarily transact dollars, move units of product, or 
return any sort of arithmetic measurement. Business events such as these are known 
as Factless Facts.18 Factless Facts do not really lack a fact, rather, they lack a mea-
surement. Business events without a measurement include:

An airplane lands
A store opens (and closes) its doors
A truck arrives at a warehouse

For Facts such as these, a Fact table contains only the Foreign Keys of the 
entities involved in the business event. No measurements are manufactured or 
defaulted. Rather, the Factless Fact table is allowed to exist with only Dimension 
foreign keys and no measurement.

n

n

n

n

Facility Dimension Fact Table
Fact Table Corporation ID Warehouse Group Bridge Product ID
Product ID Division ID Warehouse Group ID Warehouse Group ID
Facility ID District ID Facility ID Date ID
Date ID Region ID

Facility ID

Figure 5.20  Bridge Table.

Fact Table
Facility ID Product Table
Date ID Fact Result Set Table Product ID
Fact Result Set Id Fact Result Set Id Product Description

Product ID
Action ID Action Table

Action ID
Action Description

Figure 5.21  Result Set table.
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Snowflake Schema

Sometimes a Dimension, or part of a Dimension, is too complex or volatile to 
work well in a single Dimension row. In such situations, part of the Dimension is 
normalized out of the Dimension yielding a Dimension of a Dimension, or a Sub-
dimension.19 Splitting a Dimension in a Star Schema yields a Snowflake Schema 
(Figure 5.22). After enough Dimensions have been split, the schema begins to 
resemble a snowflake.

A Snowflake Schema is created by normalizing Dimension tables. Figure 5.23 
shows the progression from a completely denormalized Facility Dimension table to 
a fully normalized Facility Hierarchy. In the fully normalized Facility Hierarchy, 
the Facility Dimension table is no longer necessary and is removed.

Dimensional Data Model Summary

A Dimensional Data Model answers the questions of who, what, when, where, how, 
and possibly why by combining in a single Fact table row measurements (e.g., units, 
volume, money, etc.) of a business event and foreign keys to Dimension tables. 
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Equipment 
Description
Equipment Purpose
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Figure 5.22  Snowflake Schema.
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Fact Table Facility Dimension
Facility ID Facility ID
Product ID Facility Description
Date ID Region ID

Region Description
District ID
District Description
Corporate ID
Corporate Description

Fact Table Facility Dimension Facility Table
Facility ID Facility ID Facility ID
Product ID Region ID Facility Description
Date ID District ID

Corporate ID Region Table
Region ID
Region Description

District Table
District ID
District Description

Corporate Table
Corporate ID
Corporate Description

Fact Table Facility Table
Facility ID Facility ID
Product ID Facility Description
Date ID Region ID

Region Table
Region ID
Region Description
District ID

District Table
District ID
District Description
Corporate ID

Corporate Table
Corporate ID
Corporate Description

Figure 5.23  Normalized and Denormalized Dimensions.
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Dimension tables include in each row enough information about its hierarchy to 
allow the data warehouse customer to summarize data at a higher level of that 
hierarchy. Dimension tables can be shared (i.e., Conformed) to multiple Fact tables 
throughout a data warehouse.

These tools (primarily Fact and Dimension tables) allow a Dimensional Data 
Model to incorporate the Data Warehouse Philosophy.

Subject Orientation: A Fact table defines the subject for each section of a data 
warehouse.
Data Integration: Conformed Dimension tables express entity information in 
the same form, function, and grain across the data warehouse.
Nonvolatility: New rows can be added to Fact and Dimension tables without 
destroying existing rows.
Time Variant: Dimension tables allow Fact tables to join to historical Dimen-
sion rows in the past.
One Version of the Truth: A Fact table that captures a business event is the 
only Fact table to capture that business event. A Dimension table that captures 
a hierarchy is the only Dimension table to capture that hierarchy.
Long-Term Investment: The Type and Purpose of an entity can be explicitly 
expressed in a Dimension. The Role of an entity can be explicitly expressed 
in a Fact table. The resulting flexibility allows a data warehouse to pres-
ent enterprise activity over a significant period of time without significant 
modifications.

Third Normal Form Data Model

In the early days of data warehousing, early developers of decision support systems 
used the best methods they had available to them. The best, and arguably only, 
method of modeling data in a RDBMS was the Third Normal Form.20 The devel-
opers’ knowledge and methods of Third Normal Form were based on their experi-
ence, which occurred in operational relational databases. Their toolset was limited 
by the RDBMS optimizers that were available. They could only ask an optimizer to 
perform SQL functions that it could interpret.

During the 1990s, advances in computer science and technology increased the 
functions available in RDBMS optimizers. Data warehouse developers could ask a 
RDBMS optimizer to perform logical, mathematical, and statistical functions far 
more powerful than had been available in 1980. Another event occurred during the 
1990s that changed data warehousing: Ralph Kimball introduced the Dimensional 
Data Model. Kimball used the Dimensional Data Model to solve shortcomings of 
Third Normal Form data warehouses. Primary among these shortcomings were:
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Third Normal Form data warehouses do not model a business or subject area, 
they model relationships between data elements instead.
Third Normal Form data warehouse structures are too erratic and scattered 
to be easily understood or optimized.21

While these complaints were valid, their effect was probably not what Ralph 
Kimball intended. While some data warehouses incorporated a Dimensional Data 
Model, others incorporated the Fact and Dimension concepts from the Dimen-
sional Data Model into the Third Normal Form data model. By the end of the 
1990s, these two changes (improvements in RDBMS optimizers and Dimensional 
Data Modeling) made possible Third Normal Form data warehouses, which incor-
porated the Fact and Dimension concepts, running on optimizers that could per-
form the required SQL functions.

A Third Normal Form data warehouse uses data structures that are normalized 
to the Third Normal Form. The result is many small tables rather than a few large 
tables, and many table joins rather than a few table joins. This is a trade-off between 
the number of tables and the number of joins. A Third Normal Form physical data 
model looks like the data model in Figure 5.24. At the top is a Fact table: Transac-
tion Header. Below that table are a series of normalized Fact tables: Transaction 
Time, Transaction Thing, Transaction Place, and Transaction Person. These tables 
incorporate the entities that were identified in the Logical Data Model. Typically, 
those entities include:

Time: An event happens at a moment in time.
Place: An event happens in a place or space.
Person: People are usually involved in an event.
Thing: An event is often focused on or around an object.
Equipment: Participants in an event often use a tool or equipment.
How: The action that was performed.
Why: Sometimes, but not always, a reason for the action is provided.

Third Normal Form Fact Tables

The rules of normalization remove redundant data elements. Typically, enterprise 
events generate a fair amount of redundant data. For example, the insurance trans-
action in Figure 5.25 has four rows and nine columns.

Of these nine columns, the first six are completely redundant because all four 
rows have the same values in the Facility, Date, Time, Agent, Type, and Transac-
tion # columns. These six columns can be normalized. They are reduced to one 
column and placed in a Fact Header table.

The remaining fields are placed in a Fact Detail table (Figure 5.26). The Fact 
Header and Fact Detail table join on the Transaction # and Policy Number fields. 

n

n

n
n
n
n
n
n
n
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With this change, each row in the Fact Header table represents an individual trans-
action and each row in the Fact Detail table represents each individual person 
who is insured. These Fact Header and Fact Detail tables demonstrate the use of 
normalization to remove redundancy and expose multiple grains of data within a 
single enterprise event.

Third Normal Form Fact tables also introduce a level of flexibility. Figure 5.27 
shows the addition of another enterprise event: the customer made a payment for 
the insurance policy. The payment includes a new row in the Fact Header table and 
a new row in the Fact Payment table. The relational joins from these transactions 
include:

The Fact Header Payment joins to the Fact Header New on Policy Number.
The Fact Header Payment joins to the Fact Detail on Policy Number.
The Fact Header Payment joins to the Fact Payment on Policy Number and 
Transaction #.
The Fact Payment Amt joins to the Fact Detail on Policy Number.

This example demonstrates the flexibility of Third Normal Form Fact tables to 
present all the grains of an enterprise event by isolating each individual grain of an 
enterprise event in its own normalized Fact table. In this example, the grains are:

Unique individual transactions
Unique individual persons insured
Unique individual payments

This example could also include:

Claims
Claims Details
Claims Payments
Renewals
Changes in persons insured

n

n

n

n

n

n

n

n

n

n

n

n

Facility Date Time Agent Type Transaction # Policy Number Insured Relation
1357 05/12/1997 13:35 Fred New 051297-132 AB-2324-01 Jane Doe Primary
1357 05/12/1997 13:35 Fred New 051297-132 AB-2324-02 John Doe Husband
1357 05/12/1997 13:35 Fred New 051297-132 AB-2324-03 Janice Doe Daughter
1357 05/12/1997 13:35 Fred New 051297-132 AB-2324-04 Mark Doe Son

Fact Table – Insurance Sales Event

Figure 5.25  Sales Event.
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In a Dimensional Data Model, Fact tables can never be joined together. The 
same is true of Third Normal Form Fact tables—individual facts cannot be joined 
to each other. But, this example looks like we can join multiple Facts to each other. 
The distinction is that all the rows in Figure 5.27 are one transaction; a transac-
tion that will take a year to complete. Compare an insurance sales transaction to a 
convenience store sales transaction. In both cases:

A customer selects a product
An insurance policy
A soft drink

An agent of the enterprise records that selection
An insurance agent writes a policy
A cashier rings up the soft drink

The customer pays for the product
Twelve installment payments of $74.50 each
$0.89 (including tax)

The customer receives the product
A term life insurance policy for four people for one year
A soft drink

The sales transaction in the convenience store happens much faster than the insur-
ance sales transaction. Regardless, that convenience store sales transaction cannot be 
joined to any other convenience store sales transaction and the insurance sales transac-
tion cannot be joined to any other insurance sales transaction.

Figure 5.27 demonstrates the ability of Third Normal Form Fact tables to func-
tion together as a logical unit. The data in the three tables could be denormalized 
into Dimensional Data Model Fact tables or remain as normalized Third Normal 
Form Fact tables. The data in both forms is the same. A cohesive set of Third Nor-
mal Form Fact tables function as a logical unit, even though they are individual 
and separate. In the minds of a data warehouse designer and data warehouse cus-
tomers, they are a logical unit. They will be queried as a logical unit. They will be 
joined to Third Normal Form Dimension tables as a logical unit.

Third Normal Form Dimension Tables

Third Normal Form Dimension tables demonstrate the purest form of normaliza-
tion. The Facility/Region/District/Corporate dimension tables in Figure 5.23 show 
the normalization of a hierarchy. In the first frame, the entire hierarchy is denor-
malized into one row. In the last frame, the entire hierarchy is normalized into a 
Facility table, Region table, District table, and Corporate table.

The individual dimension tables (Facility, Region, District, and Corporate) func-
tion together to express the geography of the enterprise. These four tables function 

n
−
−

n
−
−

n
−
−

n
−
−
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as a logical unit, combining to express the Geography dimension. Regardless of 
whether the Facility, Region, District, and Corporate data elements are captured 
in a single row or multiple tables, the data is still the same. A cohesive set of Third 
Normal Form Dimension tables function as a logical unit, even though they are 
individual and separate. In the minds of a data warehouse designer and data ware-
house customers, they are a logical unit. They will be queried as a logical unit.

A Fact table joining to this logical Geography dimension is subject to the same 
hierarchical constraint that binds Dimensional Data Model dimensions—the low-
est relevant hierarchical level is the level at which it joins with the Fact table. If a 
Fact table joins to the Region table but not the Facility table, then the Facility table 
(which is hierarchically lowest) is not relevant to that Fact table. The arithmetic 
data in a Fact table can be summed up (a hierarchy), but not summed down (a 
hierarchy).

Third Normal Form Conformed Dimension Tables

A cohesive set of Third Normal Form Dimension tables that function as a logical 
unit can be shared by Fact tables throughout the data warehouse. The concept of 
Conformed Dimensions, which originated in Dimensional Data Modeling, applies 
to Third Normal Form data modeling. The benefit is the same: reduced redun-
dancy, storage capacity, cost of ownership, and increased ROI. The limitation is 
also the same: Fact tables must match the grain of Conformed Dimension tables 
to leverage them.
Denormalized Third Normal Form Dimension Tables—Occasionally, a set of 
Third Normal Form dimension tables can be denormalized into one row. This is 
usually done for one of two reasons:

Performance: If a RDBMS optimizer has difficulty creating an optimal query 
path, prejoining a logical set of dimension tables into a single table may give 
the RDBMS optimizer the help it needs.
Confusion: If data warehouse customers have difficulty in successfully join-
ing all the tables in a logical set of dimension tables, a view can be created 
which prejoins those tables.

Neither of these approaches constitutes an abandonment of Third Normal 
Form. Nor does it mean a data warehouse has just been converted into a data mart. 
The occasional denormalized dimension is a symptom of a healthy data warehouse. 
If no one was using the data warehouse, the RDBMS optimizer would be able to 
join the tables quickly and they would confuse no one.

n

n
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Third Normal Form Joins Strategies

In a Third Normal Form data warehouse, joining a Fact table to a Dimension 
includes an additional challenge: Join all the normalized dimension tables in a time-
variant data warehouse. A Fact row can join to the hierarchically lowest dimension 
table. But, after that, the challenge is to join up through normalized dimension 
tables. A Fact table joins to Table 6,

			   which has to join to Table 5,
				    which has to join to Table 4,
					     which has to join to Table 3,
						      which has to join to Table 2,
							       which has to join to Table 1

to allow the aggregation and summary of the Fact data by an attribute of Table 1, 
without creating the multiplicative effect caused by incorrectly joining tables. Flex-
ibility has a cost. In a Third Normal Form data warehouse, the cost of the Third 
Normal Form’s flexibility is the risk of creating the multiplicative effect caused by 
incorrectly joining tables and the mitigation of that risk.
Source Native Key—This method, demonstrated in Figure 5.28, uses a key value 
from the source system. In this example, a Fact table captures seven events. One 
event references Thing Key VC12, three events reference Thing Key LC32, and 
three events reference Thing Key AC23. Thing Key VC12 is associated with Comp 
Key Wd and Type Key Chr. Thing Key LC32 is associated with Comp Key Wd 
and Type Key Chr_H. Thing Key AC23 is associated with Comp Key FG and Type 
Key Chr.

These associations are achieved via associative tables. In this example, the enti-
ties Thing, Composition, and Type are normalized into their own tables. The asso-
ciations between these tables are also normalized into their own tables. In some 
Third Normal Form data models such associations can be embedded in a subor-
dinate table. The subordinate table in Figure 5.28 is the Thing table. The primary 
keys of the Composition and Type tables can be embedded as foreign keys in the 
Thing table. While this can be done, it would negate some of the flexibility of a 
Third Normal Form data model. By normalizing Entities into Dimension tables, 
Relations into Associative tables, and Attributes into Dimension Attribute tables, a 
Third Normal Form allows a data warehouse designer to adjust the data warehouse 
as the enterprise changes.

While this method is simplest and easiest to create, it yields only a Type 1 
time-variant relation. If the description of Thing, Composition, or Type changes, 
all the events in the Fact table will be associated with the updated value. This is 
the behavior of Type 1 time variant data—all history is restated using data values 
currently in effect.

The Source Native Key method works well when the uniqueness of the keys is 
enforced by the source system, which implicitly means the data warehouse extracts 

AU6462.indb   97 2/7/08   9:53:06 AM



98  n  Building and Maintaining a Data Warehouse

Co
m

p 
K

ey
 

Co
m

p 
D

es
cr

ip
tio

n
W

d 
W

oo
d

FG
 

Fi
ne

 G
ra

in
 W

oo
d

�
in

g 
K

ey
 

Co
m

p 
K

ey
VC

12
 

W
d

LC
32

 
W

d
Ev

en
t D

at
e 

Ev
en

t Q
ua

nt
ity

 
�

in
g 

K
ey

�
in

g 
K

ey
 

�
in

g 
D

es
cr

ip
tio

n
A

C2
3 

FG
05

/1
0/

20
07

 
3 

VC
12

VC
12

 
Vi

ct
or

ia
n 

Ch
ai

r
05

/1
1/

20
07

 
5 

LC
32

LC
32

 
Lo

ui
s I

V 
Ch

ai
r

05
/1

2/
20

07
 

6 
LC

32
A

C2
3 

A
rt

s &
 C

ra
fts

 C
ha

ir
�

in
g 

K
ey

 
Ty

pe
 K

ey
05

/1
3/

20
07

 
3 

LC
32

VC
12

 
Ch

r
05

/1
4/

20
07

 
5 

A
C2

3
LC

32
 

Ch
r_

H
05

/1
5/

20
07

 
7 

A
C2

3
A

C2
3 

Ch
r

05
/1

6/
20

07
 

3 
A

C2
3

Ty
pe

 K
ey

 
Ty

pe
 D

es
cr

ip
tio

n
Ch

r 
Ch

ai
r

Ch
r_

H
 

H
ig

h-
ba

ck
 C

ha
ir

TY
PE

 A
SS

O
CI

A
TI

V
E 

TA
BL

E

TY
PE

 T
A

BL
E

CO
M

PO
SI

TI
O

N
 T

A
BL

E

CO
M

PO
SI

TI
O

N
 A

SS
O

CI
A

TI
V

E 
TA

BL
E

FA
C

T 
TA

BL
E

TH
IN

G
 T

A
BL

E

Fi
gu

re
 5

.28 


So
ur

ce
 N

at
iv

e 
K

ey
.

AU6462.indb   98 2/7/08   9:53:07 AM



Database Design  n  99

its dimension data from only one source system. If, however, a data warehouse 
extracts its dimension data from multiple source systems, the Source Native Key 
method fails because it does not integrate the dimension data from multiple dis-
parate source systems. When a data warehouse extracts dimension data from dis-
parate source systems, the disparate Source Native Keys must be integrated into a 
single set of keys : Surrogate Keys.
 Surrogate Key—In a data warehouse that must represent disparate source sys-
tems, Surrogate Keys are used to combine and conform entity keys, which are not 
coordinated in the enterprise. For example, the enterprise manufactures furniture. 
The parent company manufactures Victorian Chairs (Thing Key = ASDSA-2328) 
and Louis IV Chairs (Thing Key = AGGSD-82732). The newly acquired subsidiary 
company manufactures Louis IV Chairs (Thing Key = Mom’s Favorite Chair) and 
Arts and Crafts Chairs (Thing Key = Dad Made This Chair). These source native 
keys simultaneously represent an overlapping entity (Louis IV Chair) and dissimi-
lar keys. Figure 5.29 shows how these overlapping entities and dissimilar keys can 
be combined and conformed into a single uniform set of keys. The uniform set of 
Surrogate Keys allows data warehouse customers to query across the data ware-
house without encountering the overlapping and dissimilar keys from the parent 
and subsidiary companies.

Source Native Key with Dates

Having established the Fact (Fact Table), Dimension (Thing Table), Dimen-
sion Attribute (Composition Table and Type Table), and Associative (Composition 
Associative Table and Type Associative Table) tables, the next step is to add Time. 
Figure 5.30 shows the added Begin Date and End Date fields. Begin Date identifies 
the first date for which the data in a row is active. End Date identifies the last date 
for which the data in a row is active.

Figure 5.30 demonstrates the challenge of a time-variant Third Normal Form 
data model. The Begin Date and End Date fields of associated Dimension and 
Dimension Attribute tables never all coincide to the same dates. Instead, Begin and 
End Dates from one table overlap, surround, and bisect the Begin and End Dates 
from every other table. For example, the Event on May 10 in the Fact Table will join 
to two rows in the Composition Associative Table, which will join to three rows in 
the Composition Table. The Event on May 11 in the Fact table will join to one row 
in the Type Associative Table, which will join to two rows in the Type Table. Left 
to run amok in this way, this data model will multiply every row in the Fact Table 
by a factor of at least three, probably four.

The solution to this conundrum is to qualify all tables on one single date. The 
Fact table provides that one single date for each join. Even though a RDBMS 
returns data in sets, it actually joins data in rows. Each Fact table row provides the 
one single date (the Event Date), which will limit all the Dimension, Dimension 
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102  n  Building and Maintaining a Data Warehouse

Attribute, and Associative rows that will join to that Fact row. The following SQL 
illustrates this method:

	 SELECT
	 FACT TABLE.EVENT DATE
	 , FACT TABLE.EVENT QUANTITY
	 , FACT TABLE.THING KEY
	 , THING TABLE.THING DESCRIPTION
	 , COMPOSITION TABLE.COMP KEY
	 , COMPOSITION TABLE.COMP DESCRIPTION
	 , TYPE TABLE.TYPE KEY
	 , TYPE TABLE.TYPE DESCRIPTION
	 FROM
	 FACT TABLE A
	 INNER JOIN THING TABLE B
	 ON A.THING KEY = B.THING KEY
	 AND A.EVENT DATE BETWEEN B.BEGIN DATE AND B.END DATE
	 INNER JOIN COMPOSITION ASSOCIATIVE TABLE C
	 ON B.THING KEY = C.THING KEY
	 AND A.EVENT DATE BETWEEN C.BEGIN DATE AND C.END DATE
	 INNER JOIN COMPOSITION TABLE D
	 ON C.COMP KEY = D.COMP KEY
	 AND A.EVENT DATE BETWEEN D.BEGIN DATE AND D.END DATE
	 INNER JOIN TYPE ASSOCIATIVE TABLE E
	 ON B.THING KEY = E.THING KEY
	 AND A.EVENT DATE BETWEEN E.BEGIN DATE AND E.END DATE
	 INNER JOIN TYPE TABLE F
	 ON E.TYPE KEY = F.TYPE KEY
	 AND A.EVENT DATE BETWEEN F.BEGIN DATE AND F.END DATE

A Fact table can also be a Summary or Snapshot table. Summary and Snapshot 
tables represent a multiperiod range of time. For example, a Weekly Summary is a 
cumulative representation of all Events within a week or a Daily Snapshot is the net 
effect of all Events within a day. Summary and Snapshot tables remove some of the 
granular detail, usually Time, from their underlying Event data. By design, there-
fore, Summary and Snapshot tables usually represent Time with reduced granular 
detail. To make this time-variant method succeed with Summary and Snapshot 
tables, a point in time must be chosen when joining with time-variant Dimension, 
Dimension Attribute, and Associative tables. That point in time may be the initial 
moment of the time range or the final moment of the time range included in a 
Summary or Snapshot table. Either way, the choice must be consistent throughout 
all Summary and Snapshot tables in a data warehouse.

Figure 5.31 demonstrates the time-variant effect of joining with the WHERE 
clause “Where Event Date between Begin Date and End Date” in the first Event 
row.
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The Fact Table joins to only one row in the Thing Table (Thing Key = VC12, 
Begin Date = 1/15/2007, and End Date = 12/31/9999).
The Thing Table joins to only one row in the Composition Associative Table 
(Thing Key = VC12, Comp Key = Wd, Begin Date = 4/1/2007, and End Date 
= 5/13/2007).
The Composition Associative Table joins to only one row in the Composition 
Table (Comp Key = Wd, Begin Date = 4/1/2007, and End Date = 5/11/2007).
The Thing Table joins to only one row in the Type Associative Table (Thing 
Key = VC12, Type Key = Chr, Begin Date = 3/15/2007, and End Date = 
5/12/2007).
The Type Associative Table joins to only one row in the Type Table (Type Key 
= Chr, Begin Date = 4/1/2007, and End Date = 5/14/2007).

Note that all of these dates surround inclusively the Event Date 5/10/2007. That 
Event Date provides the time-variant orientation for all of these joins to a single 
day.

Figure 5.32 demonstrates the time-variant effect of joining with the WHERE 
clause “Where Event Date between Begin Date and End Date” in the second Event 
row.

The Fact Table joins to only one row in the Thing Table (Thing Key = LC32, 
Begin Date = 2/17/2007 and End Date = 12/31/9999).
The Thing Table joins to only one row in the Composition Associative Table 
(Thing Key = LC32, Comp Key = Wd, Begin Date = 4/1/2007m and End 
Date = 12/31/9999).
The Composition Associative Table joins to only one row in the Composition 
Table (Comp Key = Wd, Begin Date = 4/1/2007, and End Date = 5/11/2007).
The Thing Table joins to only one row in the Type Associative Table (Thing 
Key = LC32, Type Key = Chr_H, Begin Date = 3/1/2007, and End Date = 
12/31/9999).
The Type Associative Table joins to only one row in the Type Table (Type Key 
= Chr_H, Begin Date = 3/16/2007, and End Date = 5/11/2007).

Note that all of these dates surround inclusively the Event Date 5/11/2007. That 
Event Date provides the time-variant orientation for all of these joins to a single 
day.

Figure 5.33 demonstrates the time-variant effect of joining with the WHERE 
clause “Where Event Date between Begin Date and End Date” in the third Event 
row.

The Fact Table joins to only one row in the Thing Table (Thing Key = LC32, 
Begin Date = 2/17/2007, and End Date = 12/31/9999).
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The Thing Table joins to only one row in the Composition Associative Table 
(Thing Key = LC32, Comp Key = Wd, Begin Date = 4/1/2007, and End Date 
= 12/31/9999).
The Composition Associative Table joins to only one row in the Composi-
tion Table (Comp Key = Wd, Begin Date = 5/12/2007, and End Date = 
12/31/9999).
The Thing Table joins to only one row in the Type Associative Table (Thing 
Key = LC32, Type Key = Chr_H, Begin Date = 3/1/2007, and End Date = 
12/31/9999).
The Type Associative Table joins to only one row in the Type Table (Type Key 
= Chr_H, Begin Date = 5/12/2007, and End Date = 12/31/9999).

Note that all of these dates surround inclusively the Event Date 5/12/2007. That 
Event Date provides the time-variant orientation for all of these joins to a single 
day.

Figure 5.34 demonstrates the time-variant effect of joining with the WHERE 
clause “Where Event Date between Begin Date and End Date” in the fourth Event 
row.

The Fact Table joins to only one row in the Thing Table (Thing Key = LC32, 
Begin Date = 2/17/2007, and End Date = 12/31/9999).
The Thing Table joins to only one row in the Composition Associative Table 
(Thing Key = LC32, Comp Key = Wd, Begin Date = 4/1/2007, and End Date 
= 12/31/9999).
The Composition Associative Table joins to only one row in the Composi-
tion Table (Comp Key = Wd, Begin Date = 5/12/2007, and End Date = 
12/31/9999).
The Thing Table joins to only one row in the Type Associative Table (Thing 
Key = LC32, Type Key = Chr_H, Begin Date = 3/1/2007, and End Date = 
12/31/9999).
The Type Associative Table joins to only one row in the Type Table (Type Key 
= Chr_H, Begin Date = 5/12/2007, and End Date = 12/31/9999).

Note that all of these dates surround inclusively the Event Date 5/13/2007. That 
Event Date provides the time-variant orientation for all of these joins to a single 
day.

Figure 5.35 demonstrates the time-variant effect of joining with the WHERE 
clause “Where Event Date between Begin Date and End Date” in the fifth Event 
row.

The Fact Table joins to only one row in the Thing Table (Thing Key = AC23, 
Begin Date = 2/19/2007, and End Date = 5/15/2007).
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The Thing Table joins to only one row in the Composition Associative Table 
(Thing Key = AC23, Comp Key = FG, Begin Date = 4/1/2007, and End Date 
= 12/31/9999).
The Composition Associative Table joins to only one row in the Composition 
Table (Comp Key = FG, Begin Date = 4/14/2007, and End Date = 5/15/2007).
The Thing Table joins to only one row in the Type Associative Table (Thing 
Key = AC23, Type Key = Chr, Begin Date = 3/12/2007, and End Date = 
5/14/2007).
The Type Associative Table joins to only one row in the Type Table (Type Key 
= Chr, Begin Date = 4/1/2007, and End Date = 5/14/2007).

Note that all of these dates surround inclusively the Event Date 5/14/2007. That 
Event Date provides the time-variant orientation for all of these joins to a single 
day.

Figure 5.36 demonstrates the time-variant effect of joining with the WHERE 
clause “Where Event Date between Begin Date and End Date” in the sixth Event 
row.

The Fact Table joins to only one row in the Thing Table (Thing Key = AC23, 
Begin Date = 2/19/2007, and End Date = 5/15/2007).
The Thing Table joins to only one row in the Composition Associative Table 
(Thing Key = AC23, Comp Key = FG, Begin Date = 4/1/2007, and End Date 
= 12/31/9999).
The Composition Associative Table joins to only one row in the Composition 
Table (Comp Key = FG, Begin Date = 4/14/2007, and End Date = 5/15/2007).
The Thing Table joins to only one row in the Type Associative Table (Thing 
Key = AC23, Type Key = Chr_H, Begin Date = 5/15/2007, and End Date = 
12/31/9999).
The Type Associative Table joins to only one row in the Type Table (Type Key 
= Chr_H, Begin Date = 5/12/2007, and End Date = 12/31/9999).

Note that all of these dates surround inclusively the Event Date 5/15/2007. That 
Event Date provides the time-variant orientation for all of these joins to a single 
day.

Figure 5.37 demonstrates the time-variant effect of joining with the WHERE 
clause “Where Event Date between Begin Date and End Date” in the seventh Event 
row.

The Fact Table joins to only one row in the Thing Table (Thing Key = AC23, 
Begin Date = 5/16/2007, and End Date = 12/31/9999).
The Thing Table joins to only one row in the Composition Associative Table 
(Thing Key = AC23, Comp Key = FG, Begin Date = 4/1/2007, and End Date 
= 12/31/9999).
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The Composition Associative Table joins to only one row in the Composition 
Table (Comp Key = FG, Begin Date = 5/16/2007, and End Date = 12/31/9999).
The Thing Table joins to only one row in the Type Associative Table (Thing 
Key = AC23, Type Key = Chr_H, Begin Date = 5/15/2007, and End Date = 
12/31/9999).
The Type Associative Table joins to only one row in the Type Table (Type Key 
= Chr_H, Begin Date = 5/12/2007, and End Date = 12/31/9999).

Note that all of these dates surround inclusively the Event Date 5/16/2007. That 
Event Date provides the time-variant orientation for all of these joins to a single day.
The cumulative effect of these seven Fact table rows, each joined with Dimension, 
Dimension Attribute, and Associative tables based on the Event Date is a result set 
wherein all Fact rows are expressed in their historical context—a Type 2 time-vari-
ant result set. Multiple normalized Fact tables can also use this Type 2 time-variant 
method. The Fact tables in Figure 5.27 can join to Type 2 Dimension, Dimension 
Attribute, and Associative tables by orienting all joins around a single Fact Event 
Date field. A single SQL statement can only orient on one Date. The question that 
is answered by the SQL will probably indicate which Event Date to use as a point 
of orientation. For example:

When was the Payment made? The Payment Date provides the single point 
of orientation.
When did Underwriting approve the insurance policy? The Underwrite Date 
provides the single point of orientation.

When considered that way, the use of a single point of orientation seems to be 
mere common sense. The confusion occurs when confronted with multiple normal-
ized Fact tables, each with their own Event Dates. The answer to the question is the 
question to the answer—The question being asked identifies the Event Date that 
will drive the Join with all the Dimension tables.

The same SQL that generated a Type 2 time-variant result set can also achieve a 
Type 1 time-variant result set by using the RDBMS Current Date function in place 
of the Fact Table’s Event Date. The following SQL illustrates this method:

	 SELECT
	 FACT TABLE.EVENT DATE
	 , FACT TABLE.EVENT QUANTITY
	 , FACT TABLE.THING KEY
	 , THING TABLE.THING DESCRIPTION
	 , COMPOSITION TABLE.COMP KEY
	 , COMPOSITION TABLE.COMP DESCRIPTION
	 , TYPE TABLE.TYPE KEY
	 , TYPE TABLE.TYPE DESCRIPTION
	 FROM

n

n

n

n

n
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114  n  Building and Maintaining a Data Warehouse

	 FACT TABLE A
	 INNER JOIN THING TABLE B
	 ON A.THING KEY = B.THING KEY
	 AND CURRENT DATE BETWEEN B.BEGIN DATE AND B.END DATE
	 INNER JOIN COMPOSITION ASSOCIATIVE TABLE C
	 ON B.THING KEY = C.THING KEY
	 AND CURRENT DATE BETWEEN C.BEGIN DATE AND C.END DATE
	 INNER JOIN COMPOSITION TABLE D
	 ON C.COMP KEY = D.COMP KEY
	 AND CURRENT DATE BETWEEN D.BEGIN DATE AND D.END DATE
	 INNER JOIN TYPE ASSOCIATIVE TABLE E
	 ON B.THING KEY = E.THING KEY
	 AND CURRENT DATE BETWEEN E.BEGIN DATE AND E.END DATE
	 INNER JOIN TYPE TABLE F
	 ON E.TYPE KEY = F.TYPE KEY

This SQL will return a result set that includes only those rows that are in effect 
as of the moment the query is submitted. That is the purpose of a Type 1 time-
variant query—to cast all of history in the current context. Remember, the Begin 
Date and End Date fields identify when a row is relevant to the data warehouse, 
not the operational application from which the data was extracted. So, a row in the 
data warehouse for a given Key may reference an entity that no longer exists in the 
enterprise. In that scenario, that operational nonexistence is the data in the data 
warehouse that is relevant to the data warehouse.

A Type 3 time-variant result set is best achieved by creating an alternate set of 
Dimension, Dimension Attribute, and Associative tables. An alternate set of tables 
is a safer option than embedding the alternate data values in a table with the real 
data values, demarcated by a flag or indicator field.

A time-variant Third Normal Form data warehouse must have one, and only one, 
row for every entity at a moment in time. If any Dimension, Dimension Attribute, 
or Associative table has multiple rows for a Key and Time, then the data warehouse 
could multiply its result sets for the affected Fact rows by the number of multiple rows. 
A data warehouse, therefore, must guard the time-variant integrity of its Dimension, 
Dimension Attribute, and Associative tables. The time-variant integrity is crucial to 
the success of a time-variant data warehouse.
Surrogate Key with Dates—Type 2 and Type 3 time-variant join strategies work 
the same regardless of the Key architecture: Source Native Key or Surrogate Key. 
In both architectures, a point in time date from a Fact table identifies the moment 
an event occurred. That single point in time is used in the SQL WHERE clause to 
select the Dimension rows relevant to the moment in time in the Fact table.

In both Key architectures, the foreign key in a Fact table joins to the primary 
key of a Dimension table. That first join between a Fact table and a Dimension table 
establishes the lowest hierarchical granularity possible for the joins associated with 
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that Fact table. Thereafter, all other joins can only join hierarchically upward from 
the joined Dimension table.
Data Warehouse Dates Redux—As discussed previously in Data Warehouse 
Dates, a Dimension table can include multiple Date fields with distinct meanings. 
The use of multiple Date fields in a data warehouse is different from the multiple 
fields in an operational database. Typically, in an operational database, one Date 
field identifies when the data in a row became effective and another field identifies 
when the data in a row ceased being effective. These dates are basically operational 
metadata. A data warehouse will typically include additional metadata about each 
row. The additional Date metadata may include:

The date or timestamp when the data in a row was extracted from a source 
system.
The date or timestamp when the data in a row was transformed and ready to 
load.
The date or timestamp when the data in a row was loaded into the data 
warehouse.
The date or timestamp on which the data warehouse considers the data in a 
row to be relevant to the enterprise, i.e., Begin Date.
The date or timestamp on which the data warehouse considers the data in a 
row to no longer be relevant to the enterprise. i.e., End Date.

Notice that none of these Date fields are the Effective and Not Effective opera-
tional metadata Date fields. In the context of a data warehouse, the Effective and 
Not Effective operational metadata Date fields are attributes of a row of data; they 
are not metadata of the data warehouse. The Begin Date and End Date fields in 
a data warehouse are not the operational Effective and Not Effective Date fields 
in operational data. Rather, the Begin Date and End Date fields are the dates 
within which a row of data is/was relevant to the enterprise and, therefore, the data 
warehouse.

Third Normal Form Data Model Summary

A Third Normal Form Data Model answers the questions of who, what, when, 
where, how, and possibly why by creating a normalized set of tables that join 
together as a cohesive logical unit to express a business event. These separate indi-
vidual tables also create the possibility to capture the various grains of data within 
a single business event. Business entities are also captured in a set of normalized 
tables, which join together as a cohesive logical unit to express the hierarchy sur-
rounding a business entity involved in a business event. Each set of entity hierarchy 
tables can be shared throughout the data warehouse to multiple sets of business 
event tables.

n

n

n

n

n
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116  n  Building and Maintaining a Data Warehouse

These tools (normalized tables that express business events and entities) allow a 
Third Normal Form Data Model to incorporate the Data Warehouse Philosophy.

Subject Orientation: A set of tables that function as a logical cohesive unit 
to express a business event defines the subject for each section of a data 
warehouse.
Data Integration: Conformed business entity tables express entity informa-
tion in the same form, function, and grain across the data warehouse.
Nonvolatility: New rows can be added to business event and business entity 
tables without destroying existing rows.
Time Variant: Begin Date and End Date attributes allow business entity 
tables to join to historical entity rows in the past.
One Version of the Truth: A table that captures a business event is the only 
table to capture that business event. A set of tables that capture a hierarchy is 
the only set of tables to capture that hierarchy.
Long-Term Investment: Flexibility is a key feature of a Third Normal Form 
data model. This same flexibility also contributes to a long lifespan for a data 
warehouse.

Recursive Data Model

A Recursive Data Model is a Join method. Basically, a Recursive Data Model takes 
a set of Dimension tables and sets them on end. A basic Recursive Data Model is 
shown in Figure 5.38. On the left is an entity table and on the right is a recursion 
table. The two relation lines between these tables show that a single row in the 
entity can be a parent entity in multiple hierarchies (e.g., geographic, management, 
and team membership). Also, a single row in the entity can be a child entity in 
multiple hierarchies.22

The example in Figure 5.39 shows a simple management hierarchy, which 
includes a typical one-to-many relation.

In this example, Fred is the CEO and Sue’s boss. Sue is a Director and boss of 
both Bill and Angela. Bill and Angela are staff members and boss of no one. The 
flexibility of a recursive table begins to pay off when additional hierarchies and 

n

n

n

n

n

n
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Child
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Figure 5.38  Recursive Data Model.
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relationships are added to the data warehouse. No new physical data structures 
are added. Instead, only rows are added to the existing recursive table. The recur-
sive table in Figure 5.40 shows that Fred, the CEO, has begun to mentor Bill and 
Angela. Interestingly, the recursive table allows multiple hierarchies to exist simul-
taneously, distinguished from each other by the Relationship field.

If a data warehouse can guarantee that each entity instance has a unique key 
throughout the entire data warehouse (or, at least a section or subject area), then a 
recursive table can also join entities from multiple tables. If a data warehouse can-
not guarantee that each entity instance has a unique key throughout the entire data 
warehouse, then uniqueness can still be achieved by using a compound key: Entity 
and Entity Instance.

The addition of Insurance Provider demonstrates the ability of a recursive table 
to capture relations within entity tables and across entity tables (Figure 5.41).

In this example, the Personnel_Recursion table holds three dimension tables: 
Mgmt Hierarchy, Major Med Insur, and Dental Insur. The Personnel_Recursion.
Relationship field functions as the name of each of these dimensions. The SQL for 
the Mgmt Hierarchy dimension looks like the following:

	 Select
	 Personnel_Recursion.Relationship
	 ,Personnel_Parent.Employee_Id As Parent_Id
	 ,Personnel_Parent.Employee_Name As Parent_Name
	 ,Personnel_Recursion.Parent_Function
	 ,Personnel_Child.Employee_Id As Child_Id
	 ,Personnel_Child.Employee_Name As Child_Name
	 ,Personnel_Recursion.Child_Function
	 From
	 Personnel_Recursion
	 Left Outer Join Personnel As Personnel_Parent
	 On Personnel_Recursion.Parent_Key = Personnel_Parent.	 	
	    Employee_Id
	 Left Outer Join Personnel As Personnel_Child
	 On Personnel_Recursion.Child_Key = Personnel_Child.	 	
	    Employee_Id
	 Where Personnel_Recursion.Relationship = ‘Mgmt 	 	
	    Hierarchy’

The result set, which is the Mgmt Hierarchy dimension, is in Figure 5.42.
The SQL for the Major Med Insur dimension looks like the following:

	 Select
	 Personnel_Recursion.Relationship
	 ,Insurance_Provider.Provider_Id As Provider_Id
	 ,Insurance_Provider.Provider_Name As Provider_Name
	 ,Personnel_Recursion.Parent_Function
	 ,Personnel_Subscriber.Employee_Id As Subscriber_Id
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	 ,Personnel_Subscriber.Employee_Name As Subscriber_Name
	 ,Personnel_Recursion.Child_Function
	 From
	 Personnel_Recursion
	 Left Outer Join Insurance_Provider As 	 	 	 	
	    Insurance_Provider
	 On Personnel_Recursion.Parent_Key = Insurance_Provider.	
	    Provider_Id
	 Left Outer Join Personnel As Personnel_Subscriber
	 On Personnel_Recursion.Child_Key = Personnel_	 	 	
	    Subscriber.Employee_Id
	 Where Personnel_Recursion.Relationship = ‘Major Med 	 	
	    Insur’

The result set, which is the Major Med Insur dimension, is in Figure 5.43.
The SQL for the Dental Insur dimension looks like the following:

	 Select
	 Personnel_Recursion.Relationship
	 ,Insurance_Provider.Provider_Id As Provider_Id
	 ,Insurance_Provider.Provider_Name As Provider_Name
	 ,Personnel_Recursion.Parent_Function
	 ,Personnel_Subscriber.Employee_Id As Subscriber_Id
	 ,Personnel_Subscriber.Employee_Name As Subscriber_Name
	 ,Personnel_Recursion.Child_Function
	 From
	 Personnel_Recursion
	 Left Outer Join Insurance_Provider As 	 	 	 	
	    Insurance_Provider
	 On Personnel_Recursion.Parent_Key = Insurance_Provider.	
	    Provider_Id
	 Left Outer Join Personnel As Personnel_Subscriber
	 On Personnel_Recursion.Child_Key = Personnel_	 	 	
	    Subscriber.Employee_Id
	 Where Personnel_Recursion.Relationship = ‘Dental Insur’

The result set, which is the Dental Insur dimension, is in Figure 5.44.
Figure 5.45 shows that, by adding Begin and End Dates, a recursive table can 

achieve a Type 2 time-variant relation. The SQL Where clause would look like the 
following:
Where Fact.Date between Recursion.Begin_Date and Recursion.
End_Date.

A Type 1 time-variant join can be achieved by using Current Date, where Cur-
rent Date is between the Begin Date and End Date of each row in a Recursive table. 
The SQL Where clause would look like the following:
Where Current Date between Begin Date and End Date
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A Type 3 time-variant join is best achieved by creating a separate Recursive join 
table, which reflects the Type 3 restatement of the past. Recursive tables are difficult 
enough on their own. The myriad joins possible with a Recursive table can be dif-
ficult to maneuver. The multiple Dimensions and Dimension Associations possible 
with a Recursive table can add to the confusion. Adding an alternate set of Dimen-
sions for the same time frame is usually too much opportunity for erroneous joins. 
Rather, data warehouse customers are best served by representing an alternate set of 
Type 3 Dimension rows in an alternate Type 3 Recursive table.

Recursive Data Model Summary

A Recursive Data Model is actually a join table, a flexible and powerful join table. 
It creates the ability to add, remove, and modify hierarchies and relations with no 
changes to physical table structures. Typically, data warehouse customers need a 
view to correctly navigate the joins in a recursive table. Once correctly navigated, a 
recursive table presents two additional advantages.

A recursive table is a very narrow table, which maximizes the number of rows 
that can be retrieved for every input/output (I/O).
A recursive table localizes numerous joins in one table space and index space, 
which also reduces the number of I/Os necessary to retrieve the join data.

These two advantages typically yield impressive performance on most RDBMS 
platforms.

Physical Data Model Summary

The three Physical Data Models used in data warehousing are the Dimensional Data 
Model, Third Normal Form Data Model, and Recursive Data Model. Variations 
of these data models present a myriad of potential benefits and limitations. Each of 
these methods has proven itself in the data warehousing community.

So, for your data warehouse, which one is right? All of them. Which one is 
wrong? None of them. The decision to use a form of data model or a variation of 
that form must be based on the individual circumstance of each data warehouse, 
which can include:

Existing infrastructure
Data warehouse budget
Available hardware
Available software
RDBMS platform
Data warehouse developer skills

n

n

n
n
n
n
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n
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126  n  Building and Maintaining a Data Warehouse

Data warehouse customer needs
Enterprise policy

At the end of the day, if a data warehouse is able to answer the customers’ ques-
tions and add value to the enterprise, you chose the right data model.

Data Architecture
A Data Model (Dimensional, Third Normal Form or Recursive) is only half of a 
Database Design. Data Architecture is the other half. A data warehouse can con-
sist of multiple databases, RDBMS platforms, and data models. Data Architecture 
completes the Database Design by defining the permutations of:

RDBMS Platform: What kind of machine?
RDBMS: What kind of relational software?
Data Model: What kind of data structure and organization?

This comprises the entire data warehouse. For most enterprises, the available 
options are quite numerous. No option is innately right or wrong. Every data 
warehouse designer must choose among the available options based on the goals, 
resources, and long-range plans of the enterprise.

The following sections outline the major and most common Data Architectures. 
These Architectures provide a framework within which data models exist. Data 
Architecture can span multiple RDBMS platforms, RDBMS applications, and data 
models. A data warehouse designer considers all the available options and environ-
ments to choose the Data Architecture that is best for the enterprise. From one 
enterprise to another, the available options and environments will be different. So, a 
Data Architecture that is optimal for one enterprise may not be optimal for another. 
The only best method is to be aware of all the options, do the homework, and pick 
the best set of options for the situation.

Enterprise Data Warehouse

An Enterprise Data Warehouse (EDW) is a single centralized database or set of 
databases on one platform. Typically, an EDW is the core of a data warehouse. The 
data in an EDW is owned, operated, and maintained by the data warehouse team. 
Other teams and applications may use the data in an EDW. They, however, do not 
manage or maintain the EDW. Rather, they are customers of the EDW.

Figure 5.46 shows an EDW containing six subject areas. EDW Data Architec-
ture locates all the subject areas of a data warehouse inside the EDW. By locating 
all the subject areas in one RDBMS, a data warehouse facilitates cross-subject que-
ries by its customers. Therefore, the subject orientation of a data warehouse does 

n
n

n
n
n
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not prevent customers from querying across a data warehouse, rather, the subject 
orientation of a data warehouse facilitates data integration across a data warehouse. 
Data warehouse customers, therefore, can simultaneously query tables from mul-
tiple subject areas because they are integrated and co-located on one RDBMS.

An EDW can use any of the data models (Dimensional, Third Normal Form, 
and Recursive). The decision to centralize the data warehouse into a single RDBMS 
does not predetermine the data model. That and all other options (e.g., Business 
Intelligence Reporting, RDBMS Platform, RDBMS) are still available. EDW Data 
Architecture means that a decision has been made to centralize the data of a data 
warehouse into one RDBMS on one RDBSM platform.

A centralized EDW concentrates all the data volume and throughput into one 
RDBMS and RDBMS platform. The data volumes and throughput, therefore, are 
a major consideration in the design of an EDW. Data model interaction with a 
RDBMS and RDBMS platform are part of that consideration. Knowing that the 
hardware will be pushed to its maximum capacity and throughput, a data ware-
house designer must do the homework necessary to optimize the databases, tables, 
and views on a specific RDBMS on a platform.

When all the data in a data warehouse is first integrated into an EDW, the data 
warehouse team is able to apply the rigor and discipline of Data Quality measure-
ments and communication of metadata to that data. Otherwise, data orbits the 
EDW without actually integrating into the EDW. In the best-case scenario, data 
is extracted directly from a source system or operational data store (ODS) (which 
gets its data directly from a source system) and integrated into an EDW. Handled 
that way, the rigor and discipline of the ETL applications can be applied to the 
data, which will increase the value of that data. Once in an EDW, the data can be 

Sales Manufactur-
ing

LogisticsPersonnel

EDW

Marketing

Purchasing

Figure 5.46  Enterprise Data Warehouse.
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queried, reported, and disseminated throughout the enterprise from the context of 
all the data in the data warehouse.

Data Mart

A Data Mart is a separate database or set of databases, each with a specific focus. 
That focus can be either a subject area, which is shown in Figure 5.47, or that focus 
can be a decision support need (e.g., auditing, loss prevention, or profitability).23 A 
Data Mart is created when an EDW cannot provide data in the manner required 
by data customers, and the business need for data in that form justifies the expense 
and overhead of a Data Mart. A common justification for a Data Mart is the need 
to allow input data from the business area. Frequently, such input data allows a 
“what if” analysis: What if the tax rate changed? What if productivity throughput 
changed? Obviously, input data is not enterprise data (i.e., the first Data Warehouse 
Principle). Another common justification for a Data Mart is data segregation. A 
business area needs to include sensitive data (e.g., proprietary, financial, medical, 
etc.), which cannot be available to anyone outside the business area. A business area 
needs to interact with an external business or government agency without allowing 
them access to all the other data. While RDBMS security functions can secure a 
database, table, or row of data, a Data Mart, which is physically or logically sepa-
rate, provides a strong demarcation between the data in an EDW and the data in 
a Data Mart.

A Data Mart is physically or logically separate from the EDW from which 
it receives data. A Data Mart is a subset of an EDW and receives at least some 
of its data from an EDW. The load cycle of a Data Mart, therefore, is no faster 
than the load cycle of the EDW that feeds it. A Data Mart may receive data from 
other sources, including the customers who use it or organizations external to the 
enterprise. Sometimes that is a significant reason for a Data Mart. A Data Mart 
can simultaneously provide decision support functions required by data warehouse 
customers and shield the EDW from questionable data sources.

A Data Mart must be managed and maintained by someone, such as the data 
warehouse team who may provide the management and maintenance. The busi-
ness area that uses a Data Mart may provide the management and maintenance 
of a Data Mart. This decision has more to do with intraenterprise politics than 
Data Architecture or Database Design. Customers who are savvy enough to use a 
Data Mart are also able to understand the implications of data as a business tool, 
regulated entity, and potential for power. For reasons such as these, a business area 
may want to exert authority over a Data Mart, or a data warehouse team may give a 
business area authority over a Data Mart. Regardless, the environmental and politi-
cal context of an enterprise is very real, and must be included in the consideration 
of a Data Mart. The Data Mart customer may not be able to tolerate interaction 
with the data warehouse team for multiple reasons (e.g., HIPAA (Health Insurance 
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Portability and Accountability Act) requirements, business cycles, logistics, etc.). 
In such circumstances a data warehouse team can divest itself of the ownership of a 
Data Mart. By providing the data that will go into a Data Mart, the data warehouse 
team can satisfy the requirements of such a Data Mart customer. These actions and 
reasons may seem on the surface to be contentious; however, they are cooperative in 
nature. A Data Mart is a tool by which a data warehouse team can give a customer 
what he wants when he wants too much, and they have the justification to get it.

A Data Mart can be achieved by two basic methods. The first method, men-
tioned above, is to create a physical set of databases and tables, which are located on 
a platform separate and removed from the data warehouse platform. This method 
provides the maximum possible isolation of the Data Mart. The data must be physi-
cally transported from the data warehouse platform to the Data Mart platform. 
The transportation of data to the Data Mart platform provides the opportunity to 
modify the data enroute to the Data Mart as required by the Data Mart customer. 
The resource consumption incurred by customers using the ODS have no impact 
on data warehouse customers. These advantages have a price. This method is also 
the most expensive, including the cost of a separate platform, data transport appli-
cations, and the maintenance of the separate platform and transport applications.

The second method is to define a set of views that draw their data from the 
data warehouse: a View Data Mart. A Data Mart based on views must, of course, 
be located on the data warehouse platform. While this method does not incur 
the overhead and cost of a separate platform, a View Data Mart does not have the 
independence of a separate Data Mart. A View Data Mart shares resources with 
the data warehouses. A View Data Mart still has the opportunity to introduce data 
not already in the data warehouse and the opportunity to isolate data via RDBMS 
security permissions. A table of sensitive or proprietary data can be located in the 
database, which otherwise holds views that point to the data warehouse. A View 
Data Mart can also reformat data from the data warehouse using SQL, displaying 
data in a format specifically needed by one business unit, but not the entire enter-
prise. These are the two basic methods of defining a Data Mart:

A platform separate from the data warehouse
Co-located with the data warehouse on the data warehouse platform

Operational Data Store

An Operational Data Store (ODS) reflects the data of a single subject area as it 
exists in the operational environment. This piece of data warehousing history is 
lost, but, looking at an ODS, someone must have said, “Well, that huge EDW 
is really impressive with all its data integration. I’ve got three subsidiary business 
units underneath my parent business unit. Can you tell me what’s happening in 
just my business unit (which is really four business units, one parent and three 

n
n
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subsidiary), without all that history? You know, what’s going on right now?” The 
value of an ODS is that it leverages the strategic technologies of a data warehouse to 
answer tactical questions. ODS customers can see the data from their business unit 
without interrupting or interfering with their operational business applications, or 
incurring the performance degradation caused by five years of history and Type 2 
dimensions.

Subject Orientation

An ODS focuses on a single subject area, which is typically a cohesive segment of 
the enterprise.24 The example in Figure 5.48 shows an ODS that is focused on the 
Marketing department. This allows the department to have a decision support sys-
tem, which reflects their department in its present state. Unlike a Data Mart, which 
can select data from an EDW to juxtapose data elements from different subject 
areas, an ODS receives its data directly from the business unit. An ODS, therefore, 
does not juxtapose data from multiple business areas. Rather, it is only a reflection 
of a single business area.

Data Integration

An ODS incorporates the data integration methods of the Data Warehouse Philos-
ophy. The form, Function, and Grain of data in an ODS are consistent throughout 
that ODS.25 Ideally, the Form, Function, and Grain of data in an ODS will also be 
consistent with the data warehouse, which helps avoid confusion among ODS and 
data warehouse customers.

Sequence

When an ODS is present, data acquisition and integration applications load the 
ODS from the operational environment. Then, a second layer of data acquisition 
and integration applications extract data from the ODS and load that data into the 
data warehouse.26 An ODS receives its data from operational applications before 
the data warehouse receives its data from the ODS.

System of Record

The sequence of data from the operational environment to an ODS to a data ware-
house necessarily and explicitly means the ODS is the System of Record of its subject 
for the data warehouse.27 The data acquisition and integration applications gather data 
from the ODS for that subject area rather than the enterprise.
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Volatile

A data warehouse is nonvolatile. That means that once data is written into a data 
warehouse, it remains in the data warehouse regardless of what happens in the 
enterprise. An ODS is volatile. When a data element is updated, inserted, or deleted 
in the operational environment, that same update, insert, or delete also occurs in 
the ODS.28

Short History

A data warehouse typically retains years of data. Large histories of data are neces-
sary to observe trends and patterns in data. An ODS, however, retains only a short 
duration of history.29 An ODS does not need five years of history to reflect a busi-
ness unit in its current state. Rather, the data volume necessary to store five years 
of history would interfere with the rapid response expected of an ODS. An ODS, 
therefore, holds only enough history to be considered current and up to date.

Detailed Data

An ODS stores operational data at its lowest grain. This allows the ODS to present 
a detailed reflection of the business unit.30 An ODS does not aggregate or sum-
marize data. The quick response time expected of an ODS removes the need to 
improve performance by preaggregating or presummarizing its data. The level of 
detail is limited by the granularity and detail available in the operational environ-
ment. So, an ODS will ideally reflect the grain and detail of the data already pres-
ent in the operational environment.

Cycles

The applications that gather operational data and load it into an ODS occur on a 
scheduled frequency. That frequency can be determined by the needs of the busi-
ness and the capacity of the applications.31 If the applications can refresh an ODS 
every hour, and the business needs hourly updates, then the applications will refresh 
the ODS every hour.

The data warehouse will extract its data from the ODS. The data warehouse, 
therefore, cannot extract its data from the ODS more frequently than the data in 
the ODS is refreshed. If a data warehouse did extract its data from the ODS more 
frequently than the data in the ODS is refreshed, the data warehouse would extract 
identical sets of data, which would yield no updates to the data warehouse. The 
ODS refresh cycle, therefore, must be equal to or more frequent than the frequency 
of the data warehouse cycle.
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Summaries and Aggregates

Data warehouse customers always have a common complaint—performance. Data 
warehouses always have a common problem—performance. Database tuning, SQL 
tuning, indexing, and optimizer improvements increase the performance of a data 
warehouse. Two methods, though, are applied in almost every data warehouse – 
Summaries and Aggregates.32

A Summary is a table that stores the results of a SQL arithmetic SUM state-
ment that has been applied to a Fact table. The arithmetic portion of a Fact table is 
summed, while simultaneously one or more hierarchical levels of detail are removed 
from the data in a Fact table. For example:

Intraday Fact data is summed at the Day level. The resulting data is stored in 
a Daily Summary table. For that data, the lowest grain is the Day.
Store Fact data is summed at the Region level. The resulting data is stored in a 
Region Summary table. For that data, the lowest grain is the Region.

The intention of a Summary table is to perform the summation of arithmetic 
Fact data only once, rather than many times. By incurring the resource consump-
tion necessary to summarize a Fact table, data warehouse customers will receive the 
previously summarized data they want quickly.

An Aggregate is a table that stores the results of SQL JOIN statements, which 
have been applied to a set of Dimension tables. The hierarchies and attributes above 
an entity are prejoined and stored in a table. For example:

The Product entity, its levels of hierarchy and management area prejoined 
into a single table that stores the result set. The grain of this result set is the 
Product.
The Facility entity, its levels of geographic and management hierarchy are 
prejoined into a single table that store the result set. The grain of this result 
set is the Facility.

The intention of an Aggregate table is to perform the joins of large sets of 
Dimension data only once. By incurring the resource consumption necessary to 
join a series of Dimension tables, data warehouse customers will receive data that 
uses those levels of hierarchy quickly.

An Aggregate is not a pure Dimension table as it would appear in a Dimen-
sional Data Model. An Aggregate is a physical table that holds the result set of join 
statements, which are commonly used by data warehouse customers and are high 
system resource consumers. The point of an Aggregate is to incur the high system 
resource consumption once during off-peak hours to avoid multiple consumptions 
of system resources during peak hours. That being the case, an Aggregate table 
can denormalize along multiple hierarchies. The intersection of those multiple 
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hierarchies is the grain of an Aggregate table. The hierarchical intersection and 
lowest level of granular detail must be the same because they are the grain of an 
Aggregate table.

Closing Remarks
Database Design achieves two major goals:

Organize data structures within a database.
Organize databases within a data warehouse.

The three forms of data model (Dimensional, Third Normal Form, and Recur-
sive), and the permutations and variations within each, provide a set of strategies 
by which a Database Design can organize data structures within each database. 
The three forms of Data Architecture (EDW, Data Mart, and ODS) provide a 
set of strategies by which a Database Design can organize databases within a data 
warehouse.

RDBMS technology and data warehousing skills have advanced such that all 
permutations of data model and data architecture are viable options. Which set of 
options is the right set for a specific data warehouse? The answers (yes, a data ware-
house can have multiple right answers) can only be found within the context of a 
specific enterprise and environment.

What hardware is available?
What software is available?
What is the available budget to purchase hardware and software?
What skills exist inhouse?
What is the available budget to purchase additional skills?
What is the long-term architecture plan of the enterprise?
Who are the customers?
How will they use the data warehouse?

These questions only scratch the surface, but they will guide a data warehouse 
designer to the right solutions. After that, a data warehouse designer has the task of 
choosing the best solution from among the right solutions. The only decision that has 
already been made is: A data warehouse resides on a RDBMS.
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Chapter 6

Data Acquisition 
and Integration

Introduction
Data Acquisition and Integration is a name given to the set of applications that pop-
ulate a data warehouse (Figure 6.1). This process consists of three main functions.

Extract: Otherwise known as Data Acquisition, this function reaches into a 
source system to retrieve data. The data yielded by this function is known as 
Source Data.
Transform: The first half of Data Integration, this function inspects, cleanses, 
and conforms Source Data to the needs of a data warehouse. The data yielded 
by this function is known as Load Data.
Load: The second half of Data Integration, this function updates a data ware-
house using the data provided in the Load Data.

These three functions (Extract, Transform, and Load) are more commonly 
known as ETL. An ETL application is the most comprehensive line between two 
points. These two points are the enterprise and all its source systems on one end and 
a data warehouse on the other.

The first concern of an ETL analyst, therefore, is these two points. The first 
point is the Source System. The enterprise and all its source systems are collectively 
referred to as the Source System, which may actually consist of multiple information 
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systems, platforms, and geographies. For the purpose of discussion, however, they 
are referred to collectively as the Source System. The second point is the Target 
System. For an ETL application, the Target System is always a data warehouse or 
a section of a data warehouse architecture (e.g., Operational Data Store [ODS] or 
Data Mart). Prior to contemplating any ETL application design or architecture, an 
ETL analyst must first focus on and define the two points.

Source System Analysis
Chapter 3 focused solely on Source System Analysis. The principles of this analysis 
include:

System of Record: The single authoritative statement of an entity or event
Entity Data: The physical and logical members and agents of the enterprise
Arithmetic Data: Measurements of enterprise activity
Numeric Data That Isn’t Arithmetic: Data with mismatched form and 
function
Alphanumeric Data: Text and descriptive data
Granularity: Hierarchical level of detail
Latency: Delay in the arrival and availability of data
Transaction Data: Conjunction of entity and arithmetic data to measure an 
event
Snapshot Data: Conjunction of entity and arithmetic data to measure the net 
effect of multiple events over a period of time

The methods of Source System Analysis discussed in Chapter 3 include:

Data Profile: A static view of the enterprise through its data
Data Flow Diagram: A dynamic view of the enterprise through its data in 
motion
Data State Diagram: A dynamic view of the enterprise through its data in 
motion and business relevance and meaning
System of Record: A discernment of the authoritative data within an 
enterprise

If during the previous analysis activities, the Source System Analysis was omit-
ted or abbreviated, an ETL analyst should return to the Source System Analysis. 
The potential of an ETL application failing to fulfill its requirements is greatly 
increased, if not completely assured, when the Source System Analysis is incom-
plete. The Source System Analysis provides an ETL analyst the information neces-
sary to gather data from the source system. Even if the data warehouse has been 
designed without the advantage of the information provided by the Source System 
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Analysis, an ETL analyst should return to, and finish to completion, the Source 
System Analysis.

Target System Analysis
The Target System is a data warehouse, or a component of a data warehouse archi-
tecture. The data architecture, data model, and data warehouse design of that 
data warehouse are prerequisites for the design and creation of an ETL applica-
tion. Usually, the design of a data warehouse stops at the data model. The data 
warehouse designer will usually choose a Relational Database Management System 
(RDBMS), Business Intelligence Reporting architecture, and data model. Data 
warehouse design should also indicate how the data warehouse will reflect the enti-
ties of the source system (e.g., purchase orders, machines, people, etc.) as those 
entities cycle through their states (e.g., reviewed, approved, commissioned, hired, 
etc.). For example:

When the source system creates an instance of a data entity, how will the data 
warehouse reflect that instance?
When the source system modifies the state of a data entity, how will the data 
warehouse reflect that modified state?
When the source system removes an instance of a data entity, how will the 
data warehouse reflect the removal of that instance?
When a business event occurs, how will the data warehouse reflect that 
event?
When a business event cycles through its states (initiation, transaction, clo-
sure), how will the data warehouse reflect those states?

An ETL analyst asks such questions because the answers provide requirements 
that will be used to design and develop the ETL applications, which will load data 
into a data warehouse. The process of gathering these answers is the Target System 
Analysis.

The purpose of Target System Analysis is to identify and document expectations 
of the data in a data warehouse. These expectations come from multiple constituents. 
The data warehouse designer has expectations of the data in a data warehouse. Some 
of the data warehouse designer’s expectations will be explicitly stated in the data 
architecture, data model, and data warehouse design deliverables. Target System 
Analysis will reveal and clarify the data warehouse designer’s implicit expectations of 
a data warehouse. Data warehouse customers also have explicit and implicit expecta-
tions of the data in a data warehouse. The Target System Analysis will also reveal and 
clarify the expectations of data warehouse customers. Finally, when the expectations 
of the data warehouse designer contradict the expectations of the data warehouse 
customers, the Target System Analysis provides an opportunity to recognize and 
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resolve such discrepancies. The goal of Target System Analysis is to create a set of 
expectations (i.e., requirements) so explicit that these expectations can be compared 
directly to the data in the data warehouse. The customers will compare the data in 
the data warehouse to their expectations. Therefore, an ETL analyst would be wise 
to perform that comparison during development and testing.

Data warehouse customers have explicit and implicit expectations of the data 
in a data warehouse. Looking at a data element named SALES, data warehouse 
customers explicitly expect to see sales data in a SALES table. Explicit expectations 
are easy to gather. Implicit expectations, however, can be more difficult. An ETL 
analyst, therefore, must pursue implicit expectations (i.e., assumptions) about the 
data in the SALES table. For instance, implicit expectations can be found with the 
following questions:

Do you expect to see all sales data (i.e., complete)?
When sales data is incomplete, would you like to know what data is missing 
(metadata)?
Do you expect to never see the sales data duplicated (data quality)?
Would you like to know when the next batch of sales data becomes available 
(metadata)?

For questions such as these, data warehouse customers typically answer, “Well, 
yes.” Requirements such as these are not addressed in the creation of a data model 
because they do not contribute to an understanding of entities, attributes, and 
relationships. Requirements questions such as these are discussed in the following 
sections:

Direct Requirements
Indirect Requirements

Direct Requirements

Direct Requirements can best be understood as the explicit expectations of data 
warehouse customers. The meaning of each data element and how to achieve that 
meaning are the focus of Direct Requirements. An ETL analyst must investigate 
completely the meaning of each and every data element in a data warehouse as 
perceived by data warehouse customers.

Sometimes multiple populations of data warehouse customers have different 
and irreconcilable expectations for a data element. For example, a derived data 
element (Gross Profit) can have multiple meanings. The process of gathering ETL 
Direct Requirements typically discovers a few instances of multiple meanings. This 
is no reason to panic. Two meanings for Gross Profit indicate that there are mul-
tiple Gross Profit data elements. The ETL analyst should pass such anomalies back 
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to the data warehouse designer for resolution. Once the anomaly is resolved, the 
ETL analyst can continue gathering the business meaning (i.e., customer expecta-
tion) of all data elements.

Direct Requirements are captured during Target System Analysis. That is when 
the meaning and behavior of a data warehouse and, therefore, all its data elements, 
are gathered. Figure 6.2 illustrates the progression of customer expectations to 
Direct Requirements.

An ETL analyst cannot assume without question that the Target System Anal-
ysis defines all Direct Requirements. If a Target System Analysis is expected to 
serve the purpose of documenting all Direct Requirements, then the Target System 
Analysis document should be audited to determine whether or not it meets that 
expectation. More realistically, an ETL analyst can use the Target System Analysis 
as a foundation for an ETL Direct Requirements document, which can provide 
definitions and customer expectations that are missing from the Target System 
Analysis document. Regardless of the requirements documents, an ETL analyst 
must understand data warehouse customer expectations of the data they will see in 
a data warehouse. That is the goal and focus of Direct Requirements.

Indirect Requirements

Indirect Requirements can best be understood as the information customers need 
for them to use a data warehouse to do their job. Indirect Requirements address 
the implicit expectations of data warehouse customers. Unless told otherwise, data 
warehouse customers assume the data in a data warehouse matches their expecta-
tions. An ETL application, therefore, has a responsibility to stipulate when a data 
warehouse does not match their expectations.

Indirect Requirements come directly from the Data Quality Service Level 
Agreement (SLA) and Metadata SLA (Figure 6.3). The Data Quality SLA and 
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Analysis 

ETL Direct
Requirements 

Customer
Expectations

Figure 6.2  Direct Requirements.
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Metadata SLA gather requirements from data warehouse customers specifically for 
the purpose of helping them use a data warehouse.

Frequently, implicit expectations are not known until after a data warehouse 
has had the opportunity to violate these assumptions. As data warehouse custom-
ers come to understand their own implicit expectations, the Data Quality SLA 
and Metadata SLA documents can be updated to include these implicit expecta-
tions. This progression is normal and should not be viewed as a problem. A data 
warehouse team, in conjunction with data warehouse customers, will continue to 
identify and add new Data Quality and Metadata requirements throughout the life 
of a data warehouse.

Throughout the life of a data warehouse, the focus and goal of Indirect Require-
ments is the information customers need to use a data warehouse to do their job. 
The people, jobs, and skill levels may change. As these changes occur, the Data 
Quality and Metadata Programs must maintain their focus on deriving the maxi-
mum value possible from a data warehouse.

Direct and Indirect Requirements

The Direct and Indirect Requirements together (Figure 6.4) capture all expecta-
tions of data warehouse customers. At the conclusion of the requirements-gathering 
effort, all customer expectations, explicit and implicit, should be in one of these two 
documents.

During the subsequent design and development phases in the creation of an ETL 
application, no new customer expectations can be added to the design or develop-
ment deliverables. Instead, any new customer expectations must be added to either 
the Direct or Indirect Requirements and then brought forward.

Data
Warehouse

Data Quality
SLA

ETL Indirect
Requirements 

Customer
Expectations

Metadata
SLA

Figure 6.3  Indirect Requirements.
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Language

The language of a Target System Analysis must be painstakingly precise. As with 
all requirements documents, a Target System Analysis is an agreement between an 
ETL analyst and data warehouse customers. By accepting a Target System Analysis 
deliverable, both the ETL analyst and data warehouse customers agree on its con-
tents and meaning.

If the data warehouse does not match the expectations of the data warehouse 
customers, they will refer to the Target System Analysis and declare, “The data 
in the data warehouse does not match the data as described in the Target System 
Analysis.” In such a circumstance, if the verbiage in the Target System Analysis 
allows any room for interpretation, the data warehouse customers will interpret it 
in their own way and by their own understanding, which will probably not match 
the data warehouse. For example:

The ETL will respond appropriately.
The row will change its state.
When the data is ready.

These phrases are so vague that they can only be interpreted. A Target System 
Analysis that uses such language will communicate more confusion then informa-
tion. A Target System Analysis written with explicit and precise language will com-
municate clearly, allowing no room for interpretation. Such language should:

Name the exact database, table, and field.
Name the exact data values and their locations, which constitute a prerequi-
site for any action.
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Figure 6.4  Direct and Indirect Requirements.
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Name the exact sequence of processes, including predecessors and 
successors.
Name the exact data values, which constitute each state and their meanings.

After all the work necessary to gather a complete set of requirements, the lan-
guage with which these requirements are communicated can limit or enhance their 
success.

Data Profile

All ETL applications share the risk of loading wrong data into a data warehouse. 
A data profile of the Target System allows an ETL analyst to define or describe the 
data that will be loaded into a data warehouse before actually loading the data. The 
Data Profile includes three sections similar to the data profile from the Source Sys-
tem Analysis. Each section is intended to provide a cross-section description of data 
warehouse data elements in terms of the intended nature of the data (Inventory of 
Data Elements) and how the data warehouse data elements will relate to each other 
(Data Model).

Inventory of Data Elements
Name
Format
Domain of values
Range of values
Frequency of distinct values

Inventory of Data Entities
Combined data elements that define logical data
Core data element
Descriptive data elements
Associative data elements

Data Model of the Target System
Logical
Physical
ETL keys
Foreign key relationships
Data Entity relationships

The purpose of a Data Profile is to define or describe the data elements in a data 
warehouse. The inventory of data elements is based on the intentions of the data 
warehouse designer and the expectations of the data warehouse customers. The 
logical and physical data models are provided by the data warehouse designer. The 
definition of the ETL keys enables an ETL application to uniquely identify every 
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business instance within a data entity, which is different from a primary key that 
identifies every row.

An ETL analyst must be able to explain the data that was loaded into a data ware-
house. The Data Profile captures cross-section descriptions of the data in the data 
warehouse. Knowledge of the Target System allows an ETL analyst to demonstrate 
how well the data in a data warehouse conforms to expectations.

Data State
Data State Analysis is used to capture the various business meanings of data ele-
ments as they flow through a data warehouse. A data warehouse may not include 
all the data states present in the operational source system. Therefore, the presence 
of data states in a source system does not imply the presence of these data states in 
the data warehouse. Also, data states in the source system may be different from the 
data states in the data warehouse. The Data State Analysis identifies these data states 
that are intended to be captured in the data warehouse (Table 6.1). For example:

An ETL analyst must be able to explain the data that was loaded into a data 
warehouse. The Data Profile captures cross-section descriptions of the data in the 
data warehouse, excluding time and data state. Knowledge of the Target System 
allows an ETL analyst to demonstrate how well the data in a data warehouse 
conforms to expectations. Data State Analysis further enables an ETL analyst to 
identify expectations of a data warehouse by identifying the path within a data 
warehouse through which a data entity travels as it changes business meanings and 
relevance.

Data Mapping
Data Mapping is the process by which an ETL analyst identifies the source data, 
specific to location, state, and timing, which will be used to satisfy the data require-
ments of a data warehouse. Transformations necessary to create the data elements, 
as they will be stored in a data warehouse, are also included in a Data Mapping. 
Data Mapping documents can be in the form of a spreadsheet, a diagram, or text 
document. The form is not important. The important aspects of a Data Mapping 
document are:

Table 6.1  Data States
Data Element Source System Data State Data Warehouse Data State

Product Proposed Excluded: n/a

Manufacturing Design Finalized Included as Finalized

Invoice Paid in Full Included as Complete
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The participants in the Data Quality SLA must easily understand the Data 
Mapping document. The Data Mapping document will be an input into the 
Data Quality SLA and the Metadata SLA. If the participants in the Data 
Quality SLA cannot understand the Data Mapping document, they will be 
less effective addressing data quality problems.
The Data Mapping document must clearly and precisely identify the source 
data element that will be used, such that there is no ambiguity about the loca-
tion, state, or timing of the extract of a data element.
The Data Mapping document must clearly and precisely identify the target data 
element that will be populated, such that there is no ambiguity about the loca-
tion and state of the data element as stored in the data warehouse.
The Data Mapping document must clearly and precisely define the transfor-
mations necessary to create the data element as it will be stored in the data 
warehouse.

Figure 6.5 illustrates, at a conceptual level, these four elements.
Simple data mappings may require no transformation at all, such as the map-

ping in Table 6.2.
Derived data mappings may require simple transformations, such as the map-

ping in Table 6.3.
Derived data mappings may cause recursive data mappings, such as the map-

ping in Table 6.4.
The entire lineage from specific source data elements to specific target data ele-

ments is captured in a Data Mapping. That lineage includes all transformations, 
modifications, and recursive mappings. Any new source or target data elements 
introduced to an ETL application must begin in the Data Mapping.

The Data Mapping must satisfy all Direct Requirements. Any Direct Require-
ment not satisfied in a Data Mapping will not be satisfied in a data warehouse either. 
Tracing Direct Requirements to the Data Mapping, therefore, can help verify that 
no Direct Requirements were missed.

The Data Mapping is the basis for the Physical Design. The purpose of the 
Physical Design is to achieve the lineage shown in the Data Mapping, which satis-
fies all Direct Requirements. Physical Design, therefore, must wait for completion 
of the Data Mapping.

Business Rules

Finally, the Target System Analysis is the opportunity to document the business 
rules that will govern data in the data warehouse. The Data Profile, Data State 
Diagram, and Data Mapping provide the best opportunity to identify the business 
rules of the data warehouse. These business rules come in three basic varieties.
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Intrarow Business Rules: Column A + Column B = Column C. The business 
rule exists entirely within each individual row. All the data and information 
necessary to validate the business rule is present in a single row. An Intrarow 
business rule can only be validated one row at a time because that business 
rule applies to only one row at a time.

n

Table 6.2  Simple Data Mapping
Source Data Element Transformation Target Data Element

Length in kilometers n/a Length in kilometers

Table 6.3  Derived Data Mapping
Source Data Element Transformation Target Data Element

Length in kilometers Multiply by 1,000 Length in meters

State: Proposed
Timing: Beginning of life
cycle

State: Reviewed
Timing: Phase 2 of life
cycle

State: Approved
Timing: Production
phase of life cycle

State: Obsolete
Timing: End of life cycle

Source System
Data = PRODUCT

State: Active

State: Inactive

Target System
Data = PRODUCT

Transformation

Transformation

DATA MAPPING FROM SOURCE TO TARGET 

Figure 6.5  Data Mapping.
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Intratable Business Rules: Row 1.Column A + Row 2.Column A = Row 
3.Column B. This business rule spans across rows within a data warehouse 
table, but still remains within the table. All the data and information neces-
sary to validate the business rule is present in a single data warehouse table. 
An Intratable business rule can only be validated one table at a time because 
that business rule applies to only one table at a time.
Cross-Table Business Rules: Table 1.Column A = Table 2.Column B. The 
business rule spans across sets of data warehouse tables. The data and infor-
mation, therefore, may not be available in the data warehouse. The data may 
be late arriving. Cross-Table business rules, therefore, require more effort to 
define.

Business rules will be used to create the Data Quality validations of data as it 
flows through the ETL application on its way to the data warehouse. Therefore, any 
data elements in the data warehouse that should maintain a consistent behavior, 
and can affect the perceived quality of the data warehouse, should be included in 
the list of Business Rules.

n

n

Source Data Element Transformation Target Data Element 

Source Data Element Transformation Target Data Element 

Source Data Element Transformation Target Data Element 

Length in kilometers 

Price per meter 

Price per meter 

Price per meter 

Price per kilometer 

Total Price Length in kilometers  

Price per kilometer  

Multiply 

 n/a  

 n/a  

Multiply by 1,000 

Length in kilometers 

Table 6.4  Recursive Data Mappng
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Architecture
Early ETL applications were physically designed on the assumption that three plat-
forms were involved:

Source system platform
ETL platform
Data Warehouse platform

These three platforms equated to three physically separate and individually 
whole computers (Figure 6.6).

Since then, ETL analysts realized they could leverage the computing power 
of a target RDBMS (i.e., a data warehouse). ETL analysts moved the Transform 
application over to the data warehouse RDBMS (Figure 6.7). This physical design 
is called ELT because the Load application had been moved in front of the Trans-
form application.

Within a Load application, the final Update function will always be the last 
function because the final purpose and destination is a data warehouse. All physical 
designs, therefore, culminate at the update of a data warehouse.

So, all physical designs begin with an Extract application and end with an 
Update function. First, all ETL/ELT physical designs must extract data from a 
source system, otherwise, there is no data to transform, load, or update. Second, all 
ETL/ELT physical designs must update a data warehouse, otherwise, they do not 
fulfill their final purpose. Everything that happens between the Extract and Update 
is up to the discretion of the ETL analyst (Figure 6.8). Any operation can happen 
on any platform most capable of that operation, and the operations performed on 
various platforms are typically Transform operations.

A physical design that crosses multiple Transform platforms must observe two 
caveats:

Load: Any function that pushes data from a sending platform to a receiving 
platform has the responsibility to verify that all transported data was received 
exactly as intended.

n

n

n

n

Data
Warehouse

Source System Transform

Extract Load

Figure 6.6  Extract, Transform, and Load (ETL) platform.
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Extract: Any function that pulls data from a source platform has the respon-
sibility to verify that all transported data was received exactly as intended.

Extract, Transform, and Load (ETL)
In an ETL application (Figure 6.9), data is extracted (i.e., acquired) from an opera-
tional system. The extracted data is captured on a platform that is controlled by the 
ETL application. This process of capturing data on a controlled platform is called 
Staging, and the platform is called a Staging Platform or Staging Environment. 
At this point, the staged data is in its raw form, which is identical to its form and 
state when it was in an operational application. In this raw, pretransform state, the 
staged data is called Source Data.

A Transform application performs all data modifications to the Source Data 
necessary to conform it to the rules, layout, and format of a data warehouse. The 
transformed data is also captured on a platform that is controlled by the ETL appli-
cation. The posttransform data is also captured on a Staging Platform or Staging 
Environment. In this posttransform state, however, the staged data is called Load 
Data.

A Load application bridges the gap between the ETL and Staging Platforms 
and the data warehouse platform. A Load application reads the Load Data and 

n

Data
WarehouseSource System

Extract Load
Transform

Figure 6.7  Data Warehouse Relational Database Management System (RDBMS).

Platform 02
Source System

Extract Load
Data

Warehouse
Update

Data
Warehouse

Platform 01

Figure 6.8  Multiple Extract, Transform, and Load (ETL) platforms.
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performs the necessary inserts, updates, and deletes to a data warehouse. When the 
Load application has finished, the ETL application has completed.

Extract, Load, and Transform (ELT)

An ELT application (Figure 6.10) performs all the functions and purposes of an 
ETL application. The difference between an ETL application and an ELT applica-
tion is the platform on which the application performs it functions.

An ELT application uses the ELT platform as a momentary hub enroute to the 
data warehouse RDBMS platform. The ELT platform extracts operational data, 
and loads it directly to staging tables on the data warehouse RDBMS platform. All 
the transform functions are performed on the data warehouse RDBMS platform. 
Finally, the data warehouse is loaded from within the data warehouse RDBMS 
platform.

ELT has two advantages.

A data warehouse RDBMS platform is a powerful platform. All the resources 
(CPU seconds, throughput, etc.) of a data warehouse RDBMS platform are 
available to an ELT application.
A copy of look-up data need not be kept and maintained on the ELT platform 
because the data warehouse RDBMS has access to all the data in the data 
warehouse.

ELT has one disadvantage.

A portion of the data warehouse’s resources (CPU seconds, throughput, etc.) 
are consumed by someone other than a data warehouse customer. Given suffi-
cient data volumes and transformation complexity, this could adversely affect 
data warehouse customers

For discussion purposes, ETL and ELT applications will be referred to collec-
tively as ETL. The principles and methods discussed in the following sections apply 
to ETL and ELT equally.

ETL Design Principles

The following ETL Design Principles are a set of lessons learned. ETL applications 
are subject to unexpected circumstances and, therefore, should expect the unex-
pected to occur. An ETL analyst must work hard to assure an ETL application is 
bulletproof, knowing each ETL application will behave as intended, even if the 
source system does not.

n

n

n
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ETL Process Principles

ETL Process Principles 1 through 6 address specifically the executable part of  
an ETL application, i.e., the code that moves, copies, and transforms data. The 
executable part of an ETL application is similar to a manufacturing plant. Raw 
materials come in one door and finished products go out another. Inside the manu-
facturing plant, an assembly line is the path by which raw materials are converted 
to finished products by means of many independent and interdependent manufac-
turing functions (stamping, dyeing, casting, trimming, etc.).

The same concepts that apply to manufacturing also apply to ETL. Data anom-
alies can enter an ETL application as raw data or transformed data. Some anoma-
lies only manifest themselves deep into the manufacturing process. Therefore, the 
ETL manufacturing processes that convert and transform raw data (i.e., materials) 
into a data warehouse (i.e., finished product) must manage and control the data 
within each manufacturing function. The strength and robustness of that control 
are a function of a Data Quality SLA, Metadata SLA, and discretion of the ETL 
analyst designing the application.

ETL Process Principles provide six design principles by which an ETL ana-
lyst can manage and control data as it passes through an ETL application. An 
ETL application can avoid data anomalies by incorporating ETL Process Principles 
throughout the entire manufacturing process. The following topics describe each of 
the ETL Process Principles on a conceptual level.

Principle 01: One Thing at a Time

Multitasking, the ability to perform two or more tasks simultaneously, is perceived 
as a positive characteristic both in people and computer applications. Multitasking 
conserves time and resources and is contrary to all things ETL. Applications that 
multitask are built with the assumption that all will go as planned, that all input 
values will be reasonable and valid. An ETL application, however, assumes that 
nothing will go as planned, and that some input values will be unreasonable and 
invalid.

Efficiency through multitasking is a basic principle of application design. In 
operational applications, the benefits of efficiency have been always been obvious, 
and the risks have been few. For these reasons, efficiency through multitasking 
is a standard design principle for all application design, except ETL application 
design. The benefits and risks of multitasking in ETL application design are dif-
ficult to notice because they are so different. The following example highlights the 
difference.

Many applications are built on a relational database (RDBMS) platform. Rela-
tional applications manipulate data using SQL. The following is an example of a 
SQL statement that can be found in any operational application.
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	 Select
	    EMPLOYEE.EMPLOYEE_ID
	 ,SUBSTR(EMPLOYEE.LNAME & ‘,’ EMPLOYEE.FNAME & ‘ ‘ & 	 	
	 EMPLOYEE.MNAME) AS NAME
	 , (PAYROLL.BASE_SALARY*TAX_MATRIX.TAX_RATE) AS 	 	
	 TOTAL_TAX_AMT
	 ,((PAYROLL.BASE_SALARY*TAX_MATRIX.TAX_RATE) /PAY_	 	
	 CALENDAR.NUM_WEEKS) AS WEEKLY_TAX_AMT
	 FROM EMPLOYEE
	 INNER JOIN PAYROLL
	    ON EMPLOYEE.EMPLOYEE_ID = PAYROLL.EMPLOYEE_ID
	 INNER JOIN TAX_MATRIX
	    ON EMPLOYEE.TAX_REGION_ID = TAX_MATRIX.TAX_REGION_ID
	    AND EMPLOYEE.DECUCTION_ID = TAX_MATRIX.DEDUCTION_ID
	    AND EMPLOYEE.EXEMPTION_ID = TAX_MATRIX.EXEMPTION_ID
	 INNER PAY_CALENDAR
	    ON PAYROLL.PAY_DATE = CALENDAR.DATE
	 WHERE EMPLOYEE.STATUS IN (‘FT’, ‘PT’)
	    AND EMPLOYEE.DRUG_TEST = ‘PASS’

This SQL calculates, for all Full-Time and Part-Time employees, the total and 
weekly tax amounts. In a closed-loop payroll application, this sort of SQL statement 
would be valid. This SQL, in an ETL application, would not be wise. This SQL 
is performing numerous actions simultaneously. Each of those actions implicitly 
incurs one or more assumptions. Some of those simultaneous actions and assump-
tions are listed in Table 6.5.

In an ETL application, simultaneous actions are not a problem. Assumptions 
that accompany simultaneous actions are a problem. If any assumption is violated, 
then the set of simultaneous actions fails to deliver a complete and accurate set of 
data. The cause of such a failure, a violated assumption, is usually extremely dif-
ficult to discern. The occurrence of such a failure may go unnoticed because no 
part of this SQL would expose a violated assumption. A better approach would be 
to perform each action individually and then combine the separate result sets into 
one set of data. 

This example of multitasking within a SQL statement can also occur in any 
other language and platform. For example:

An ETL application written within an ETL tool can transform event trans-
action records, write them to a file, and load them to a table, all in one 
piece of code. When questionable event transaction records are in the data 
warehouse:

Was the source data bad?
Did the fact transformation malfunction?
Was the problem in the creation of the load file?
Did the load modify the data?
Which assumption was violated?

n

−
−
−
−
−
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An ETL application written in COBOL can extract a list of manufacturing 
processes, transform manufacturing specifications, and write them to a load 
file. When questionable specification records are in the data warehouse:

Was the source data bad?
Did the transformation malfunction?
Was the problem in the creation of the load file?
Did the load modify the data?
Which assumption was violated?

Principle 01: One Thing at a Time is basically a granular modular approach. 
Benefits of using a granular modular approach include:

Create the opportunity for Data Quality and Metadata functions to integrate 
within an ETL application.
Create the opportunity to isolate violated assumptions.
Remove any question about the sequence and precedence of ETL functions, 
regardless of the language or platform.

A granular modular design that does one thing at a time is inefficient. Capacity 
analysts and resource planners will most likely challenge such an inefficient design, as 
well they should. An ETL analyst must find that delicate balance between the benefits 
of modular granularity and the risks of violated assumptions.

At the lowest total cost of granular modularity (Figure 6.11), not all functions 
will be isolated in a modular fashion. The functions with any real risk of violated 
assumptions, however, will be isolated.

Principle 02: Know When to Begin

Operational systems rely on operational job schedulers to know when the condi-
tions have been satisfied for a job to begin. Typically, those conditions are expressed 
in terms of jobs and completion codes. A satisfactory completion code from a prec-
edent job will trigger the beginning of a subsequent job, as shown in Figure 6.12.

ETL applications, however, rely on conditions within precedent data (i.e., Begin 
Conditions). When precedent Begin Conditions have been satisfied, subsequent 
applications relying on those conditions can safely begin. In the example above 
(Figure 6.12), Job 02 would examine data created by Job 01, not just the return 
code generated by Job 01, and Job 05 would examine data created by Job 01, Job 
02, Job 03, and Job 04.

An Extract application will examine an operational source system prior to 
extracting data (Figure 6.13). Examination of source data and associated data 
within an operational source system can provide clues as to whether or not the 
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source data is truly ready for extraction. Data elements associated with source data 
may include flags, inventories, or exceptions present in operational source data.

A Transform application will examine data provided by preceding Extract appli-
cations, as shown in Figure 6.14. A Load application will examine data provided 
by preceding Transform applications to determine whether or not Begin Condi-
tions have been satisfied. In these circumstances, Data Quality and Metadata infor-
mation prove to be extremely helpful, and subsequent applications may require 
preceding applications (within an ETL application) to provide Data Quality or 
Metadata information.

Principle 02: Know When to Begin is basically a backward-looking design 
principle. Rather than place all trust in return codes and job schedulers, an ETL 

Risk of Violated AssumptionsCost of Granular Modularity

Total Cost of Granular Modularity

Total Cost of Granular Modularity

Figure 6.11  Cost of Granularity.
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Figure 6.12  Know When to Begin.
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application can look backward to examine the data associated with precedent con-
ditions to determine whether or not Begin Conditions have been satisfied. Begin 
Conditions mitigate the risk and cost of errors in input data. The choice to include 
Begin Conditions is a balance between the probability, risk, and cost of input errors 
and the expenses incurred by implementing Begin Conditions.

Principle 03: Know When to End

Principle 03: Know When to End is a forward-looking design that requires an ETL 
application to examine data it has created. An individual ETL application is best 
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Figure 6.13  Operational Source System.
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equipped to know what it intended to create. After completing the core functions 
of an ETL application, that same application can review its own output, as shown 
in Figure 6.15. A post-application review of output data gives an ETL application 
the opportunity to warranty data prior to passing it on to subsequent applications 
or data warehouse customers.

An Extract function examines data prior to releasing it to a Transform applica-
tion. The Transform application also reviews load-ready data prior to warranting 
that data as ready for a Load application. A Load application can query a data ware-
house to determine whether or not data was successfully loaded. If the data created, 
or loaded, by an ETL application fails to pass this final review, an ETL applica-
tion has many options, depending on the severity of the failure. Those options 
include data remediation, rebuild the output data completely, and interrupt the job 
stream.

Principle 03: Know When to End is a forward-looking design principle. An 
ETL application can verify, by examining its own output data, whether or not that 
ETL application has completed satisfactorily. Then, the results of that final review 
can be captured as Data Quality or Metadata information, and shared with sub-
sequent ETL applications. End Conditions mitigate the risk and cost of errors in 
output data. The choice to include End Conditions is a balance between the prob-
ability, risk, and cost of output errors and the expenses incurred by implementing 
End Conditions.

Principle 04: Large to Medium to Small

Principle 04: Large to Medium to Small is a design principle that typically spans 
across an entire ETL application. Large to Medium to Small is one of three overall 

ETL
Job 05

DQ
Information

Metadata
Repository

Input
Data 01

Input
Data 02

Input
Data 03

Output
Data 01

Output
Data 02

Output
Data 03

End
Condition

01

End
Condition

02
End

Condition
03

Figure 6.15  Know when to end.
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design methods. Coincidentally, Large to Medium to Small happens to work the 
best.1 The three overall design methods are:

Small to Medium to Large
Just In Time
Large to Medium to Small

Small to Medium to Large functions like a river. Typically, rivers begin from a 
small spring or melting glacier. Then, as other rivers join, the initial river grows by 
the volume of additional rivers. Likewise, Small to Medium to Large begins with 
a “driver” data element. As data is added to that data element, the data that flows 
through an ETL application grows to its final form, as shown in Figure 6.16.

An inherent weakness of this design is the absence of the excluded data. Appli-
cations bring data into the data stream, but only the data that is perceived to be 
needed by that data stream. If data not included in the data stream becomes rel-
evant and necessary later in the data stream, then that ETL application will not 
have the data it needs. Small to Medium to Large also hides excluded data by 
disallowing its entry into an ETL application. The ETL application is not allowed 
to capture or measure the disallowed data and, therefore, can neither report nor 
control data exclusions.

Just in Time is a design method wherein data enters and leaves an ETL stream 
of data, without significantly altering the nature of that data. An ETL application 
includes data that is needed when it is needed and dismisses data that is not needed 
when that data is no longer needed, which is shown in Figure 6.17.

An inherent weakness of this design is the lack of a big picture. Throughout an 
ETL application, that application only looks at the data necessary to perform the next 
function. Data that was dismissed early in an ETL application is no longer available 
to juxtapose against data that arrives later in that same application.

Finally, Large to Medium to Small design assembles all applicable data ele-
ments and entities. Data that is no longer required is dismissed. The final data set is 
a load-ready file that will be loaded to a data warehouse (Figure 6.18).

Inherent strengths of this design are the reverse of the weaknesses of the previ-
ous designs. Excluded data is initially present and, as excluded data is dismissed 
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Figure 6.16  Small to medium to large.
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from the data stream, it is dismissed within the context of all applicable data. At 
the initial stage, all applicable data is juxtaposed simultaneously. The decision to 
exclude data, therefore, is made in the broadest context possible, which allows the 
greatest possible control of data exclusions.

Principle 05: Stage Data Integrity

Principle 05: Stage Data Integrity is a design principle that maintains the integrity 
of a set of stage data. Once created, a set of stage data can only be consumed as a 
single contiguous set by subsequent applications. When multiple logical sets of data 
share common characteristics (including format, layout, data types, meaning, and 
usage), storing them together in a single set of stage data seems reasonable; however, 
storing them together creates unnecessary risk for an ETL application.

For example, the following list describes a single set of stage data (Manufactur-
ing Raw Materials) containing raw materials from Companies A, B, and C (Fig-
ure 6.19). This list can also be perceived as three logical sets of data—raw materials 
from Companies A, B, and C.

Manufacturing Raw Materials
Sourced from Company A
Sourced from Company B
Sourced from Company C

n

−
−
−

Data
Warehouse

Figure 6.17  Just in time.
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Figure 6.18  Large to medium to small.
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Any function that retrieves a subset of data from an existing dataset is, in 
essence, an extract function. An application needing data describing raw materials 
from Company A must extract that data from the entire set of Manufacturing Raw 
Materials. This is an extract function and is vulnerable to the problems faced by all 
extract functions.

Did the extract retrieve all records?
Did the extract retrieve only the required rows?
Did the extract retrieve rows already retrieved by a previous extract (i.e., 
duplicate)?

Rather than introduce an extract function where it does not belong by storing 
multiple logical sets of data in a single physical dataset, ETL applications store data 
as it will be used by subsequent applications. By storing data physically, as it will 
be used, an ETL application establishes and maintains the integrity of individual 
sets of stage data.

A single application writes A, B, and C records to multiple data sets (Figure 6.20). 
Datasets A, B, and C are each consumed, without modification, by immediately 
subsequent applications. Dataset ABC is consumed by a later application. All four 
datasets (A, B, C, and ABC) can be used by subsequent applications without the 
intervention of an extract function.

Principle 05: Stage Data Integrity is a design principle by which precedent 
applications create stage data as it will be consumed by subsequent applications. 
This design avoids unnecessary risk and increases the overall integrity of an ETL 
application.
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Figure 6.19  Stage Data Integrity: one dataset.
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Principle 06: Know What You Have

Principle 06: Know What You Have is a design principle that prompts an ETL 
application to take inventory of inbound data, rather than assume inbound data 
contains all that is expected. An ETL application can compare the contents of 
inbound data with expected data (Figure 6.21).

Information describing contents of inbound data is available through two 
sources. The first source is Metadata. The precedent application that created the 
data can also capture an inventory of that data as Metadata. Requirements to per-
form an inventory of data, while creating that data, can be included in the Meta-
data SLA. That’s how a subsequent application can require precedent applications 
provide Metadata to accompany created data.

A records
&

B records
&

C records

A

B

C

Consume
A records

Consume
B records

&
C records

A

B

C

AA

BB

CC

A
B
C

A, B, C

Figure 6.20  Stage Data Integrity: multiple datasets.
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The second source of information describing contents of inbound data is the data 
itself. If no Metadata describing inbound data is available, then the only remain-
ing option is to profile the inbound data. To profile inbound data, an application 
may need to read every record of the inbound data. Statistical methods, including 
sampling, may not provide the required information. If an application requires the 
inclusion of all 40,000 raw materials, a sample of 500 records will not provide a 
reasonable inventory of the inbound data. If possible, the profile of inbound data 
occurs simultaneously as the inbound data is processed. Then, if the inbound data 
is satisfactory, the inbound data (which has been processed) can be released to the 
next application or function.

The reverse of Know What You Have is Know What You Don’t Have. The 
second output of the comparison of inbound data and expected data is a list of 
mismatches, i.e., missing data. Knowledge of missing data provides an ETL appli-
cation the opportunity to apply a threshold. If the impact of missing data exceeds 
an applied threshold, that application has the opportunity to choose its response. 
Responses can include a reduced Data Quality rating, a default value as substitute 
data, or termination of a job stream.

An application incorporates Principle 06: Know What You Have to shield itself 
from the possibility of missing data and other anomalies. Both methods, data pro-
file and Metadata, incur additional cost in the forms of application development, 
maintenance, and resource consumption. The decision to include either method, 
therefore, is a balance between the risk of data anomalies and the cost of mitigating 
that risk. Three key factors in that balance are:

History: Has the inbound data demonstrated a probability of data 
anomalies?
Threshold: What is the threshold? What is the probability that threshold will 
be exceeded?
Response: What is the required response when the threshold is exceeded?

Process Principles Conclusion

ETL Process Principles describe the logical processes that contribute to a bullet-
proof ETL application.

Principle 01: One Thing at a Time describes how to isolate individual func-
tions along with their actions and assumptions.
Principle 02: Know When to Begin describes how to use prerequisite condi-
tions in data to determine whether or not an application or function should 
begin.
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Principle 03: Know When to End describes how to use requisite conditions 
in data to determine whether or not an application or function has completed 
its purpose.
Principle 04: Large to Medium to Small describes how to manage a set of 
data throughout all its transformations.
Principle 05: Stage Data Integrity describes how to establish and maintain 
whole and self-contained data throughout an ETL application.
Principle 06: Know What You Have describes how to inventory inbound data 
to determine what is present and missing.

ETL Process Principles, of course, neither supplant nor replace best practices 
of operational applications. ETL Process Principles, in addition to best practices of 
operational applications are intended to contribute to a bulletproof ETL applica-
tion. These principles can insulate an ETL application from unexpected variations 
that can occur in source data. Rather than expect every day to be like yesterday, 
ETL Process Principles can provide sufficient granular control to notice when varia-
tions occur, including variations that would adversely affect either the ETL applica-
tion or the data warehouse.

ETL Staging Principles

The analogy between a manufacturing process and ETL breaks down in one place: 
stage data.

In a manufacturing process, when a bolt is used to fasten two pieces of metal 
together, that bolt is now embedded in the finished product. Afterward, that 
manufacturing process can only describe the bolt that is now in the finished 
product by saying, “It was a type XYZ123 bolt.”
In an ETL application, however, when a set of stage data is used to fasten two 
pieces of data together, that stage data is still stage data. Afterward, that ETL 
application can describe stage data that is now in the finished product by say-
ing, “I used exactly this row of data and none other.”

For this reason, the useful lifespan of stage data in an ETL application goes 
much longer than the application that consumes the stage data. Data Quality and 
Metadata applications can measure stage data. Support analysts can inspect stage 
data.

The properties of stage data that extend its lifespan are its integrity and continu-
ity. The integrity and continuity of stage data also increase the control and integrity 
of an ETL application. ETL Staging Principles provide design principles by which 
an ETL analyst can manage and control the creation and use of stage structures, 
which also increases the control and integrity of an ETL application and the useful 
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lifespan of the stage data. The following topics describe each of the ETL Staging 
Principles on a conceptual level.

Principle 07: Name the Data

Identification is a key element of control. Granular identification is in direct pro-
portion to precise control. Data (as well as a person, car, airplane, boat, etc.) is 
identified by its name. A name, however, ceases to identify one dataset when two 
datasets share the same name. To achieve granular identification, datasets of the 
same type must have a method of unique identification.

Principle 07: Name the Data is a design principle that prompts an ETL applica-
tion to choose the level of granularity at which data will be named and, therefore, 
controlled. For example:

Look at the nearest bottle of headache or sinus pain relief. There is a lot num-
ber on the bottle. That lot number corresponds to a batch of product that was 
created at one time. The most granular identification a manufacturer has of 
that product is the lot number. The most granular identification, and control, 
available for that product, therefore, is the lot number.
Look at the nearest car (manufactured for the United States). If you look 
closely enough, there is a Vehicle Identification Number (VIN). That car’s 
VIN uniquely identifies that car from all other cars. The license tag can, 
and probably will, change; however, the VIN will never change. The most 
granular identification, and control, available for that product, therefore, is 
the individual car.

In each of these instances, a decision was made to identify one product (bottle 
of medicine) at the lot number (i.e., batch lot), and another product (automobile) at 
the individual product level. Likewise, an ETL analyst chooses the level of granu-
larity by which data will be named.

A data name should not identify the instance of a dataset. If the operating 
system allows long names, a date, timestamp, or other uniquely identifying text 
can be embedded in a file name. Mainframe operating systems allow names with 
multiple nodes (a node is a text string eight characters long between two periods), 
and Generation Data Groups (GDGs) with their uniquely identifying generation 
number. These and other methods will allow a data name to uniquely identify an 
instance of a data name.

Specific data names can include a wide variety of specific identifying features. 
Typically, specific data names are embedded in data records rather than file names. 
Identifying data names can include elements such as:

Unique identifier of the function that created the data.
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Unique version of the function that created the data.
Unique identifier of the function for which the data is intended.
Unique version of the function for which the data is intended.
Unique batch number of the data.
Unique row number of each row.
Metadata key as a foreign key to a Metadata Repository.
Data Quality key as a foreign key to a Data Quality Repository.

Data names have specific meaning, purpose, and use. All data names should 
satisfy a real requirement. Otherwise, any data names that do not satisfy a require-
ment should not be included.

The advantage of specific data names is clarity. Specific data names applied 
correctly can remove any doubt about the nature of a set, row, column, or cell of 
data. The disadvantage of specific data names is cost. As identifying features, of 
increasing granularity, are embedded into a dataset, the level of control and integ-
rity increase in direct proportion.

Principle 08: Own the Data

An ETL application is one occasion when sharing (the instruction all parents give 
their children) becomes a bad design. Operational applications frequently share 
datasets. Rather than continuously synchronize multiple datasets, operational 
applications share common datasets. When an operational application updates a 
shared dataset, those updates are available to other operational applications without 
incurring synchronization overhead.

A feature of data warehousing that distinguishes data warehouses from other 
data constructs is time variance. Time variance is the feature by which a data ware-
house reports changes in data through time. For example, a time-variant data ware-
house can capture the following:

May 13: Candy XYZ123 began using Dye Color #34.
Sales averaged 500,000 units weekly.
Returns average 10,000 units weekly.

July 24: Candy XYZ123 switched to Dye Color #67.
Sales averaged 4,500,000 units weekly.
Returns average 2,000 units weekly.

November 30: Candy XYZ123 switched to Dye Color #35.
Sales averaged 750,000 units weekly.
Returns average 12,000 units weekly.

Based on this time variant information, the manufacturer of Candy XYZ123 
would probably prefer to use Dye Color #67. For an ETL application to provide 
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time variant data to a data warehouse, that ETL application must be able to control 
time by freezing a dataset at a moment in time. An ETL application uses a fro-
zen dataset to capture, at a moment in time, the data in that dataset. Subsequent 
updates to the source dataset will be captured in the next ETL cycle or batch. For 
the time variant purposes of a data warehouse, however, an ETL application will 
create its own instance or copy of a source dataset. By restricting access to that 
dataset copy, the ETL application using that dataset copy can be assured that no 
operational updates have been introduced.

ETL applications use exclusive dataset copies to isolate operational source data, 
interim transformed data, and load-ready data. So, ETL applications can refuse 
to share with operational source systems and other ETL applications. By freezing 
time in a dataset, which is then compared to data frozen at a different time, an ETL 
application can transform time-variant data.

Principle 09: Build the Data

Datasets are used throughout an ETL application. The creation of those datasets, 
therefore, significantly affects the success of an ETL application. The creation of a 
dataset is similar to the creation of a house.

Pour the concrete foundation
Assemble the frame on top of the foundation
Attach the roof and walls to the frame
Apply paint, fixtures, and furnishings to the interior.

Notice the sequence goes from the outside to the inside. The area of the house 
is defined by the foundation. The perimeter of the house is defined by the frame. 
The perimeter is sealed by the walls and roof. Then, finally, the details are attached 
to an existing framework.

The creation of a dataset uses the same sequence, from the outside foundation 
and frame to the inside data.

Create the foundation of a dataset.
Sequential file, logical record length, and storage method.
XML file.
Relational table.

Define the frame on top of the foundation.
COBOL copybook.
XML layout.
Relational data definition.

Define the structure within the layout.
Define the meaning of each field or column.
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Define the accepted domain, range, and relational integrity for each field 
or column.
Determine the expected cardinality of the dataset.

Attach data to the interior of the dataset.
Insert data using the COBOL copybook, XML layout, or relational data 
definition.
Verify the data conforms to the structure within the layout.

This probably seems to be over-thinking the creation of a dataset. All applica-
tions create datasets. So, why this attention to detail in an ETL application? The 
answer is simple—control. By isolating the logical steps in the creation of a dataset, 
Principle 09: Build the Data allows an ETL application to control the creation of 
a dataset.

Rather than allow a dataset to inherit its properties from existing constraints 
or classes, define a new dataset and its properties. Rather than allow a dataset to 
inherit its demographics from the data within, define and control these demograph-
ics before any data is added to that dataset. Rather than propagate the properties of 
an existing dataset by copying that dataset, define a dataset and its properties (even 
if those properties are identical).

An ETL application can best control the data within an ETL application by 
controlling the creation of datasets, which are best controlled from the outside 
(foundation and frame). Rather than allow a SQL Select or COBOL Read state-
ment to define a dataset from the inside, a dataset is best defined and controlled 
from the outside, by defining the structure, properties, layout, and expectations, 
and then applying the data.

Principle 10: Type the Data

Data type mismatches, numeric data overflows, and null violations can stop an 
ETL application. Principle 10: Type the Data is a design principle intended to pro-
tect an ETL application from data that can cause an abnormal end. The principle is 
very simple—verify that the data type of inbound (or transformed) data is compat-
ible with the data type of the destination before moving inbound (or transformed) 
data to its destination (Figure 6.22).

This principle is simple. The application of this principle, however, is not so sim-
ple. During the initial design of an ETL application, the data types of source and 
destination datasets are known. When those data types are incompatible, a decision 
must be made. What will the ETL application do with records containing incom-
patible data types? Instances of incompatible data types include the following:

A source field allows alpha characters. Assurances from the source system 
indicate the source field always contains only numeric values. The destination 
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field is numeric. What will the ETL application do with inbound records 
containing alpha characters?
A transformation multiplies two values. The product should always be less 
than 5,000. The destination field is defined as Small Integer. What will the 
ETL application do with transformed records that exceed the numeric range 
of a Small Integer field?

Some of the options are:

Option #1: Discard the record
Option #2: Provide a default value
Option #3: Report the incompatible data type
Option #4: Ignore the incompatible data type (and allow the application to 
end abnormally)

Each of these decisions has implications for the behavior of the entire data ware-
house, Data Quality SLA, and Metadata SLA. So, these decisions must be made with 
the consensus of data stewards and data warehouse designers. While it may seem 
more expedient to make these decisions alone, in the long run these decisions are best 
made with a consensus of data warehouse constituents.
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Figure 6.22  Type Data.
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Option #2 includes an additional element. Before overwriting an incompatible 
data value with a default value, capture the original data value. The original data 
value can be captured as part of a Data Quality record, Metadata record or within 
the outbound data in a field that is compatible with the inbound data type. The 
storage location for discarded data is not important; the ability to retrieve discarded 
data is important. This is not a Recycle Wheel nor should it be considered a Recycle 
Wheel. Rather, the retention of discarded incompatible data is insurance against 
the prospect that a discarded data element might actually be vitally important data 
without which the sky will come crashing down.

After an ETL application has been implemented, operational source systems 
may introduce variations in source data that did not exist during the initial design. 
Operational source systems may change data types, domains, ranges, etc. Such 
changes can cause an ETL application to end abnormally. Changes in source sys-
tem data, however, do not constitute a violation or failure of Principle 10: Type 
the Data, rather, they constitute a change in source data. A change in source data 
capable of adversely affecting an ETL application should cause a revision of the data 
warehouse and ETL application to accommodate the change in source data.

Principle 11: Land the Data

Operational application best practices suggest that interim data should only be 
retained in a cataloged dataset when a subsequent person or application will need 
that interim data. Otherwise, if no person or application will need the interim 
data, then interim data should be passed from one function to another function 
via temporary datasets. When the last person or application has finished using a 
cataloged interim dataset, that dataset should be decataloged and removed, releas-
ing storage space and resources. Figure 6.23 illustrates the practice of not retaining 
interim data.

For ETL applications, however, the best practice is to land (i.e., retain in a 
cataloged dataset) interim data.2 After the last person and application have finished 
using an interim dataset, that dataset is still available. Figure 6.24 illustrates the 
practice of retaining interim data.

The purposes for retaining interim data include the following:

Problem Investigation: Abnormal problems in an ETL application rarely 
occur within the function that reported the problem-causing data. Allowing 
interim data to evaporate in a temporary dataset removes the possibility of 
using interim data to triage an abnormal problem.
Principle 09: Build the Data: In combination with Principle 09: Build the 
Data, defining the dataset in which interim data will be stored strengthens 
the structure of that data.
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Data Quality and Metadata: Data Quality and Metadata applications can 
profile interim data. The profiles and measurements applied to interim data 
are defined in the Data Quality SLA and Metadata SLA.
Restart and Rerun: If an abnormal problem requires an ETL job stream be 
restarted or rerun from a step that has already completed, a retained dataset 
can be used again. Otherwise, a nonretained dataset must be created again, 
which would increase the scope and risks of a restart or rerun.

An interim dataset should never be updated. An update to an interim dataset 
changes the data and, therefore, means that interim data is not really retained. 
Rather, updates should be captured in another interim dataset.

Principle 11: Land the Data consumes a respectable amount of disk and cata-
log space. For that reason, an ETL platform should have significant disk storage 
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Figure 6.23  Operational datasets.
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available for interim data. Also, an ETL application needs a clearly defined method 
of archiving and removing interim data. Otherwise, too much of a good thing can 
get in the way. Landing interim data contributes to a bulletproof, yet flexible, ETL 
application. Landed interim data must be managed and controlled, like all other 
resources, otherwise it will get in the way.

Staging Principles Conclusion

ETL Staging Principles describe the physical manipulation of interim data in an 
ETL stage environment.
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Figure 6.24  Extract, Transform, and Load (ETL) datasets.
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Principle 07: Name the Data describes how to identify data and its features, 
origin and destination with an appropriate level of granularity and control.
Principle 08: Own the Data describes how to secure data to prevent interfer-
ence by other applications, including ETL and operational applications.
Principle 09: Build the Data describes how to create a dataset from its 
foundation.
Principle 10: Type the Data describes how to protect ETL functions from 
incompatible data types.
Principle 11: Land the Data describes the need to retain interim data beyond 
its immediate use.

An ETL staging environment is the factory in which data is captured and trans-
formed into what will become a data warehouse. Visibility and control, features 
of an effective and efficient manufacturing assembly line, are also features of the 
ETL Staging Principles. By incorporating ETL Staging Principles in the Extract, 
Transform, and Load applications an ETL application can know what is on the 
assembly line now, where and how it came from, where and how it is going, and 
what to do about it.

ETL Functions
ETL is not a nebulous cloud wherein miracles occur. Rather, ETL applications 
tend to share a similar set of functions (Figure 6.25). At first glance, these ETL 
functions look different from functions that typically occur in operational applica-
tions because they are different. ETL functions are designed to discern what has 
happened in the enterprise, and bring that information to the data warehouse. An 
ETL analyst needs a set of functions, like a carpenter needs a set of tools. Once an 
ETL analyst masters a specific function, he or she will be able to use that function 
as needed. The ETL functions listed below are standard in every ETL environment. 
These functions comprise the majority of functions in ETL applications. An ETL 
analyst must understand, and be able to apply, the following ETL functions in 
order to have a successful ETL application.

Extract Data from a Contiguous Dataset

This is the simplest Extract function (Figure 6.26). A contiguous dataset may be a 
flat file, relational table, or XML file. The dataset is stationary and self-contained. 
An Extract function is able to retrieve all the data from the dataset without any 
modifications, conditions, or extraneous functions. Once the data is in the ETL 
environment, a Transform function can filter or modify the data.

The difficulty of such a simple Extract function is to keep it simple. As though 
they can exert a vacuum of complexity, simple Extract functions attract additional 
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functions and complexity to them. Resist this temptation at all costs. A simple 
Extract function is a beautiful and elegant design, and should be allowed to remain 
that way.

Extract Data from a Data Flow

Asynchronous messaging and real-time transactions have introduced a class of 
data, which is both infinite and bounded. Extracting such data is really a mat-
ter of catching it as it goes by. This is, of course, real-time ETL (Figure 6.27). 

Data
Warehouse

...and then a
miracle occurs! 

Source Data

Target Data

Figure 6.25  Extract, Transform, and Load (ETL) functions.
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Figure 6.26  Contiguous data.

AU6462.indb   180 2/7/08   9:53:42 AM



Data Acquisition and Integration  n  181

When a data warehouse customer expresses the requirement that an ETL applica-
tion retrieve data in real-time, the first question that should come from the ETL 
analyst is: “Why?” Why would a data warehouse customer, armed with the years 
of data, including trends, seasonality, and the most recent data available through 
batch ETL, change a business decision, strategy, or tactic based on the information 
that arrived in the past two seconds?

Real-time ETL usually feeds real-time data to an ODS. This fits the mission of 
an ODS.

Capture and store only data values that are current and effective.
Reflect the current state of the operational environment.

All that said, an ETL application must be able to know:

Each message has been caught
Once
Only once

If the source system, which is creating the data flow, includes a control mecha-
nism, the ETL application should try to leverage that control mechanism. If the 
source system does not have a control mechanism for a data flow, an ETL applica-
tion should create a control mechanism of its own. Control mechanisms are at the 
heart of every ETL application. In real-time ETL, control mechanisms must be 
able to control the flow of data and, therefore, control the granularity of the flow 
of data. If a data flow sends records in bundles of ten, then the control mechanism 
must log and record bundles of ten. If a data flow sends records in bundles of a 
thousand, then the control mechanism must log and record bundles of a thousand. 
The control mechanism must be able to directly associate each record within a 
bundle, with that bundle.

Real-time ETL often works best by employing the technology or tool that cre-
ated the data flow to read the data flow. Using an XML tool to get XML files and 
convert them from Tool A format to Tool B format is a violation of Principle 01: 
One Thing at a Time. Instead, get the XML files using the same technology that 
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Figure 6.27  Data flow.
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put the XML files. Once the XML files have been extracted from the real-time data 
flow, then the ETL application can transform them.

Row-Level Transformation

Row-level transformations are the simplest transformations (Figure 6.28). A row 
(or record) of data is in the memory of the ETL application. Based on conditions 
within that data, an ETL application will perform (or not perform) an update on 
the row.

A row-level update function is typically applied to every row in a staged dataset. 
The data row presents all the input data values needed by the row-level function to 
perform the required updates. The difficulty of such a simple Transform function is 
to keep it simple. As though they can exert a vacuum of complexity, simple Transform 
functions attract additional functions and complexity to them. Resist this temptation 
at all costs. A simple Transform function is another beautiful and elegant design, and 
should be allowed to remain that way.

Dataset-Level Transformation

Some transformations are performed within the context of a whole set of data (Fig-
ure 6.29). In these situations the entire dataset is read into memory. The Transform 
function must address the whole dataset at a time to derive the information neces-
sary to update each individual row (or record).

Transform functions that summarize Fact data and aggregate Dimension data 
operate at the dataset level. They use the entire dataset to derive data values, which 
arithmetically represent a set of Fact data or they use an entire dataset to derive 
a subset of Dimension values that represent a set of Dimension data. A Dataset-
Level Transform function should be isolated to that dataset and not attempt to 
include other datasets or portions of other datasets in the iteration of the Transform 
function.

123 nullAB-23AngelB41001 23984YesA

function

Figure 6.28  Row-level transformation.
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Surrogate Key Generation: Intradataset

A Transform function can generate a sequential numeric value that uniquely identifies 
each row/record of a dataset (Figure 6.30). The numeric unique identifier supplants 
the need for a unique key, hence, the name Surrogate Key. A Transform function can 
generate a Surrogate Key that will be unique within the boundary of that dataset.

Usually, a Surrogate Key is needed because the data lacks a key that uniquely 
identifies each row, and sometimes in that iteration of ETL, the ETL application 
will need to uniquely identify each row. The presence of a Surrogate Key allows the 

123 8AB-23AngelE41001 23984YesA

123 nullAB-23AngelC41001 23984YesA6335 3AB-23SueB21003 6434YesA

2324 5AB-23RonB31002 123NoB

2479 5AB-23EllenB11004 53YesC

8 6AB-23RobA41005 223NoB

8AB-23E4 23984YesA

nullAB-23C4 23984YesA 3AB-23B2 6434YesC

5AB-23B3 123NoB

function

Figure 6.29  Dataset transformation.
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ETL application and the data warehouse to identify and isolate each row of that 
dataset.

Data Warehouse-Level Transformation

Sometimes, a transformation must be performed within the context of the data 
warehouse. The Transform function does not have all the input data necessary to 
derive the data required of that Transform function. The data warehouse has the 
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Key
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Figure 6.30  Surrogate Key: Intradataset.
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data that will allow the ETL application to perform its required updates. In such a 
circumstance, a Transform function must perform its task by using both the input 
data and data from the data warehouse.

Surrogate Key Generation: Intra-Data Warehouse

A Transform function can assign a unique identifier to each row/record in a dataset. 
When the resulting row, with a surrogate key, will eventually be loaded into a data 
warehouse (including the key), the identifier key must be unique throughout the data 
warehouse (Figure 6.31). The best way to achieve this uniqueness is to retrieve the 
maximum unique identifier in the data warehouse. Then, begin assigning a unique 
identifier to new rows/records starting from the maximum unique identifier in the 
data warehouse, incremented by one.

Look-Up

An ETL application may need to find the unique identifier in the data warehouse 
for a specific row/record (Figure 6.32). The input data provides enough information 
to allow a Transform function to find the uniquely identifying key within the data 
warehouse. A Transform function uses the input data values to query the data ware-
house. The returning result set includes the unique identifier for the row/record of 
input data.

If the input row/record has values that will identify the correct unique identi-
fier, why did the ETL application need the unique identifier? Apparently, the data 
native to the row/record identifies each record uniquely enough. The data values 
that uniquely identified each row/record may not persist with the row/record as 
it is modified by a later Transform step. Or a data warehouse may include data 
from three different subsidiaries. Dimension data within the three subsidiaries may 
require customized look-up logic. The performance of the look-up function and the 
subsequent assignment of the unique key that uniquely identifies all rows/records 
for that Dimension across all subsidiaries facilitates the Data Integration of a data 
warehouse.

Changed Data Capture

A common requirement of ETL applications is to identify and capture Dimension 
updates that have been performed by the source system. An ETL application will 
typically perform this function by juxtaposing Dimension data from the data ware-
house against corresponding Dimension data from the source system (Figure 6.33). 
The result set is:
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The rows in the data warehouse and the operational application that share the 
same key values, but different attribute values. This scenario indicates rows 
that have been updated.
The rows in the data warehouse, but not in the operational application. This 
scenario indicates rows that existed yesterday, but not today.
The rows in the operational application, but not in the data warehouse. This 
scenario indicates rows that did not exist yesterday, but do exist today.
The rows that are identical in both the operational environment and data 
warehouse. This scenario indicates rows in which no data has changed.
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Figure 6.31  Surrogate Key: Intradata warehouse.
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ETL Key

The key values by which each and every instance of a Dimension entity can be 
identified are called the ETL Key. An entity from the source system is juxtaposed 
against an entity from the data warehouse by finding corresponding entities that 
share the same ETL Key. The ETL Key is usually similar to the Logical Key of an 
entity or the Physical Key of the Dimension table. The Logical Key or Physical Key 
may satisfactorily identify each and every instance of a Dimension entity.

If, however, the Logical Key and Physical Key of a Dimension entity is not 
granular enough to identify each and every instance of a Dimension entity, the 
ETL Key will derive a level of granularity sufficient to identify each and every 
instance of a Dimension entity. Common examples of Logical Keys and Physical 
Keys that do not necessarily identify each and every instance of a Dimension entity 
include:

Social Security Number: People can change their Social Security Number.
Name: People can change their name.
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Figure 6.32  Look-Up.
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Universal Product Code (UPC): UPC numbers are recycled.

These Keys may suffice as Logical or Physical Keys. Depending on the volatil-
ity of these Keys and the data warehouse’s exposure to risk by using them, an ETL 
analyst may choose to investigate possible other Keys that can be used as ETL Keys. 
For example:

In lieu of Social Security Number or Name: The person’s birthday, place of 
birth, mother’s maiden name, and mother’s birthday. These data values are 
not wont to change and may have a high probability of identifying an indi-
vidual person.
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Figure 6.33  Changed data capture.
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In lieu of UPC: The product’s manufacturer, distributor, internal product 
code, retail pack code, and country of origin. The data values may have a high 
probability of identifying an individual product.

The selection of an ETL Key, therefore, requires a bit more thought than just 
leveraging the Logical Key or the Physical Key. Instead, the ETL Key is the set of 
data values by which the ETL application can identify each and every instance of 
a Dimension entity. The ETL Key may be the Logical Key, it may be the Physical 
Key, it may be a more granular and precise key than either the Logical or Physical 
Key.

Universe to Universe and Candidate to Universe

Changed Data Capture (CDC) basically occurs in two forms: Universe to Universe 
and Candidate to Universe. Universe to Universe CDC is the best practice. In Uni-
verse to Universe CDC, the entire universe of data values from moment #1 is com-
pared to the entire universe of values from moment #2. The differences between 
Universe of Data Values #1 and the Universe of Data Values #2 is the net effect of 
the changes in the source system that occurred between moment #1 and moment 
#2. Because the Universe to Universe CDC uses all the data values available from 
the source system, no source system updates can inadvertently escape the notice of 
the ETL application. That is why Universe to Universe CDC is the preferred CDC 
design.

When the volume of data is too large to allow Universe to Universe CDC to 
occur or when the data is available and required on a real-time basis, the Candidate 
to Universe CDC method will allow an ETL application to compare individual 
source system rows (i.e., Candidate rows) to the universe of data values in the data 
warehouse. An ETL application will bring individual Candidate rows to itself for 
one of two reasons:

A real-time ETL application delivers individual rows or groups of individual 
data rows to itself.
The universe of data values is too large to allow normal ETL processing to 
occur within the allowed time frame.

A single record, or set of records, is delivered to the ETL application. The ETL 
application compares the Candidate row to the enterprise. If they are different, the 
data value in the Candidate row is delivered to the data warehouse. Candidate rows 
can be selected for delivery to the ETL application for multiple reasons:
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An operational transaction Log indicates update activity occurred on a specific 
row.

The Effective or Not Effective dates in an operational dataset indicate something 
happened to a specific row.

Business Rules and business relations within the operational data indicate that a 
change occurred in the source system that will modify a data value derived 
from a table without actually updating the source system table (i.e., a back-
door update).

The gap in Candidate to Universe CDC is its inability to detect when a source 
system row is terminated. When a row disappears, that row cannot become a Can-
didate row. Without a Candidate row, the Candidate to Universe CDC will not 
consider the deleted source system row because it does not receive a Candidate 
row.

Load Data from a Stable and Contiguous Dataset

A Load function loads data from a stable and contiguous dataset (Figure 6.34). 
This is the simplest and most common method of loading data. The Load function 
interacts physically with the data warehouse. So, a Load application must be as 
simple and bulletproof as possible. The best method for a simple and bulletproof 
Load application is to load a data warehouse from a stable and contiguous dataset.

Load Data from a Data Flow

Real-time Load applications use data that was created by an ETL application (Fig-
ure 6.35). This gives an ETL analyst the opportunity to embed the necessary con-
trol mechanisms into the data. A real-time Load application should checkpoint on 
a basis frequently enough to be meaningful, but not so frequently as to interfere 
with the ETL application.

Data Load

ETL EnvironmentSource System

Data
Warehouse

Figure 6.34  Stable and contiguous data.
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Control mechanisms are the key to a successful real-time Load application. An 
ETL application must be able to recognize when and where a hiccup occurred in 
the real-time data. The ETL application will probably not be able to recover lost or 
corrupted data. But, at a minimum, an ETL application should be able to notify 
the data warehouse team when a discrepancy occurs in the load data.

An ETL application must be able to know:

Each row has been loaded
Once
Only once

A Transform application creates the real-time load data. The Transform appli-
cation that generates the Load records also generates control data (Metadata) for 
the Load data. The control data will be used to control the Load application as it 
loads the data to a data warehouse. Control mechanisms are at the heart of every 
ETL application. Load control mechanisms also work best in bundles; individual 
records are far too numerous to log and control individually. Thus, Load control 
mechanisms work best in bundles, albeit very small and rapid bundles. Each bun-
dle is logged and monitored. Each record within a bundle is directly associated with 
that bundle. In that way, a Load application can log and monitor the movement of 
data as it moves from a data flow to a data warehouse.

Transaction Summary

A Transaction Summary arithmetically sums numeric measurements in granular-
detailed Event data. This Event data can be any quantifiable measurement of enter-
prise activity.

Productivity throughput
Sales (retail or wholesale)
Customer activity
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Figure 6.35  Data flow.
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The goal of a Transaction Summary is to increase the query response time of a 
data warehouse. Query response time is improved when a Transaction Summary 
reduces the volume of data the data warehouse RDBMS must manipulate to return 
the result set. Query response time is also improved when a Transaction Summary 
reduces the arithmetic processes the data warehouse RDBMS must perform to 
return the result set.

These goals are best met when a Transaction Summary precalculates an arith-
metic summation, which is queried frequently by the data warehouse customers, 
and then stores the result set as a physical table (Figure 6.36). When data ware-
house customers submit a query for that arithmetic summation, they can query 
a Transaction Summary table and receive the result set faster with reduced CPU 
cycles and input/output (I/O) consumption.

A Transaction Summary applies an arithmetic summation by summing 
together the numeric data from rows that share a common attribute. For example, 
Transaction data can be summarized in Time (Day-Level Summary), Geography 
(City-Level Summary), and Hierarchy (Department-Level Summary). Transaction 
summaries, therefore, remove a level of granular detail.

Time: Remove the hours, minutes, and seconds in Transaction data, leaving 
only Day-Level data.
Geography: Remove the Zip Code, street address, and apartment number in 
Transaction data, leaving only City-Level data.
Hierarchy: Remove the individual employee name and number in Transac-
tion data, leaving only Department-Level data.

By removing granular detail, a Transaction Summary also reduces the number 
of rows manipulated in a result set. In that reduced result set, the required arithme-
tic summation has already been achieved. The result is the data warehouse RDBMS 
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Figure 6.36  Transaction Summary.
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manipulates fewer rows and avoids performing the arithmetic summation process 
(again and again and again) while returning the answer to the data warehouse cus-
tomer faster, and with reduced CPU cycles and I/Os.

The return on investment (ROI) of a Transaction Summary increases with the 
popularity and frequency of the arithmetic summation in the Transaction Sum-
mary. System CPU and I/O resources are consumed once to create the data. Then, 
System storage resources are consumed throughout the day to store the data. The 
ROI is then based on how often data warehouse customers will query that data. 
If a single data warehouse customer queries that data once a day, it was not worth 
the system resources consumed to create and store it. But, if many data warehouse 
customers query that data every five minutes, the ROI is extremely high.

Dimension Aggregation

A Dimension Aggregate holds the result set of a query that joins multiple Dimen-
sion tables. The goal of a Dimension Aggregate is to increase the query response 
time of a data warehouse. Query response time is improved when a Dimension 
Aggregate reduces the volume of data the data warehouse RDBMS must manipu-
late to return the result set. Query response time is also improved when a Transac-
tion Summary reduces the relational join processes the data warehouse RDBMS 
must perform to return the result set.

These goals are best met when a Dimension Aggregate prejoins multiple Dimen-
sion tables, which are queried frequently by the data warehouse customers, and 
then stores the result set as a physical table. When data warehouse customers sub-
mit a query for that set of joined Dimension tables, they can query a Dimension 
Aggregate table and receive the result set faster with reduced CPU cycles and I/O 
consumption.

The example in Figure 6.37 shows Dimension data from the Product, Geogra-
phy, Hierarchy, and Distribution subject areas. These tables are joined once. The 
result set is stored in a physical table. Then, when a data warehouse customer queries 
the data warehouse for the Sales data for a Product that was sold in a Geographic 
location by someone in the Hierarchy dimension and shipped by the Distribution 
Department, the data warehouse RDBMS is able to avoid joining all the Dimension 
tables because that join has already been done.

The ROI of a Dimension Aggregate increases with the popularity and frequency 
of the Dimension tables joined in the Dimension Aggregate. System CPU and I/O 
resources are consumed once to join the data. Then, System storage resources are 
consumed throughout the day to store the data. The ROI is then based on how 
often data warehouse customers will submit a query that uses data from this join 
path. If a single data warehouse customer queries that data once in a day, it was not 
worth the system resources consumed to create and store it. But, if many data ware-
house customers query that data every five minutes, the ROI is extremely high.

AU6462.indb   193 2/7/08   9:53:49 AM



194  n  Building and Maintaining a Data Warehouse

Common Problems
An ETL application, once installed, is static while the changing world is dynamic. 
Listed below are a few problems that occur when either the data or business rules 
change.

Source Data Anomalies

Garbage In Garbage Out (GIGO) refers to the reality that outbound data is no 
better than the inbound data by which the outbound data was created. An ETL 
application suffers this same reality. Unfortunately, unless an ETL application can 
detect and resolve inbound data anomalies, these anomalies become data ware-
house anomalies.

Incomplete Source Data

A common data anomaly is incomplete data. Incompleteness occurs in three 
forms:

		  Records in a set of data are missing.
		  Fields in a record are not populated.
		  A set of data is missing completely.

An ETL application can detect the third form of incomplete data rather easily. 
The second form can be detected if the unpopulated fields are key fields or directly 
associated with other populated fields.
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Figure 6.37  Dimension aggregation.
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The first form of incomplete data is the most common and most difficult to 
detect. Typically, missing records occur in transaction event data. Detection of a 
transaction event, that is independent of other transaction events, that did occur, but 
was not recorded, is a common circumstance and difficult to detect.

Redundant Source Data

Operational applications frequently resolve their own missing records problem by 
restating a set of data, yielding a set of data with missing records that are now pres-
ent, and present records that are now repeated. These repeated and redundant sets 
of data can result in repeated and redundant data in a data warehouse, unless an 
ETL application can detect and resolve the repeated and redundant condition.

Misstated Source Data

Another common anomaly occurs when source data contains errors. Source data 
may identify the wrong physical plant, object, or person. Detection of source data 
errors varies in feasibility and treatment. Some source data errors can be detected 
while the source data is still within an ETL application. Unfortunately, some 
source data errors can only be detected within the context of other data in a data 
warehouse. Unless detected and treated by an ETL application, source data errors 
become data warehouse errors.

Business Rule Changes

Operational applications can (and do) change the logic by which data is manipu-
lated and understood. Such changes may require no alteration of the physical mani-
festation of source data. Changes in logic or business rules are typically subtle and 
difficult to detect.

Obsolete Data

A common manifestation of changing business rules is the discontinued use of 
a dataset. The physical dataset may remain extant for purposes associated with 
historical data. Current operations, however, do not include the discontinued data-
set. Meanwhile, an ETL application may not know to refer to the new dataset 
rather than the discontinued dataset. The result is incorrect data within a data 
warehouse.
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Redefined Data

An operational application may continue using a dataset with a different format or 
layout. Hopefully, a new format or layout will cause abnormal problems in an ETL 
application, which will be noticed. A redefined dataset, however, may cause no 
operational problems, but may cause data errors. Unless detected, these data errors 
will become part of a data warehouse.

Unrecorded Data

All organizations, large and small, have a handful of codes and values that are 
known and understood by all relevant organization members. Because these codes 
and values are known and understood, no one records them in a stable operational 
dataset. These are the unrecorded data of an organization.

An ETL application may record these codes and values for its own purposes. 
Without a record of the existence and meaning of these codes and values, an ETL 
application cannot know when these codes and values change, and they do change. 
Changes in an organization’s unrecorded codes and values may result in data ware-
house errors.

Closing Remarks
An ETL application (Figure 6.38) begins and ends with data warehouse custom-
ers. They are the reason for a data warehouse. A data warehouse designer captures 
customer expectations in the design of a data warehouse. A Target System analysis 
captures the behavior of data in a data warehouse design. The behavior of data is a 
result of actions performed by an ETL application. These behaviors are expressed 
as Direct Requirements. The Data Mapping is a road map showing how an ETL 
application will achieve data behaviors. Typically, a Data Mapping starts at a source 
system and ends at a data warehouse.

The Data Quality SLA and Metadata SLA capture the information necessary 
for customers to use the data in a data warehouse.

Is the data complete?
Are there any anomalies?
When is the data available?
What is the profile of today’s data?

All of these questions are captured as Indirect Requirements. The Direct 
Requirements (data behavior) and Indirect Requirements (information about data 
behavior) meet together in a single physical design. That physical design declares 
the physical hardware, platforms, datasets, and jobs that are the ETL application, 
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which delivers data to a data warehouse. The data in that data warehouse meets the 
expectations of data warehouse customers, which is the original intent.

References
	 1.	 Mark Beyer, personal communication, 2002.
	 2.	 Ibid.
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Chapter 7

Business Intelligence 
Reporting

Introduction
Business Intelligence Reporting, otherwise known as BI Reporting, or just BI, is 
the face of a data warehouse (Figure 7.1). BI Reporting is what the data warehouse 
customers see. All the hardware, software, data architectures, data models, Source 
System Analysis, Target System Analysis, and ETL applications culminate in data 
displayed on a computer monitor or printed on a piece of paper. All that work, the 
effort and investment, will be counted a blazing failure if the BI Reporting fails to 
deliver or all of that work, the effort and investment, will be counted a tremendous 
success if the BI Reporting delivers the data and value expected of a data ware-
house, which will lead to subsequent iterations of data warehouse development.

BI Reporting Success Factors
The success factors of BI Reporting include performance, the user interface, pre-
sentation of the data architecture, alignment with the data model, ability to answer 
questions, mobility, flexibility, and availability. These success factors and their busi-
ness relevance are discussed below.
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Performance

A successful BI Reporting application will return answer sets in a consistent time 
frame. Initially, data warehouse customers will accept only subsecond response 
time as reasonable. In the early days of a data warehouse, subsecond response time 
may actually occur. That is unfortunate because as new and additional customers 
begin to use a data warehouse, each will consume central processing unit (CPU) 
cycles and input/output (I/Os), degrading the response time for all data warehouse 
customers. The CPU cycles and I/Os of a data warehouse are a finite resource. As 
one customer consumes CPU cycles and I/Os, those CPU cycles and I/Os are taken 
from another customer. A successful BI Reporting application manages the finite 
resource of CPU cycles and I/Os by managing the customers’ use of them. Data 
warehouse customers will eventually accept subminute response time in lieu of sub-
second response time, as long as the response times are consistent. A BI report will 
become, in the minds of a customer, a two-minute report. A successful BI Report-
ing application will manage the consumption of resources so that a two-minute 
report is always a two-minute report.

An unsuccessful BI Reporting application fails to manage the consumption of 
data warehouse resources. When a customer is allowed to adversely affect all other 
data warehouse customers, then for those other customers a two-minute report will 
become a one-hour report. Data warehouse customers will not accept the incon-
sistent response times because it does not allow them to plan their work. If a cus-
tomer has an assigned task that must be finished by the afternoon, which requires 
the result set of a two-minute report, the customer must plan enough time for the 
result set of that two-minute report. An unsuccessful BI Reporting application will 
allow that two-minute report to become a two-hour report (by letting Fred from 
Logistics submit forty-two high impact queries), which will send that data ware-
house customer to his or her afternoon meeting without the result set required to 
complete the assigned task.

User Interface

A successful BI Reporting application is intuitive and easily understood. A success-
ful user interface is organized along the thought processes and methods already 
present in the enterprise. A business question native to the enterprise (How profit-
able is my business unit? How many personnel hours are required to fulfill a cus-
tomer order? Where are the capital assets of my business unit?) is native to the BI 
Reporting application. The Source System Analysis was performed so the data ware-
house designer could accurately architect and model the data warehouse to reflect 
the enterprise. The ETL applications were designed and developed to reflect the 
enterprise within the data elements of the data warehouse. A successful BI Report-
ing application continues this philosophy—the data warehouse is a reflection of the 
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enterprise into the User Interface. When a data warehouse customer is looking at 
the User Interface of a BI Reporting application, that customer is looking at his or 
her enterprise in data.

An unsuccessful BI Reporting application requires data warehouse customers to 
“learn the tool”. Data warehouse customers are first and foremost business people. 
They understand and operate their business. An unsuccessful BI Reporting applica-
tion will require data warehouse customers to translate their business questions into 
“tool” queries and then translate the “tool” result sets into business information.

Presentation of the Data Architecture
A successful BI Reporting application presents data from the Operational Data 
Store (ODS) as operational data, data from a Data Mart as information assembled 
for a specific purpose and business unit, and data from a Data Warehouse using the 
guidelines in the Data Warehousing Philosophy. Each of these three sets of data 
(ODS, Data Mart, and Data Warehouse) is distinguished from each other, so the 
customer understands the meaning and intention of the data he or she is viewing.

An unsuccessful BI Reporting application presents these three sets of data 
(ODS, Data Mart, and Data Warehouse) with a homogenous User Interface, so 
that customers are not sure of which set of data they are viewing. Or, a BI Report-
ing application may mix data from the three sets of data (ODS, Data Mart, and 
Data Warehouse). If the three sets of data physically exist on the same platform, 
a BI Reporting tool may join data elements from one data set with data elements 
from another data set. The User Interface in which this occurs most frequently 
is an ad hoc Open Database Connectivity (ODBC) interface. A data warehouse 
customer will search for a data element with a foreign key that matches the data ele-
ment he or she wants to use. Unaware of the distinction between ODS, Data Mart, 
and Data Warehouse data as presented in the ODBC interface, a data warehouse 
customer can inadvertently join an ODS Dimension table (which has no history) 
to a Data Warehouse Fact table (which does have history) and then wonder where 
all that history went.

Alignment with the Data Model
A successful BI Reporting application synchronizes with the relations and relational 
integrity of a data model. The relations and cardinalities embedded in a data model 
are intentional. They reflect the relations and cardinalities of the enterprise. By syn-
chronizing with the data model, a BI Reporting application continues this reflec-
tion of the enterprise through the data reported to the data warehouse customer.

An unsuccessful BI Reporting application violates the relations and relational 
integrity of a data model. By introducing relations where none exist and cardi-
nalities that are not true, a BI Reporting application distorts the reflection of the 
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enterprise. At best, a data warehouse customer will recognize the distortion and 
refuse to accept the data. At worst, a data warehouse customer will not recognize 
the distortion and use the data to form tactical or strategic decisions.

Ability to Answer Questions

A successful BI Reporting application is able to use the data in a data warehouse 
to answer the questions posed to it. This requires the ability to identify the data 
elements that will contribute to an answer set, join them correctly, and present 
the result set in the business terms understood by the customer. Also, but no less 
important, the answer set is correct.

An unsuccessful BI Reporting application is not able to generate the correct 
answer set with the data elements available. The BI Reporting application may not be 
able to identify all the data elements that will contribute to an answer set or, having 
identified all the correct data elements, a BI Reporting application may not be able to 
leverage them correctly. The end result is either no answer or an incorrect answer.

Mobility

A successful BI Reporting application empowers data warehouse customers to take 
the answer set with them. Having generated the information necessary to answer a 
business question, a data warehouse customer can then save, print, copy/paste the 
information to any destination.

An unsuccessful BI Reporting application requires data warehouse customers 
to carry their computer monitor around and say, “Look at this monitor. That’s 
the answer to our question.” This is, of course, absurd. But, a BI analyst must 
define the mobility threshold below, which a BI Reporting application is considered 
unsuccessful. Does the enterprise require BI reports be printed, copy/pasted into 
spreadsheets, captured as permanent documents, published through an intranet, 
published real-time through an Internet Web site to enterprise agents around the 
globe? Each of these levels of mobility includes a cost and a return on investment 
(ROI). An enterprise requires, and is willing and able to invest in, mobility within 
it BI Reporting application, but how much mobility?

Flexibility

A successful BI Reporting application can answer questions that have never before 
been asked. The world is a dynamic and changing business environment. New play-
ers are coming into the marketplace all the time. Existing players are constantly 
redefining themselves within the marketplace. A BI Reporting application should 
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help its customers to keep up with the dynamic and changing marketplace by allow-
ing them to ask questions that are framed in the present state of the marketplace.

An unsuccessful BI Reporting application expects the world to remain static 
and frozen; expecting the world will always look as it does now. A BI Reporting 
application that only allows business questions framed in the enterprise as it existed 
on a date in the past will find it has no future with the enterprise.

Availability

A successful BI Reporting application is available during the active cycles of the 
enterprise. Implicitly, availability of the BI Reporting application also includes 
availability of the data that will be used by the BI Reporting application. Data 
availability requires coordination with Extract, Transform, and Load (ETL) appli-
cations that load the data. ETL Load applications can interfere with a BI Reporting 
application in two ways. First, an ETL Load application might lock a table required 
by the BI Reporting application. Second, an ETL Load application, if loading dur-
ing a BI Reporting cycle, might update the data being reported. The results of a data 
update during a BI Reporting cycle cause confusion (Why did the data change?) 
and suspicion of the BI Reporting application (Is this thing working right?).

An unsuccessful BI Reporting application fails to match the active cycles of the 
enterprise. The customers are not sure if they are looking at the most recent data or 
if the most recent data is still on its way. Customers may also experience significant 
delays in report delivery if the BI Reporting application is down during the enter-
prise active cycle. By failing to accommodate the active cycles of the enterprise, a 
BI Reporting application communicates to the customers that they need to find 
another alternative, which they will.

A BI Reporting application is limited in its ability to excel at these success fac-
tors by the data architecture, data model, and data that precede it. The query per-
formance of a BI Reporting application cannot exceed the query performance it 
inherits from the Relational Database Management System (RDBMS). The ability 
of a BI Reporting application to answer questions cannot exceed the ability of a 
data model to answer questions. The flexibility of a BI Reporting application cannot 
exceed the flexibility of a data model. The seeds of a BI Reporting applications suc-
cess, therefore, are planted in the RDBMS and data model of its data warehouse.

If the performance, answers, and flexibility are feasible given the Database 
Design, the BI application has the job of harnessing and leveraging these features to 
their fullest extent possible. If, however, the performance, answers, or flexibility are 
not feasible given the Database Design, the BI application should not be expected 
to compensate for the lack of these features in the data warehouse.
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BI Customer Success Factors
BI Reporting customers leverage a BI Reporting application as they perform their 
business functions within the enterprise. Each BI Reporting customer has indi-
vidual assignments and functions within the enterprise. The cost of providing every 
member of the enterprise with their own individual BI Reporting application, on 
its own server, with its own data warehouse, and its own network infrastructure is, 
of course, prohibitively high. That is why these are all shared resources. So, rather 
than an individual BI Reporting application, a BI Reporting analyst presents each 
customer with an individualized BI Reporting application. The success factors of an 
individualized BI Reporting application include its ability to support the processes 
and satisfy the needs of individual BI Reporting customers.

Proactive Processes

The enterprise needs to know when a problem is approaching with the maximum 
possible lead-time. Once an approaching problem has been observed, the lead-time 
allows the enterprise to align its resources to prepare the best possible response to 
the approaching problem. Some members of the enterprise have a responsibility to 
monitor conditions within the enterprise that could harm the enterprise.

For proactive processes, a BI Reporting application should relieve customers of 
the need to remember to query enterprise data. The risk is that the customer will be 
too busy or just forget to run the query at the exact moment a problem emerges. A BI 
Reporting application’s ability to mitigate this risk by performing the proactive pro-
cesses is a success factor for the customers as they use the BI Reporting application.

Reactive Processes

The enterprise needs to assess its recent past in the context of long-term and seasonal 
trends. The information from these assessments helps the enterprise know whether 
short-term tactics and long-term strategies are currently working as intended or 
should they be modified in the near future. Business processes such as these are 
reactive because they allow the enterprise to react to recent events.

BI Reporting customers need the toolsets necessary to review and analyze recent 
events in the context of long-term and seasonal trends. Is a spike in activity the 
beginning of an upward trend or a seasonal pattern? A BI Reporting application’s 
ability to give its customers the toolset necessary to answer the questions that sup-
port the reactive processes of the enterprise is a success factor for the customers as 
they use the BI Reporting application.
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Predefined Processes

Some business processes are well defined, repeated, and stable. Predefined business 
processes could include such queries as:

How many units did we sell?
How much cash came in, and out, in the past week?
What is the net present value of investments held by each customer?

In predefined processes, everything is known, except the answer. The time 
frame, query, and audience are all known. A predefined process has very few, if any, 
variables that require the help or participation of a member of the enterprise.

A BI Reporting application should be able to remember and execute a pre-
defined process. Programmatic responses to the result set of a predefined process 
can be included in a BI Reporting application, including report distribution and 
sending alerts. The ability of a BI Reporting application to support customers’ pre-
defined reporting processes is a success factor for the customers as they use the BI 
Reporting application.

Ad Hoc Processes

Not all questions have been identified and programmed into a BI Reporting appli-
cation because not all questions are known. Regardless, the enterprise’s need for 
the answer to a question must be satisfied. The enterprise may not be able to wait 
for a BI Reporting developer to gather the requirements, develop, test, and release 
the report back to the enterprise. When the enterprise cannot wait for the answer, 
a member of the enterprise must be able to ask the question in the timeframe of the 
enterprise. A BI Reporting application’s ability to support ad hoc processes is a suc-
cess factor for the customers as they use the BI Reporting application.

Data Needs

Data is the granular minutia values that document the existence of an enterprise 
entity or measure an enterprise event. For example:

The date, time, place, and product of each individual sales transaction
The number of warehouses in the southeast region
The name of a building

Members of the enterprise sometimes require the data of the enterprise. On these 
occasions, the question asks for the most granular minutia information available 
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within the enterprise. A BI Reporting application’s ability to present enterprise data 
is a success factor for the customers as they use the BI Reporting application.

Information Needs

Information is data interpreted within a context.1 Information questions juxtapose 
two or more data points to answer a question that is expected to yield an answer 
that will help the enterprise. For example:

Profitability: What was the recent margin between revenues and expenses?
Trends: Did the business unit sell more or less product this quarter as com-
pared to last quarter?
Ratios: What is the ROI of the data warehouse?

These and similar questions are asked by members of the enterprise on a fre-
quent basis. A BI Reporting application’s ability to answer informational questions 
is a success factor for the customers as they use the BI Reporting application.

Analytic Needs

Sometimes, the question that must be answered is, “What question should I ask?” 
BI Reporting processes begin their lifecycle as a search for the question. Much like 
scouts searching for something, anything, they’ll know it when they see it, busi-
ness analysts search the enterprise and its environment for a question. This search is 
the analytic process, searching for a correlation between events, for an association 
between factors within and around the enterprise. Business analysts need a toolset 
that will enable them to search for the questions that will lead to the answers. A BI 
Reporting application’s ability to empower and enable analytic processes is a suc-
cess factor for the customers as they use the BI Reporting application.

BI Reporting Application
A BI Reporting application is a tool, or set of tools, that provide the user interface 
between a data warehouse and its customers (Figure 7.2). The architecture, features, 
and functions vary between the different BI Reporting tools. In general, BI Reporting 
tools provide a layer of abstraction that allows the data warehouse customers to interact 
with a data warehouse without learning the Structured Query Language (SQL) syn-
tax, network address, or database connectivity required to query a data warehouse.

n

n

n
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Architecture

The architecture of BI Reporting tools includes one or more servers between the 
data warehouse and customers. These servers have a roadmap of the data ware-
house. Through its user interface, customers tell a BI Reporting application the 
required information. The BI Reporting application submits the SQL to the data 
warehouse. When the result returns from the data warehouse, the BI Reporting 
application returns it to the customer.

BI Reporting tools market themselves on their ability to connect with RDBMS 
platforms. The companies that develop and own BI Reporting tools negotiate 
partnerships with the companies that develop and own RDBMS platforms. The 
partnership means that the owners of the RDBMS platform have shared their pro-
prietary information, including application programming interfaces (APIs) and 
other interfaces, which allow a BI Reporting tool to connect with the most possible 
features and efficiency. When the owners of a RDBMS platform are not quite so 
forthcoming with the keys to their kingdom, they may share proprietary informa-
tion that is not quite so close to the operating system, but is also not quite as packed 
with features and efficiency. The intent behind these partnerships is symbiotic. By 
including themselves in an architecture that is more efficient than others, they hope 
to attract newcomers to the marketplace to purchase their platform as well as cus-
tomers who have already purchased the platform that is the other half of the part-
nership. The least efficient connectivity is through ODBC. A BI Reporting tool will 
use ODBC when no other connectivity is available. In their marketing literature, 
BI Reporting tools will usually state they have a direct ODBC connection.

Data
Warehouse

Data
Mart

ODS

Report
Server

Middleware
Server

BI Reporting Application

Figure 7.2  Business Intelligence (BI) Reporting Application.
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BI Reporting Methods
BI Reporting tools interact with data warehouse customers using one of the follow-
ing three methods. Each method has its own advantages and disadvantages. None 
of these methods addresses all the data warehouse customers’ needs and skills. For 
that reason, most BI Reporting tools combine these methods. Some of the com-
binations have produced stellar results, some are still working on it. As a potential 
BI Reporting tool customer, a BI Reporting analyst must be well-versed on all the 
features and options, so that he or she can choose a BI Reporting tool with the best 
fit for the enterprise.

Predefined Reports

Predefined reports are basically SQL statements with a label. The BI Reporting tool 
has a library of predefined reports. A large selection of reports may compensate for 
the lack of interactive or menu-driven report creation. Data warehouse customers 
need to be able to find the exact permutation of Fact and Dimension data in a 
report. If that is not available, the BI Reporting team has the responsibility of cre-
ating that report. Either way, the report required by the data warehouse customer 
must be provided by the BI Reporting application.

The SQL in all the reports can be optimized for maximum query efficiency. 
The BI Reporting team can test and validate each report, verifying it does indeed 
return the data that it promises to return. Also, the BI Reporting team can own and 
catalog all the BI reports, thus avoiding redundant reports.

Interactive Reports

Interactive reports require the BI Reporting tool translate the list of data elements 
required by the customer into a SQL statement. Then, the BI Reporting tool submits 
that SQL to the data warehouse and returns the result set back to the data warehouse 
customer. A BI Reporting tool usually uses drop-down lists, menus, and user input 
boxes to indicate the list of data elements and WHERE clauses required by the 
data warehouse customer. To achieve the translation of data elements and WHERE 
clauses, a BI Reporting tool must have its own roadmap of the data warehouse. That 
roadmap of the data warehouse must be maintained and synchronized with the data 
warehouse; if the data warehouse changes, the BI Reporting roadmap changes.

Interactive reports provide flexibility and ad hoc reporting that does not exist 
with predefined reports. The interactive BI Reporting tool uses the list of data ele-
ments and WHERE clauses provided by the customer and its own roadmap to 
generate a SQL statement. That SQL statement is submitted to the data warehouse. 
The result set is returned to the data warehouse customer.
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The price for that flexibility is the roadmap of the data warehouse, which 
includes the cost of a BI Reporting server, probably a middleware server, develop-
ment and maintenance of the BI Reporting tool, and the roadmap. All in all, this 
flexibility is not inexpensive. This flexibility must also be managed. If the data 
warehouse customers are allowed free reign with a BI Reporting application, they 
will create redundant reports (e.g., 100+ copies of one report), incorrect reports, 
and inefficient reports.

Online Analytical Process (OLAP) Reports

Online Analytic Processing (OLAP) applications precalculate and store the answers 
(i.e., result sets) to permutations of Dimensions. The precalculated result sets are 
stored in a multidimensional structure, which is referred to as a Cube. The mul-
tidimensional cube is able to navigate directly to the cell that holds the result set 
associated with the permutation of Dimensions indicated by the customer. As a 
result, the answer set comes back to the customer with nearly instant response 
time.

The multiplication table in Table 7.1 illustrates the precalculated and stored 
result sets. The numbers on the left and top are the Dimensions. The numbers 
inside the table are the result sets. When a customer indicates the permutation 2 × 
3, the OLAP application does not calculate 2 × 3. Rather, the OLAP application 
finds the cell that is the intersection of 2 and 3. That cell holds the answer. Without 
calculating or knowing the answer, the OLAP application simply returns the value 
held in the cell at the intersection of 2 and 3 to the customer.2

Table 7.1   Precalculated Result Sets
X 1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12

2 1 2 3 4 5 6 7 8 9 10 11 12

3 3 6 9 12 15 18 21 24 27 30 33 36

4 4 8 12 16 20 24 28 32 36 40 44 48

5 5 10 15 20 25 30 35 40 45 50 55 60

6 6 12 18 24 30 36 42 48 54 60 66 72

7 7 14 21 28 35 42 49 56 63 70 77 84

8 8 16 24 32 40 48 56 64 72 80 88 96

9 9 18 27 36 45 54 63 72 81 90 99 108

10 10 20 30 40 50 60 70 80 90 100 110 120

11 11 22 33 44 55 66 77 88 99 110 121 132

12 12 24 36 48 60 72 84 96 108 120 132 144
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The tradeoff is a limited set of Dimensions. Because the result sets are precalcu-
lated and stored in the multidimensional cube, storage capacity is a limiting factor. 
To offset this, OLAP applications actually precalculate and store only a portion of 
the intersecting cells. Because 2 × 3 is the same as 3 × 2, the OLAP application need 
only store the result of one permutation, knowing that the stored result set will hold 
the answer to both permutations. Table 7.2 illustrates this method by which a result 
set can be stored only once.

The final, and best, feature of an OLAP application is the user interface. An 
OLAP application uses a GUI interface. The customer is able to point-and-click 
on a cell that is a reference to a permutation of Dimensions. The result set returns 
immediately because the result set has been precalculated and stored, allowing the 
customer to ask questions (via point-and-click) and receive answers in a near stream 
of consciousness.

OLAP is purely an analytic tool. The result set is rarely mobile. The analyst 
using an OLAP application must have a deep understanding of the business and 
the enterprise to achieve the stream of consciousness analysis. The result set and 
the path by which the analyst achieved the result set are usually not repeatable. 
An OLAP application is good at finding where to look to find the permutation of 
Dimensions that is likely to yield helpful results. A presentable report of informa-
tion (information that was first detected by an OLAP application) is best created 
in a BI Reporting application intended to create reports that will be understood by 
a wider audience.

OLAP applications offer three permutations of storage capacity requirements 
and performance. These permutations allow the customer to make the decision, 

Table 7.2  Nonredundant Result Sets
X 1 2 3 4 5 6 7 8 9 10 11 12

1 1

2 1 2

3 3 6 9

4 4 8 12 16

5 5 10 15 20 25

6 6 12 18 24 30 36

7 7 14 21 28 35 42 49

8 8 16 24 32 40 48 56 64

9 9 18 27 36 45 54 63 72 81

10 10 20 30 40 50 60 70 80 90 100

11 11 22 33 44 55 66 77 88 99 110 121

12 12 24 36 48 60 72 84 96 108 120 132 144
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the final tradeoff between storage capacity and performance. At the time an OLAP 
cube is built, the customer can choose one of three OLAP technologies.

MOLAP

Multidimensional OLAP (MOLAP) stores all the result sets of all the permuta-
tions of Dimension in an OLAP cube. MOLAP requires significant storage capac-
ity. The creation of all the result sets in a MOLAP cube requires significant CPU 
cycles, I/Os, and memory capacity. MOLAP provides the fastest performance for 
the customer.

ROLAP

Relational OLAP (ROLAP) stores no result sets. Rather, ROLAP identifies the 
data within an associated data warehouse by which it can calculate at runtime all 
result sets. When a customer indicates an intersection of Dimensions, the ROLAP 
cube translates that information into a SQL statement, which is submitted to a data 
warehouse. The result set comes back as a data value that is reflected in the OLAP 
GUI (graphical user interface). A ROLAP cube requires the least storage capacity 
on the OLAP server; however, ROLAP transfers consumption of CPU cycles and 
I/Os over to the data warehouse. ROLAP provides the slowest performance and the 
maximum number of Dimensions for the customer.

HOLAP

Hybrid OLAP is a combination of MOLAP and ROLAP. By precalculating and 
storing most, but not all, of the result sets within an OLAP cube, a HOLAP 
cube achieves a compromise between capacity, performance, and permutations of 
Dimensions available to the customer.

Drilling

Within OLAP, Drilling is the concept whereby the customer is able to ask the same 
question (Number of units manufactured?) at successively lower hierarchical levels. 
Through a series of point-and-click queries, the customer Drills down to lower and 
lower levels of granularity. For example:

A customer can begin by asking, “How many widgets did the enterprise man-
ufacture today?”
A customer can drill down by asking, “How many widgets did the Eastern 
Division manufacture today?”
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A customer can drill down farther by asking, “How many widgets did the 
Southeastern Region manufacture today?”
A customer can continue drilling down by asking increasingly precise, and hier-
archically lower, questions. Drilling stops when the customer gets to the bottom 
of the hierarchy, “How many widgets did Plant #236 manufacture today?”

The Drilling concept of OLAP is not original to OLAP. Analysts queried up 
and down hierarchies before the creation of OLAP cubes. What OLAP cubes added 
to Drilling as a concept is an understanding of the power of drilling up and down 
hierarchies. As a result, the concept of Drilling has matured in other BI Reporting 
technologies and methods.

Push versus Pull

Push

BI Reports are pushed to members of the enterprise on a scheduled basis. Other 
than the schedule, no event triggers a pushed report. Typically, pushed reports are 
integral to, and designed for, recurring business processes. A pushed report looks 
the same, answers the same questions, and presents the same data from day to day.

Pull

A member of the enterprise also can request BI Reports. An enterprise event occurs 
that requires information in a BI Report. In response, a member of the enterprise 
requests that BI Report. Pulled BI Reports are typically canned reports, but with 
input parameters. The input parameters allow the report to answer the question 
posed by the enterprise event.

Printed on Paper

Despite all the advances in technology, BI Reporting applications are still required 
to include the functionality that prints reports on paper. Although increasingly 
fewer people distribute reports by walking around with pieces of paper in their 
hands, a printed page from a report will always provide a concrete record of a report 
and the information on that report.

Report Archives

BI reports chronicle the activities and history of an enterprise. At a point in time, they 
record the questions that were asked, and the answers. BI reports can be archived 
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electronically or optically in addition to publication to their intended audience. The 
result is a history of the enterprise. By capturing the information available at the 
time of a decision, archived reports create a context for historical decisions.

Web-Based BI Reporting
BI Reporting applications publish reports via corporate intranets and the Internet.3 
This method allows a BI Reporting application to span physical and geographic 
boundaries. The Push, Pull, and Interactive features of BI Reporting are viable 
options across a corporate intranet and the Internet. The connective capacities of BI 
Reporting tools and networks have removed the physical and geographic constraints 
that had previously tied BI Reporting to a physical location or local network.

Operational BI Reporting: From an ODS
BI Reporting applications leverage the operational data in an ODS. BI reports 
generated from the data in an ODS relieve the operational source system of the 
responsibility to publish reports. By letting the BI Reporting application do what it 
does best, the operational source system is allowed to do what it does best.

The business cycles of the operational system provide the cycles by which the ODS 
gathers, and the BI Reporting application reports, operational data. The ODS and BI 
Reporting application should not allow operational data to go stale by moving slower 
than the operational system. The ODS and BI Reporting application also should not 
repeat operational reports by gathering and reporting operational data faster than 
the operational source system generates it. Rather, the ODS and BI Reporting appli-
cation should be synchronized with the operational source system. The periodicity of 
this synchronization can be as slow as daily, or as fast as real-time.

Operational BI Reporting: From an 
Operational System (Real-Time)
When an ODS is not available, but operational BI reports are still required, a BI 
Reporting application can retrieve its data directly from an operational source sys-
tem. Used this way, a BI Reporting application becomes a reporting module of 
an operational system. This method leverages the reporting capabilities of the BI 
Reporting tool, while still removing reporting responsibilities from the operational 
system. The risk to this approach is that the BI Reporting application may interfere 
with the operational system. This is a risk that must be managed and mitigated. The 
business cycles of the operational system provide the cycles by which the BI Report-
ing application reports operational data. The BI Reporting application should not 
allow operational data to go stale by moving slower than the operational system. 

AU6462.indb   214 2/7/08   9:53:57 AM



Business Intelligence Reporting  n  215

The BI Reporting application also should not repeat operational reports by reporting 
operational data faster than the operational source system generates it. Rather, the 
BI Reporting application should be synchronized with the operational system. The 
periodicity of this synchronization can be as slow as daily or as fast as real-time.

Operational BI Reporting: EDI, Partnerships, and Data Sharing
BI Reporting applications can share data and information with partners of the 
enterprise. Electronic Data Interchange (EDI) is the sharing of documents, data, 
and information. An enterprise will share specific data and information for prear-
ranged purposes. Typically, an enterprise will share orders, inventory levels, and 
near-term plans to allow its partners to supply product and materials at the time 
and place they are needed.

BI Reporting: Thus Far
In the early days of BI Reporting, the reporting tools, infrastructures, and applica-
tions we presently associate with BI Reporting were not yet created. BI Reporting 
was limited to the printing functions inherent in operational applications. Then, as 
BI Reporting tools developed and matured, they found three fast paths to ROI.

Customer Relationship Management (CRM)
Without customers, any business or enterprise will die—quickly. So, it is no surprise 
that BI Reporting tools found a niche by enhancing interaction with customers. Cus-
tomer Relationship Management (CRM) systems allow the enterprise to recognize 
the customer, regardless of the agent actually talking to the customer. By providing 
customer-specific information to the agent, the agent is able to give the impression of 
a personal interaction with the customer. By referencing the name of the customer’s 
business, line of work, or other details, the agent is able to communicate to the cus-
tomer that the enterprise remembered these details about the customer.

CRM systems also remember the buying patterns and seasonality of the cus-
tomer. If the customer seems to miss a typical buying period, a CRM can alert the 
enterprise that a potential transaction has not yet happened. CRM systems can also 
associate a transaction event to typical buying behavior; when the customer pur-
chases nails, the CRM can suggest the customer also consider a product typically 
purchased with nails. CRM systems can also remember birthdays and anniversa-
ries. By sending out cards congratulating a customer on a birthday or anniversary, 
an enterprise is able to simultaneously remind the customer that the enterprise 
exists and generate a small measure of good will. Clearly, BI Reporting has, and 
continues to, serve well in CRM.
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Business Metrics Measure the Enterprise

BI Reporting applications also achieve immediate ROI by giving visibility to the 
state of the enterprise. Published reports disclose the activity levels, benchmark 
measurements, and key performance indicators of the enterprise. The visibility 
allows an enterprise to recognize its position in the marketplace and respond to that 
information. Rather than remain blind to it, BI Reporting applications illuminate 
the enterprise in the context of the marketplace.

Decisions and Decision Making Closer to the Action

An interesting effect of BI Reporting applications is the availability of information 
at all hierarchical levels of the enterprise. In the early days, only those managers 
within walking distance of the carbon impact printer, which printed the reports 
of the enterprise, would receive the reports generated by operational applications. 
When BI Reporting applications disseminated operational reports, these reports 
could be distributed to members of the enterprise closer to the action. Managers 
back in the office no longer had to tell the workers on the floor and in the field what 
was in the report; instead, those workers could see the report for themselves.

BI Reporting: Coming Soon
Recent and upcoming developments in BI Reporting have less to do with the tech-
nology of BI Reporting and more to do with the use of that technology. Although 
the technology continues to advance and improve, the analysts and developers 
using BI Reporting technology are still finding ways to achieve their potential in 
BI Reporting.

Reporting around the Event

For those BI Reporting applications that report a specific event or condition, BI 
Reporting analysts know someone will ask, “Why?” In an effort to streamline the 
“why” question and its answer, BI Reporting analysts have begun to include related 
and relevant information with the BI report of an event. They have begun to report 
around the event. The net effect is to simultaneously provide the enterprise event 
and its context. By providing the context of the event in the first report, the enter-
prise agent addressing the event can dispense with the request to generate a report 
of the context of the event.
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BI Search

BI reports that have already been designed and coded can be cataloged and indexed.4 

When a member of the enterprise needs a specific piece of information, that person 
can scan the catalog and index of existing BI reports.5 If a BI report already exists 
that presents the required information, that person has simultaneously avoided the 
creation of a new BI report and obtained the required information.

Sarbanes–Oxley and BI Reporting

The Sarbanes–Oxley (SOX) legislation that addresses recent corporate tragedies 
applies to the applications that create the data of the enterprise, and to the appli-
cations that report the data of the enterprise.6 BI Reporting applications that are 
regulated by the SOX legislation now must conform to the following guidelines.

Quality Assurance (QA): A BI report must be thoroughly tested to validate 
the data it presents.
Change Management: The BI report that generates the information viewed by 
the enterprise must be the BI report that is intended to generate that data.
Security: The information disclosed by a BI report must be visible to, and 
used by, only the intended target audience.
Operations Management: The execution of a BI report and distribution of its 
result must occur via the infrastructures that are controlled by the enterprise 
information systems.

Data Mining
Data Mining is a search for patterns and associations within data that are not 
immediately obvious or may be hidden altogether. Data Mining is a very dynamic 
exercise. As a pattern emerges, it may lead to a question that will lead to another 
pattern that may open up a new line of inquiry and discovery.7 The inquiry and 
discovery in Data Mining follows one of two paths:

Exploratory Analysis: This is the search for a hypothesis, a business rule that 
can predict future events and conditions.
Confirmatory Analysis: This is the test of a hypothesis. A business rule has 
been found that requires validation and verification.8

An enterprise performs data mining to achieve a competitive advantage.9 The 
enterprise that can decipher the tea leaves of information within itself and its 
environment to be able to predict the near, and not so near, future possesses a 
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competitive advantage over those in the marketplace who can only react to events 
and conditions after they have happened.

At first glance, Data Mining has the appearance of a second semester statistical 
time-series class project. The professor distributes to the class a data file containing 
thousands of rows of comma separated values (CSV) data. In each row, the first value 
is the dependent value; all the other values are the independent values. The assign-
ment is find the independent variables and statistical algorithm that best predict the 
dependent variable; remembering to include the confidence measurements.

Data Mining is similar to that assignment. An enterprise wants to be able to 
predict an event or condition, i.e., what function and factors in f (x, y, z) = A? In 
the best case scenario, factors x, y, and z are within the power of the enterprise to 
manipulate. In that case, the enterprise can cause result A to occur by manipulating 
factors x, y, and z. In the next best-case scenario, factors x, y, and z are known by 
the enterprise. The enterprise can know result A is about to occur whenever factors 
x, y, and z have occurred.

In the second semester statistical time-series class, the assignment was testing 
the students’ ability to perform and measure statistical time-series functions on an 
almost infinite set of permutations of independent and dependent variables. That 
may have actually been the point, considering how difficult it was.

Statistics Concepts

Data Mining uses many of the concepts and terminology found in Statistics. This 
does not mean that Data Mining is a statistical exercise. It does, however, mean 
that Data Mining is an exercise that includes elements of statistics. The founda-
tional and most prevalent of these concepts and terms are explained in the follow-
ing sections.

Random Error

Slight fluctuations occur constantly in the universe. These fluctuations manifest 
themselves in our daily lives. We experience these fluctuations all the time. Some-
times we’re aware of them, sometimes not. For example:

In the morning, we take varying durations of time to eat breakfast, dress, and 
get out the door, for no apparent reason.
The morning commute using the same route consumes varying durations of 
time, for no apparent reason.
The number of people in the elevator going to work varies from one morning 
to the next, for no apparent reason.
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These slight fluctuations that occur everywhere and all the time were illustrated 
by W. Edwards Deming.10

In Deming’s example, he held a handful of coins and tried to drop them, one at 
a time, onto a single spot in the floor. Marking first the target spot on the floor and 
then all the spots where the coins actually fell, Deming observed:

Most coins did not fall on the same spot.
Most coins did not fall on the target spot.
Most coins fell very close to the target spot.

Was Deming’s aim poor with the coins? No, because his results and observa-
tions can be repeated. In fact, they can only be repeated. No one is able to stand 
over a spot in the floor and hit it exactly with a handful of coins. Why? The answer 
is Random Error.

While Random Error is random, it is not error. Rather, Random Error is the 
naturally occurring variance between a target value and an actual value. Ran-
dom Error is ubiquitous and unavoidable. Any process, therefore, that proclaims 
it achieves perfect results is not measuring itself well enough to identify its own 
Random Error.

Data Mining experiences Random Error. In the case of Data Mining, Random 
Error is the naturally occurring variance between the data value derived by an 
algorithm and the actual data value. Since Random Error occurs everywhere all the 
time, including Data Mining algorithms, all Data Mining algorithms will rarely 
derive the correct answer. But, a good Data Mining algorithm will consistently 
derive an answer that is closest to the correct answer. Random Error, measured, 
recorded, and graphed, should render a graph that looks like a bell curve, preferably 
a tall, narrow, bell curve (Figure 7.3).

So, it may seem counter-intuitive, but a good Data Mining algorithm is not 
the algorithm that derives the right answer, but the best answer. Why not the right 
answer? The right answer also experiences the ubiquitous Random Error.
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Figure 7.3  Random Error.
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Statistical Significance

So, the goal of Data Mining, therefore, is not to find an algorithm that derives the 
right answer, but to find an algorithm that derives the best answer. The best answer 
is described as the answer that is Statistically Significant. An algorithm is Statisti-
cally Significant when it adds the least possible Error, in addition to the unavoid-
able Random Error.

For example, the top graph in Figure 7.4 illustrates the Error generated by an 
algorithm that derives expected values that are more prone to Error than Random 
Error. The difference between Random Error and Actual Error is a measure of an 
algorithm’s Statistical Significance. The algorithm that adds the least Error in addi-
tion to Random Error (i.e., Actual Error – Random Error) is the most Statistically 
Significant algorithm.

Variables: Dependent and Independent

An algorithm uses multiple input data values to predict an output data value. The 
multiple input data values are the Independent Variables. They are independent 
because their data value does not rely on any other data value. The output data 
value is the Dependent variable. It is dependent because its data value depends on 
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Figure 7.4  Nonrandom Error.
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the data values in the Independent Variables. An algorithm can be expected to have 
multiple Independent Variables, but only one Dependent Variable.

Hypothesis

The Hypothesis of every algorithm is that the algorithm is able to accurately pre-
dict the Dependent Variable using the Independent Variables. The measured Error 
between the predicted Dependent Variable and the actual Dependent Variable, 
adjusted for Random Error, is the Error associated directly with the algorithm and 
the measure of its Statistical Significance. The algorithm with the greatest Error is 
the least Statistically Significant. But, the algorithm with the least Error is the most 
Statistically Significant. An algorithm, therefore, may never derive the right answer, 
but be the most Statistically Significant algorithm by which answers can be derived.

Data Mining Tools
Data Mining tools have mitigated the difficulty of performing and measuring sta-
tistical time-series functions. Generally available Data Mining tools handle all the 
statistical and time-series functions as well as the confidence measurements. These 
Data Mining tools are powerful software packages that enhance and accelerate the 
Data Mining process. They include the statistical algorithms and functions that are 
at the center of Data Mining.

Data Mining tools, like all competing software packages, can be compared to 
each other. The criteria on which to compare Data Mining tools are:11

Platform: The computers and operating systems on which the Data Mining 
tools will operate.
Algorithm: The library of statistical functions inside each Data Mining tool.
Data Input options: File layouts accepted by the Data Mining tool.
Model Output options: Methods by which the Data Mining tool presents 
its results.
Usability: The least skill set necessary to use the Data Mining tool.
Visualization: The graphic representation of a predictive model.
Automation Methods: The power of the Data Mining tool to perform and measure 
the statistical functions and the final hypothesis without human intervention.

By comparing Data Mining tools along these criteria, a BI analyst can deter-
mine which Data Mining tool best fits his or her skills and needs. Regardless of 
which Data Mining tool is selected, a BI analyst must have a strong understanding 
of the statistical principles and methods used by the Data Mining tool and the 
business meaning of the methods and data. As always, no amount of tool can com-
pensate for a lack of knowledge.
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Data Mining Activities
Data Mining is a specific activity. A BI analyst does not accidentally mine data. In 
a data warehouse full of gigabytes or terabytes of data, a BI analyst cannot simply 
bump into a golden nugget. Rather, a BI analyst has to intentionally search for 
the correlations and associations in those gigabytes and terabytes of data. The first 
step is to recognize that no Data Mining tool is going to mine these gigabytes or 
terabytes of data. Data Mining tools, despite all of their statistical power, actually, 
because of all their statistical power, require the data be brought to them. Data 
Mining tools require data be brought to them in specific formats (hence, the simi-
larity to the CSV file in that second semester statistical time-series class).

Data Preparation is similar to preparing a house for painting. The preparation 
work is usually two or three times the work of painting. Data Preparation is usually 
two or three times the work of Data Mining. But, if enough attention is given to 
the preparation, the final product will be much better.

Data Cleansing

The Data Mining tool is going to derive correlations between independent variables, 
dependent variables, and algorithms that may or may not explain their association. 
To do this, a Data Mining tool needs a clean set of data, without any “noise” data 
that might cause confusion or distraction.12 This is not the data warehouse. This is 
not data that will be presented to data warehouse customers. Rather, this data will 
be used by the Data Mining tool and no one else. So, the constraints in the Data 
Warehousing Philosophy do not apply. That being said, some of the Data Cleansing 
methods are:

Missing Values: Identify missing values in the data. Fill them in with a rea-
sonable value. This mitigates the risk that an empty spot in the data that does 
not normally occur may lead the Data Mining tool to believe that empty spot 
always occurs.
Outliers: Identify unreasonable data values. In the data warehouse, these 
outliers are retained. But, in the data presented to a Data Mining tool, these 
values are modified to a more reasonable value. This mitigates the risk that an 
outlier in the data that does not normally occur may lead the Data Mining 
tool to believe that outlier always occurs.
Sample Bias: Preferably, feed a Data Mining tool with a universe (a whole 
and complete set) of data, not just a sample. A sample of data should only 
be used when the delivery of a universe of data is physically and logistically 
impossible (including asking that person fours doors down and two doors 
over, who can move mountains of data, to help gather the universe of data). 
If, and only if, the universe of data is impossible, use a sample of data for Data 
Mining. If a sample is used, check the bias of that sample. For example:
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A sample of customers throughout the world should not be used to inves-
tigate patterns in Georgia sales tax.
A sample of customers in Georgia should not be used to investigate time-
of-day purchasing behavior in Scandinavia.

These examples of sample bias are obvious. The sample bias in data used in Data 
Mining is usually far subtler. The point is to realize the act of sampling data applies 
a logic algorithm to the universe of data. The Data Mining tool is not aware of this 
logic algorithm. Even if a Data Mining tool were aware of the logic algorithm used 
to sample data, the Data Mining tool could not compensate for bias of that sample.

Remember, you do not want the Data Mining tool to derive unusual or biased 
behavior of the enterprise. Instead, you want the Data Mining tool to derive the 
normal behavior of the enterprise.

Data Inspection

A Data Mining tool perceives data as variables. A Data Mining tool understands 
two kinds of variables: Independent Variables and Dependent Variables. In the 
cause–effect concept of the world wherein every effect is preceded by one or more 
causes, Independent Variables are the cause and a Dependent Variable is the effect. 
In Data Inspection, a BI analyst reviews the meaning, content, and inconsistencies 
within each Variable. The methods applied in Source System Analysis can also be 
applied to Data Inspection:

Data profile
Histogram
Business Rule validation

Compound Variables

Variables that are composed of two or more discreet data elements (e.g., shoe style 
and size, date and time, etc.) can be separated into their distinct data elements. The 
result would be two new Variables and the removal of the compound Variable.

Lag Variables

When an Independent Variable affects subsequent periods, but not the period in 
which it occurs, that Independent Variable must be displaced in time to the time 
period it affects. A Lag Variable can be expressed as an Independent Variable (one 
period prior). The BI analyst doesn’t know the length of the trail of effect following 
a Lagging Variable. Therefore, a single Lagging Variable can become Independent 
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Variable (one period prior), Independent Variable (two periods prior), Independent 
Variable (three periods prior), Independent Variable (× periods prior). The creation 
of Lag Variables is an educated guess. Thus, it is best to guess many times and let 
the Data Mining tool find the best correlation.

Numeric Variables

Numeric Variables quantify the measurements applied to enterprise entities. These 
could be the number of units is a transaction, the size of a building, or the tem-
perature of molten iron ore. In each case, the Numeric Variable quantifies a single 
aspect of an enterprise entity. To inspect a Numeric Variable, the mathematical 
mean, mode, and median of all the measurements of a Variable will identify the 
mathematical center of that Numeric Variable.13 Does that mathematical center 
look correct? If the Numeric Variable represents the height of people and the math-
ematical center is 12 feet, that Numeric Variable is wrong.

A Distribution Histogram of a Numeric Variable is also helpful. The Distribu-
tion Histogram of a Numeric Variable should resemble a bell curve, centered on the 
mathematical center of the Numeric Variable. If it is not a bell curve, or if it is not 
centered on the mathematical center of the Numeric Variable, then the Numeric 
Variable requires further investigation. Either, the Numeric Variable means some-
thing other than was originally represented or is just plain wrong. By juxtaposing a 
Distribution Histogram over the mathematical center of a Numeric Variable, a BI 
analyst is able to derive some level of confidence in that Numeric Variable.

Categorical Variables

Categorical Variables qualify enterprise entities into groups by directly associating 
one of a set of mutually exclusive attributes to an entity. For example:

Blue: From the set Red, White, and Blue
Yes: From the set Yes and No
Upper Midwest: From the set Northeast, Southeast, Upper Midwest, Lower 
Midwest, Northwest, and Southwest
Female: From the set Male and Female

A BI analyst can measure the distribution of Categorical Variables. That distri-
bution compared to the expectations of the Variable provides some level of confi-
dence in it.

n

n

n

n
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Hypothesis

Inherently, the set of Independent Variables is a hypothesis within themselves. That 
inherent hypothesis is that these Independent Variables have some sort of connec-
tion to the Dependent Variable. Beyond that ambiguous hypothesis, Exploratory 
Analysis is a search for an explanation as to how (not necessarily why) some subset 
of these Independent Variables relates to, or associates with, the Dependent Vari-
able. The relation, or association, derived from Exploratory Analysis is an algo-
rithm. For example:

Growth in sales is inversely proportional to changes in price.
Increases in manufacturing throughput are directly proportional to certifica-
tion levels.

These algorithms are also hypotheses. Exploratory Analysis uses the input data 
to discover the algorithm (i.e., hypothesis).

Confirmatory Analysis begins with the hypothesis. In Confirmatory Analysis, 
the BI analyst tries to predict the Dependent Variable by using the Independent Vari-
ables and the hypothesized algorithm. The variance between the predicted value and 
the actual value is a measurement of the confidence in the hypothesized algorithm.

The goal is important. The goal of Data Mining is the achievement of a com-
petitive advantage. Inside the data is a key by which the enterprise can identify 
approaching opportunities and threats. That key, finding it, validating it, and using 
it to the advantage of the enterprise is important, and the reason for Data Mining.

Data Mining Algorithms

Data Mining tools offer many different algorithms because Data Mining is not a 
one-size-fits-all methodology. A BI analyst must come to the Data Mining exercise 
with a knowledge of the data and a knowledge of the algorithms. Data Mining 
does not work by just throwing algorithms at data and then waiting to see what 
works. The best-fit algorithm will not work to some degree. Therefore, a BI analyst 
should begin the Data Mining exercise with an understanding of the independent 
variables, dependent variable, and the available algorithms. From that perspective, 
a BI analyst can begin to select an algorithm, or set of algorithms, that might be 
able to predict the dependent variable with sufficient confidence.

Five of the myriad Data Mining algorithms are discussed in the following sec-
tions. The purpose of these sections is not to disseminate all possible knowledge of 
these algorithms, but rather, the purpose is to provide a sense of what algorithms 
are, how they work, and how a BI analyst works the algorithms.

n

n
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Neural Network

The Neural Network algorithm is based on the processes of cognitive learning in the 
neurological infrastructure of the human brain (Figure 7.5).14 The Neural Network 
begins when a BI analyst defines a set of neurons (hence, Neural), otherwise known 
as nodes. These nodes are lined up in multiple rows, or layers. Within each node is 
a function. That function will use as input the data values that comes into the node. 
The output is the result of the function having been applied to the input data.

Nodes are connected by links. Links serve two purposes. First, they pass data 
values from:

An input to a node
A node to another node
A node to an output

Each input is linked to all nodes in the first layer. All nodes in the first layer are 
linked to all nodes in the second layer. All nodes in the subsequent layers are linked 
to all nodes in the next layer. Finally, all nodes in the last layer are connected to the 
output. The result looks like a Cartesian join from input to nodes, from nodes to 
nodes, and from nodes to output.

The second purpose of links is that they apply a weight to the data values that 
pass through them. This is how the Neural Network “learns.” By iteratively apply-
ing varying weights to the data values as they pass through, the Neural Network is 
able to adjust its decision-making process.

This is very similar to priorities and their application to decision making by 
humans. For example:

n

n

n

Figure 7.5  Neural Network.
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Node 1: I want to play flag football.
Node 2: I just stepped on a nail. It is sticking up through my foot.
Outcome: Zero weight is applied to the data value from Node 1. Node 2 
receives 100 percent weight. The decision is: Go to the doctor.

In this scenario, had the value from Node 2 been: “I have a cramp in my leg,” 
then Node 1 would have received some weight. Interestingly, the Neural Network 
would require iterations of training to learn the correct weight to apply.

There is no guarantee a Neural Network will be able to predict the dependent 
variable. After several iterations of learning (i.e., adjusting the weights applied by 
the links), a Neural Network may be no closer to predicting the dependent variable 
with any level of confidence. In these situations, a BI analyst can throw away that 
set of neurons and links and start over. This is perfectly acceptable, albeit annoying. 
A BI analyst can start over by creating a whole new set of neurons with new func-
tions, lined up in new rows, and connected by new links.

Decision Tree

A Decision Tree is a stack of binary decision boxes (Figure 7.6). Within each box 
is a categorical question, which separates the input values based on their answers. 
For example:

Are you greater than five feet tall?
Yes
No

Are you left-handed?
Yes
No

What is your annual salary?

< 50,000
> 50,000

Each decision box yields two outputs. These outputs either lead to another deci-
sion box or a termination point. When the answer to a decision box is statistically 
significant, the set of independent variables proceeds to the next decision box. When 
the answer to a decision box is statistically insignificant, the set of independent 
variables goes immediately to a termination point. Based on their answers, a set of 
independent variables will either pass all the way to the bottom of the Decision Tree 
or cause that set of independent variables to terminate the Decision Tree.

n
n
n

n
−
−

n
−
−

n

−
−
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A Decision Tree also has no guarantee of predicting the dependent variable. If 
all rows of independent variables terminate the Decision Tree, then none of them 
will yield a prediction for the dependent variable. A BI analyst can redefine, recre-
ate, and restructure the Decision Tree many times before finding a permutation 
that predicts the dependent variable with an acceptable level of confidence.

CHAID

CHAID (Chi-squared automatic interaction detector) is also a decision tree, a non-
binary decision tree.15 That means every decision box can simultaneously output 
multiple (i.e., more than two) branches (Figure 7.7). A CHAID tree applies one 
independent variable at a time. Each independent variable is treated categorically. 
Numeric independent variables are banded into categories so the CHAID statisti-
cal test can treat them categorically. The categories in each layer of CHAID have an 

Input

Output

Question
#1 TerminationInsignificant

Question
#2 TerminationInsignificant

Question
#3 TerminationInsignificant

Significant

Significant

Significant

Figure 7.6  Decision Tree.
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equal probability of occurring. If they did not have an equal opportunity of occur-
ring, the CHAID tree would be self-prophetic and useless because the outcome 
would be built into the tree. For example:

Layer 1 Independent Variable is Profession. The categories are
Government employee
Educational employee
Student
Private Sector

Layer 2 Independent Variable is Income level. The categories are
0 to 10,000
10,001 to 50,000
50,001 to 250,000
> 250,001

n

−
−
−
−

n

−
−
−
−

Input

Output

Question
#1

TerminationTerminationTermination Termination

Question
#2

TerminationTerminationTermination Termination

Question
#3

TerminationTerminationTermination Termination

Figure 7.7  Chi-squared automatic interaction detector (CHAID).
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Layer 3 Independent Variable is Housing. The categories are
Homeowner
Condominium owner
Renter

An input record is tested using the Chi-squared method to determine the Layer 
1 category for which it is most significant. If the Chi-squared test directed the input 
record to a Layer 1 category, which is not exploded into Layer 2, then that record 
terminates the CHAID tree. One category in Layer 1, the statistically most signifi-
cant and, therefore, least independent category, is exploded into the categories of 
the next independent variable in Layer 2. This process continues until the record 
either terminates or exhausts all independent variables.16

CHAID is a nonbinary decision tree. Input records are Chi-squared tested to 
determine down which branch in the tree they will travel. If the input record goes 
down an insignificant branch in the tree, that record is terminated. If the input 
record continues to go down a significant branch, that record will eventually reach 
a prediction of the dependent variable.

Nearest Neighbor

The Nearest Neighbor algorithm is an interesting application of the old saying 
“Birds of a feather flock together.” The idea behind Nearest Neighbor (Figure 7.8) 
is that if I’m trying to predict the dependent variable for a single row, I’ll go find 
another row that looks just like it, and use the dependent variable from that row.17 
The independent variables in the other row, by some unknown means, lead to the 
dependent variable in that row. By correlating the two rows based on their similari-
ties, the same unknown means that yielded the dependent variable in the other row 
will also yield the same, or at least extremely similar, dependent variable in the row 
in question.

n

−
−
−

f(a, b, c) Output = m

f(d, e, f) Output = n

f(g, h, i) Output = o

f(j, k, l) Output = p

f(g, h, i) Output = ??

Figure 7.8  Nearest Neighbor.
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This method is invalidated when the independent variables have no direct con-
nection or association with the dependent variable. For example:

Height, Weight, and Annual Salary → Left-Handed
Left-Handed, Favorite Movie, and Mother’s Maiden Name → Hair Color

But then, if the dependent and independent variables were so disconnected 
from each other, the whole Data Mining exercise was doomed to not find a connec-
tion, regardless of the algorithm.

If, however, a direct and strong connection does exist between the independent 
and dependent variables, Nearest Neighbor may be able to predict the dependent 
variable. Nearest Neighbor does not make any attempt to explain why the depen-
dent variable is connected to the independent variables. Rather, Nearest Neighbor 
simply borrows the dependent variable from another record to predict the depen-
dent variable for the record in question.

Rule Induction

The Rule Induction method is basically Data Mining by brute force. All the input 
records are given to a Rule Induction engine (Table 7.3). The Rule Induction engine 
will identify patterns by which sets, subsets, and permutations of independent variables 
have any positive correlation with the dependent variable. These correlated patterns 
are the Rules.18 A Rule Induction engine will identify many Rules, some useful and 
some useless. Each Rule is accompanied by two measures: Coverage and Accuracy.

Coverage measures the portion of the input records for which the Rule applies. 
Accuracy measures the strength of the prediction provided by the Rule. A Rule may 
have an accuracy of 95 percent for 0.01 percent of the input records, or a Rule may 
have an accuracy of 75 percent for 95 percent of the input records. Coverage and 
Accuracy, therefore, are the measures by which a BI analyst can determine whether 
or not a Rule should be used by the enterprise to predict the dependent variable.

Genetic Algorithm

A Genetic Algorithm applies the concept of mutation to Rules or Patterns, which 
have already been identified (Figure 7.9). The focus of Genetic Algorithm is the 
Rules, not the input data. Input data is used to test mutated Rules. The output of 
a Genetic Algorithm is not a predicted dependent variable. Rather, the output of a 
Genetic Algorithm is a Rule that can predict a dependent variable.

In one form of Genetic Algorithm, two Rules are combined (i.e., crossbred), 
yielding a new Rule that shares characteristics of its parent Rules. The new rule is 
then tested for its ability to predict the dependent variable.19

n
n
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In another form of Genetic Algorithm, two Rules are juxtaposed against each 
other. The weaker Rule is discarded and the stronger Rule is allowed to continue 
with a slight random modification. The Rule resulting from this method is then 
tested for its ability to predict the dependent variable.20

Rule Validation and Testing

Every Rule, regardless of the algorithm that generated it, must be validated and 
tested using a significantly large set of data. That set of data cannot be the set of 
data that was used to derive the Rule. Tempting as it may be, a Rule should not 
be accepted based on its ability to predict one set of data. Without validation in 
another set of data, the risk that the Rule may not apply to data “in the field,” has 
not been mitigated.

Overfitting

If something is too good to be true, it probably is. A pitfall common to all Data 
Mining efforts is the desire to find the perfect Rule. No Rule is perfect. If a Rule 
predicts 100 percent of the dependent variables with 100 percent accuracy, that 
Rule is useless. Why? Because a Rule that can predict 100 percent of the dependent 
variables with 100 percent accuracy in a set of data can predict dependent variables 
only in that set of data. The natural variations and randomness that exist in the 
world will not allow a Rule to predict 100 percent of the dependent variables with 
100 percent accuracy. Therefore, when a Rule begins to compensate for natural 
randomness, the Rule is overfitting the test data and will not be able to predict 
dependent variables in real data.

Rule A

Rule B
Mutation Rule A’B’

Rule A

Rule B
Mutation Rule A’

Figure 7.9  Genetic Algorithm.
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Closing Remarks
Business Intelligence (BI) Reporting has come a long way from the carbon-printed 
reports on green bar paper that were distributed on employees’ desks during the 
night. The product offerings of static, dynamic, push, pull, ad hoc, and OLAP BI 
applications are varied and plentiful. An enterprise can now generate and distribute 
its data and information from a data warehouse, ODS, or operational information 
system. Data Mining is still maturing and available for those on the leading edge. 
With these technologies and methods available, an enterprise only need ask, “What 
do I want to see?” and “How do I want to see it?”
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Chapter 8

Data Quality

Introduction
The quality of the data in a data warehouse determines the reputation and value 
of that data warehouse. If customers perceive the data in a data warehouse to be 
misleading or just plain wrong, they won’t use the data warehouse. If customers 
can find or create a superior source of data elsewhere, they will abandon a data 
warehouse altogether. Data Quality, the perceived reputation and value, of a data 
warehouse, therefore, is vital to the success of a data warehouse. Unfortunately, per-
ceived reputation and perceived value are subjective qualifications and cannot be 
measured. Quantitative measurement, however, is the key to Data Quality (Figure 
8.1). To understand how to apply quantitative measurement to data, we turn to the 
statistician who defined and quantified quality during the twentieth century—W. 
Edwards Deming.

Deming’s Definition of Quality
Deming’s definition of Quality begins with a distinction between Features and 
Quality.1 Features are the buzzers and whistles included with a product that do not 
specifically address the core purpose of a product. Typically, people see Features 
first. For example, the following are features of a product.

Leather seats in a carn
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Graphical user interface (GUI) point-and-click buttons and scroll bars in a 
spreadsheet
Mother of Pearl inlays in a guitar

Deming’s point is not that Features have no value. Of course, the leather seats, 
GUI screen, and Mother of Pearl inlays all have value, but, they are features. They 
do not make the car move, make a spreadsheet calculate, or make the guitar play. 
Their value is subjective and, therefore, impossible to measure.

So, what is Quality? Deming’s answer is based on expectations and whether 
or not those expectations are achieved. Deming defined Quality as the success or 
failure to achieve a customer’s expectations.2

Quality in a car
When I start the car, the car starts.
When I drive the car, the car moves.
When I stop the car, the car stops.
The speedometer indicates the speed of the car accurately.
The odometer indicates the mileage of the car accurately.

Quality in a spreadsheet
When I turn on the spreadsheet, the spreadsheet starts.
When I turn off the spreadsheet, the spreadsheet stops.
When I sort data in a spreadsheet, the spreadsheet sorts correctly.
When I perform arithmetic calculations in a spreadsheet, the spreadsheet 
calculates the numbers correctly.

Quality in a guitar
When I play a G chord on a guitar, the guitar sounds a G chord.
When I tune a guitar, the guitar stays in tune.
When I stop playing a guitar, the guitar stops making sounds.
When I play the guitar tomorrow, the guitar sounds as it did today.

These are the expectations of customers as they consume a car, spreadsheet, and 
guitar. Deming would measure the quality of a car, spreadsheet, and guitar against 
expectations such as these. For each of these products, their quality is their ability 
to meet these expectations.

Note that quality is not their ability to exceed these expectations. In the mea-
surement of quality, the idea of exceeding an expectation is non sequitur. For 
instance, if the expectation of a manufacturing process is that a bolt will be two 
inches long, a bolt cannot exceed this expectation. A two inch bolt cannot be more 
than two inches. A car cannot start more than start. A spreadsheet cannot calculate 
2 × 3 any better than the product of 2 × 3, which is 6. A guitar cannot play a G 
chord more than a G chord. Likewise, in a data warehouse, a complete dataset can-
not be more complete than complete. And, the arrival of data in a data warehouse 
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cannot be any more on time than on time. In all of these cases, Quality is the suc-
cess or failure to meet customer expectations.

Data Quality Service Level Agreement (SLA)
In a data warehouse, Quality is the success or failure to deliver data that meets the 
expectations of its customers. Back in the bolt manufacturing plant, the quality 
of bolts can be measured with a two-inch measuring tape. Bolts are compared to 
the measuring tape. If a series of bolts measure to consistently be between 1.995 
and 2.005 inches, then the bolt manufacturing process is deemed to be working 
correctly. Quality in a data warehouse also requires measurement. Customer expec-
tations of a data warehouse, therefore, must be expressed in well-defined and quan-
tifiable terms. For example:

Completeness
Not Quantifiable: Most of the warehouses should be present in the data 
warehouse.
Quantifiable: 95 percent of the warehouses should be present in the data 
warehouse.

Latency
Not Quantifiable: The warehouse data should be in before the staff 
arrives.
Quantifiable: The warehouse data should be in by 6:30 a.m.

Accuracy
Not Quantifiable: The warehouse data should equal what actually hap-
pens in the warehouse.
Quantifiable: The total inventory movement of each product in a ware-
house reported by the data warehouse should be within 2 percent (+/−) 
the total movement of each product as reported by the warehouse end-
of-day process.

Reasonable
Not Quantifiable: Total inventory movement in a warehouse should be 
similar to the average inventory movement.
Quantifiable: Total inventory movement in a warehouse should be within 
5 percent (+/− ) the seasonal average.

You cannot use a measuring tape, scale, or measuring cup to quantitatively 
measure data and, therefore, Data Quality. But, in a dataset with millions of rows, 
you can measure the frequency with which binary conditions occur and you can 
validate data warehouse data against other information systems with similar data. 
The first step toward achieving a quality data warehouse is the creation of Quality 
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expectations. Those expectations are captured and documented in a Data Quality 
Service Level Agreement (SLA).

A Data Quality SLA is a repository of the quantifiable expectations of data 
warehouse customers. A Data Quality SLA is also an agreement and includes these 
provisions:

The expectations in the Data Quality SLA are defined precisely and clearly.
The expectations in the Data Quality SLA are quantitative and can be 
measured.
The data warehouse team will perform the measurements in each 
expectation.
The data warehouse team will use the results of the Data Quality measure-
ments to improve the data warehouse.
The data warehouse team will publish the results of Data Quality 
measurements.

These provisions of a Data Quality SLA provide a set of expectations against 
which a data warehouse can be measured. Data Quality measurements can be per-
formed, the results documented, published, and compared to previous and subse-
quent periods.

Deming’s Statistical Process Control
In manufacturing, Deming defined Quality as the consistency with which manu-
factured product matches expectations.3 If a bolt is expected to be one-half inch 
wide by two inches long, then that bolt and every other bolt from that manufactur-
ing process should be one-half inch wide by two inches long. By measuring bolts 
as they come from the manufacturing process, Deming asserted the manufacturer 
can know whether or not the manufacturing process is in control or out of control. 
Deming did not propose measuring bolts to find good bolts, he instead proposed 
measuring bolts as a means of measuring the process. The manufacturing process 
was the focus of Deming’s attention, not the bolts. If the manufacturing process is 
in control, it will generate bolts that are one-half inch wide by two inches long all 
day long.

A data warehouse has the same quality issues as a bolt manufacturer. A data 
warehouse process that is in control will generate data that meets expectations all 
day long. A data warehouse process that is not in control will generate nonsense 
data. The processes of the data warehouse are the focus of Deming’s Process Con-
trol method, which measures the process by measuring the product—by measuring 
its data.4 

Deming’s focus on process rather than product ran counter to the qual-
ity enforcement methods of his contemporaries. Manufacturers had previously 
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enforced quality by inspecting completed product as it left the assembly line. 
Defective product was returned to the assembly line for rework. Deming’s focus 
on the individual processes removed the need for final inspection and the need for 
rework. By assuring each manufacturing process is in control, Deming asserted 
the final product, which is the cumulative sum of the processes that created it, will 
meet the customers’ expectations.

If any manufacturing process is found to be out of control, that individual 
process is fixed. The problem could be a worn-down machine part, a new assem-
bly line worker needing training, or a parts bin labeled incorrectly. The point is 
that the individual out-of-control process is identified before it is allowed to affect 
the finished product. The manufacturing process is stopped. Once the process is 
repaired, the manufacturing process resumes. The work interruption costs less than 
the rework that would happen had the process not been stopped.

Extract, Transform, and Load (ETL) processes have the same manufacturing 
properties. By measuring each individual ETL process, the data warehouse team 
can monitor the health of the ETL application. If a single process is out of control, 
the ETL process can stop, allowing time to adjust the errant ETL process. The time 
and effort spent to adjust an out-of-control ETL process costs less than the rework 
that would happen had the process not been stopped. When all ETL processes are 
back in control, the data in the data warehouse will meet the expectations of the 
customer.5

Process Measurement
The expectations of the source system are in the Source System Analysis. Yet, once 
again, this document is the map and lexicon of the source system. All the expec-
tations of the data in the data warehouse come directly from the Source System 
Analysis. If the source system behaves contrary to the Source System Analysis, then 
the processes within the source system are probably out of control and need to be 
adjusted.

The expectations of the ETL applications are listed in the Target System Analy-
sis. The ETL applications provide the behavior of the data in a data warehouse. 
Without the ETL to modify and move its data, a data warehouse would be static 
and have no behavior. If the data passing through an ETL application behaves 
contrary to the expectations identified in the Target System Analysis, then the 
processes within the ETL application are probably out of control, and need to be 
adjusted.

Listed below are the categories of expectations held by the data warehouse 
designer and data warehouse customers. Each of these focuses on a data warehouse 
process. By measuring the individual processes, a data warehouse team is able to 
identify those processes that are out of control and need help and those that are in 
control.
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Data Model: The Target System Analysis identified the data and data behav-
ior expected to occur in a data warehouse. These data behaviors can be mea-
sured by identifying instances of data in the data warehouse that contradict 
the expectations identified in the Target System Analysis.

Relational Integrity: The primary key/foreign key relationships between 
tables in the data warehouse require a primary key in the parent table for 
every foreign key in a child table. Instances of orphan foreign keys with-
out a primary key in a parent table can be recorded and counted as indi-
vidual instances of failure to meet the expectations of the data model.
Domain: The universe of data values expected in a data element can be 
compared to the actual data values. Instances of actual data values that are 
not in the domain can be recorded and counted as individual instances of 
failure to meet the expectations of the data model.
Range: The boundaries within which all data values of a data element 
are expected to exist. Instances of actual data values outside the expected 
boundary can be recorded and counted as individual instances of failure 
to meet the expectations of the data model.

ETL (Extract): The Data Mapping identified the source data that is expected 
to provide the data needed by the data warehouse.

Relational Integrity: The primary key/foreign key relationships between 
tables in the source system require a primary key in the parent table for 
every foreign key in a child table. Instances of orphan foreign keys with-
out a primary key in a parent table can be recorded and counted as indi-
vidual instances of failure to meet the expectations of the source system.
Domain: The universe of data values expected in a data element can be 
compared to the actual data values. Instances of actual data values that are 
not in the domain can be recorded and counted as individual instances of 
failure to meet the expectations of the source system.
Range: The boundaries within which all data values of a data element 
are expected to exist. Instances of actual data values outside the expected 
boundary can be recorded and counted as individual instances of failure 
to meet the expectations of the source system.
Completeness: The presence of the entire population of enterprise entities 
(e.g., manufacturing plants, warehouses, employees, etc.) in a set of data. 
Instances of gaps in the entities present in a set of data can be recorded 
and counted as individual instances of failure to meet the expectations of 
the source system.
Latency: Data from a source system should be available to the data ware-
house within a time frame that allows the ETL application to process 
and load that data. Instances of unavailable source system data can be 
recorded and counted as individual instances of failure to meet the expec-
tations of the source system.
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Business Rules: Data from a source system exists within the context of 
that source system. The business rules of the source system govern the 
data from the source system. Typically, these business rules govern con-
tent of data in three ways.

Intrarecord Business Rules: Column A + Column B = Column C. 
The business rule exists entirely within each individual record.
Intradataset Business Rules: Row 1.Column A + Row 2.Column A = 
Row 3.Column B. The business rule spans across records within a set 
of data, but still remains within the set of data.
Cross-Dataset Business Rules: File 1.Column A = Table 2.Column B. 
The business rule spans across sets of data within a source system.

Instances of source system data that violates the source system business 
rules can be recorded and counted as individual instances of failure to 
meet the expectations of the source system.

ETL (Transform): The Data Mapping identified the transformations that 
are expected to synthesize raw data elements into information. These trans-
formations can inadvertently create data values that do not conform to the 
business rules of the data in the data warehouse. Transformed data values can 
violate the business rules of a data warehouse six ways.

Relational Integrity: The Transform process creates orphan foreign keys 
that do not relate to a primary key.
Domain: The Transform process creates data values that are not in the 
expected set of output data values.
Range: The Transform process creates data values that are outside the 
expected boundary of data values.
Completeness: The Transform process creates a set of data with gaps in 
the data.
Latency: The Transform process consumes so much time creating the 
data that the data arrives too late.
Business Rules:

Intrarecord Business Rules: Column A + Column B = Column C. 
The business rule exists entirely within each individual record.
Intradataset Business Rules: Row 1.Column A + Row 2.Column A = 
Row 3.Column B. The business rule spans across records within a set 
of data, but still remains within the set of data.
Cross-Dataset Business Rules: File 1.Column A = File 2.Column B. 
The business rule spans across sets of data within an iteration of trans-
formed data.

Instances of transformed data that violate the data warehouse business 
rules can be recorded and counted as individual instances of failure to 
meet the expectations of the ETL application.
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Business Intelligence (BI) Reporting: The reporting tools provide the data 
that the customers expect to see. The data warehouse team cannot program-
matically discern whether or not the data warehouse customers are seeing the 
data they want to see. The only way to know if data warehouse customers 
are seeing the data they want to see is to ask them. Anecdotal information 
is less objective than quantitative measurement. Instances of data warehouse 
customers receiving, and not receiving, the information they expect can 
still be recorded and counted as individual instances of the BI Reporting 
application.
Customer Education: Data warehouse customers must understand the 
meaning of the data in the data warehouse. This understanding sets the 
customer expectations of the data warehouse. Members of the business in 
the enterprise will come and go. Some will move from one business area to 
another business area. Each of these changes is another opportunity for a 
person to come into contact with the data warehouse for the first time. These 
are the people who will need to learn about what is, and is not, in the data 
warehouse. Although Customer Education cannot be counted as a success or 
failure of a data warehouse, Customer Education does contribute to the suc-
cess of a data warehouse.
Data Warehouse Education: The data warehouse team must understand 
the meaning of the data in the business from the perspective of the customer. 
This understanding sets the customer expectations of the data warehouse 
team. The business side of the enterprise is always changing. The business 
changes in response to competitive, marketplace, and regulatory changes 
in the world that surround the enterprise. The data warehouse team should 
maintain visibility and awareness of these changes in the business. Some of 
these changes will require the data warehouse change to keep up with the 
business. Although Data Warehouse Education cannot be counted as a suc-
cess or failure of a data warehouse, it does contribute to the success of a data 
warehouse.
Return on Investment (ROI): Stability is a great asset in a data warehouse. 
A data warehouse that cannot absorb the intermittent changes in the business 
without significant rework or repair will be perceived as more of a cost com-
ponent of the enterprise, rather than as an investment. By designing a data 
warehouse with sufficient flexibility, the ability to absorb intermittent changes 
in the business will increase the perceived ROI of the data warehouse.

The Data Model, ETL (Extract), and ETL (Transform) expectations should be 
measured programmatically. Data volumes and rapid throughput render manual 
inspection infeasible. Deming’s third point (cease dependence on inspection) advo-
cates a departure from manual inspection. So, rather than inspect data as it passes 
through the ETL application, or after it has arrived in the data warehouse, the 
data should be tested programmatically by processes that measure the data against 
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business rules.6 By linking measurement processes with data warehouse processes, 
the measurement processes will not be inadvertently forgotten.

ETL (Extract) business rules are used to measure the data extracted from the 
source system and, therefore, occur immediately after data has been extracted from 
the source system. ETL (Transform) business rules are used to measure the data 
derived by the ETL application and, therefore, occur immediately after data has 
been derived in the ETL application. The Data Model business rules are used to 
measure the data in the data warehouse and, therefore, occur after data has been 
loaded into the data warehouse.

Methods and Strategies
The Source System Analysis identifies the business rules that should reflect in the 
data received from the source system. The Target System Analysis identifies the 
business rules that should reflect in the data loaded into the data warehouse. Process 
measurement provides a means by which data is measured against business rules, 
identifying data that does not conform to its expectations. That’s all well and good. 
But, what happens when you find one? How can a data warehouse respond to data 
that does not conform to its expectations?

The following methods and strategies are options, not mandates or best prac-
tices. Rather, the options listed below should be chosen based on the corporate 
management and culture surrounding the data warehouse. Data Quality methods 
that work well in one setting may fail in another setting. So, there is no one-size-
fits-all in Data Quality. Rather, involve members of the business to gain their feed-
back, approval, and buy-in.

All the methods and strategies listed below include a reporting function. Every 
Data Quality methodology is a communication methodology. Errant data will 
never be addressed if no one knows about it. The business needs to know that the 
data warehouse team is aware of the errant data. It’s one of those human psychology 
phenomena. By announcing the existence and presence of errant data, members 
of the business will perceive the quality of data in a data warehouse to be at least 
somewhat under control. But, if the existence and presence of errant data are not 
announced, business members who find errant data (and, yes, they will find it) will 
perceive that no one is communicating with them and wonder if the errant data 
that was discovered is the tip of the iceberg or the entire population of errant data. 
Invariably, business members will decide the errant data is the tip of an iceberg. 
Communication, therefore, can reduce the perceived (but not the real) volume and 
severity of errant data, and engender some level of cooperation in the treatment of 
errant data.
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Data Stewardship

Applicable expectations:

BI Reporting
Customer Education
Data Warehouse Education
ROI

Data Stewardship is a strategy. A member of each business area included in the 
data warehouse is engaged to participate in the data warehouse as a Data Steward. 
This person must have a complete understanding of the business area, its data, pro-
cesses, and people. A Data Steward must also be able to understand the concepts 
and philosophy of the data warehouse. Finally, a Data Steward must be able and 
willing to engage in the general oversight of the data warehouse. In general, a Data 
Steward is not only a liaison between the business and the data warehouse, but a 
champion of both the business area and the data warehouse.

A Data Steward participates in all communications between the business area 
and the data warehouse. Sensitive communications should go through the Data 
Steward before they are published to the business area. A Data Steward represents 
the data warehouse to the business area. By discussing the data warehouse with 
members of the business area, a Data Steward is able to bring the opinions and 
preferences of the business area to the data warehouse. A Data Steward represents 
the business to the data warehouse. By discussing the business with members of the 
data warehouse team, a Data Steward is able to bring the questions and concerns of 
the data warehouse team to the business area.7

When you find a Data Steward who is able and willing to champion the data 
warehouse to the business and the business to the data warehouse, treat that per-
son with consideration and respect. Some suggest that Data Stewardship should 
include deliverables and responsibilities that are intended to keep a Data Steward 
accountable to the data warehouse. But, more often than not, a person who is will-
ing to be a Data Steward will respond when treated as a friend—a friend of the 
data warehouse.

Post-Load Audit and Report Errant Data

Applicable expectations:

Data Model

After data has been loaded into a data warehouse, programmatically query the 
data in the data warehouse. The SQL should test and validate that the data in a data 
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warehouse conforms to the expectations of the data warehouse, which are outlined 
in the Target System Analysis.

Errant data should be reported to members of the business area who are inter-
ested in, or using, that subject area from which the errant data originated, and 
the data warehouse team. Reporting the errant data is intended to communicate 
the existence and presence of errant data. The process that created that data is the 
focus. By reporting data that contradicts the Target System Analysis, members of 
the subject area from which the errant data originated can help remediate the data, 
or at least just be aware of the errant data and its treatment. Remember, the indi-
vidual data elements are not the focus. The focus is on the processes that populate 
the data warehouse—the processes not the data—, but we use the data to measure 
the process.

Plug in a Default Value and Report Errant Data
Applicable expectations:

ETL (Extract)
ETL (Transform)

When an errant data element is encountered, the portion of the data element 
that does not conform to its expectations can be replaced by a default value (Fig-
ure 8.2). The default value may have a specific meaning (e.g., no known value, 
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Figure 8.2  Default value.
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rejected value, etc.). The data is allowed to proceed toward the data warehouse with 
the defaulted values in place of the errant values. This method is also known as a 
Soft Reject.

Errant data should be reported to members of the business area who are inter-
ested in, or using, that subject area from which the errant data originated, and 
the data warehouse team. Reporting the errant data is intended to communicate 
the existence and presence of errant data. The process that created that data is the 
focus. By reporting data that contradicts the Target System Analysis, members of 
the subject area from which the errant data originated can help remediate the data, 
or at least just be aware of the errant data and its treatment. Remember, the indi-
vidual data elements are not the focus. The focus is on the processes that populate 
the data warehouse—the processes not the data—, but we use the data to measure 
the process.

Reject a Record and Report the Errant Record

Applicable expectations:

ETL (Extract)
ETL (Transform)

When an errant data element is encountered, the entire record or row may be 
discarded altogether. The remainder of the data is allowed to proceed toward the 
data warehouse, but without the rejected record or row. This method is also known 
as a Hard Reject.

Errant data should be reported to members of the business area who are inter-
ested in, or using, that subject area from which the errant data originated, and the 
data warehouse team. Reporting the errant data is intended to communicate the 
existence and presence of errant data. The process that created that data is the focus. 
By reporting data that contradicts the Target System Analysis, members of the sub-
ject area from which the errant data originated can be aware of the errant data and 
its Hard Rejection. Remember, the individual data elements are not the focus. The 
focus is on the processes that populate the data warehouse—the processes not the 
data—but we use the data to measure the process.

Reject a Dataset and Report the Errant Dataset

Applicable expectations:

ETL (Extract)
ETL (Transform)
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When an errant data element is encountered, the entire set of data may be 
discarded altogether. No part of the data is allowed to proceed toward the data 
warehouse. This method is also known as a Hard Reject.

Errant data should be reported to members of the business area who are inter-
ested in, or using, that subject area from which the errant data originated, and the 
data warehouse team. Reporting the errant data is intended to communicate the 
existence and presence of errant data. The process that created that data is the focus. 
By reporting data that contradicts the Target System Analysis, members of the sub-
ject area from which the errant data originated can be aware of the errant data and 
its Hard Rejection. Remember, the individual data elements are not the focus. The 
focus is on the processes that populate the data warehouse—the processes not the 
data—but we use the data to measure the process.

Recycle the Data: In Place and Report Errant Data

Applicable expectations:

ETL (Extract)
ETL (Transform)

When management from the business area is committed to remediation of errant 
data in a data warehouse, this method facilitates that remediation (Figure 8.3). A 
data element that is subject to remediation can be recorded into two fields, rather 
than just one. The first field is the original errant data value. The second field is the 
defaulted data value. When a correct data value becomes available, that correct data 
value will overwrite the second defaulted data field. The first field, containing the 
original data value, is used only to find the correct data value. The second data field, 
containing the correct data value, is the data field that is visible to the data ware-
house customers. The first data field that holds the incorrect data value is generally 
not available to data warehouse customers.

This strategy requires communication between the data warehouse team and 
the Data Stewards. The business person who is assigned the task of finding the cor-
rect data value must be included in the data warehouse team and its meetings and 
discussions. Contrary to Deming’s focus on processes, rather than product inspec-
tion, a Recycle Wheel allows a data warehouse team to inspect, repair, and rework 
individual rows of data. A Recycle Wheel should only be used for data that merits 
the necessary overhead and involvement. If a Recycle Wheel is used indiscrimi-
nately for all Data Quality measurements, data that does not merit such treatment 
will taint the entire Recycle Wheel causing the Recycle Wheel to seem overdone 
and irrelevant. A Recycle Wheel, therefore, can be used to treat Data Quality mea-
surements for only those data elements that merit such treatment, while all other 
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data elements can be treated by another method. Such discriminate use of a Recycle 
Wheel will cast a connotation of relevance and value to those data elements that are 
treated by a Recycle Wheel method.

The cost of this method is the use of two data fields, regardless of whether or 
not any errant data is present. For every instance of that data element, twice the 
original data storage is consumed by this method. The benefit of this method is the 
fact that the nonerrant portion of the data is available, and remains available until 
or if a member of the business area provides the correct data value. In these situa-
tions, management (a member of the business area) may commit to participating in 
the treatment of errant data. The patience and priorities that make this participa-
tion possible often wane. When the business area management ceases to participate 
in the remediation of errant data, the remainder of the data is still allowed to add 
value to the data warehouse, and the default data values are not detracting from the 
value of the data warehouse.
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Figure 8.3  Recycle in Place.
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Recycle the Data: Recycle Wheel and Report Errant Data

Applicable expectations:

ETL (Extract)
ETL (Transform)

When management from the business area is committed to remediation of 
errant data in a data warehouse, this method facilitates that remediation. A data 
element that is subject to remediation can be held in abeyance, away from the data 
warehouse, in a separate table. This separate table is often called a Recycle Wheel 
(Figure 8.4). When a correct data value becomes available, that correct data value 
will overwrite the errant data field in the Recycle Wheel. Then, the corrected record 
or row of data in the Recycle Wheel is forwarded to the ETL application to be 
included in the next iteration of data going to the data warehouse.

This strategy requires communication between the data warehouse team and 
the Data Stewards. The business person who is assigned the task of finding the cor-
rect data value must be included in the data warehouse team and its meetings and 
discussions.

The cost of a Recycle Wheel is the storage and maintenance cost of the table 
that functions as a Recycle Wheel. The benefit of a Recycle Wheel is the fact that 
data is allowed into a data warehouse only when that data is correct. Contrary 
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to Deming’s focus on processes, rather than product inspection, a Recycle Wheel 
allows a data warehouse team to inspect, repair, and rework individual rows of data. 
A Recycle Wheel should only be used for data that merits the necessary overhead 
and involvement. If a Recycle Wheel is used indiscriminately for all Data Qual-
ity measurements, data that does not merit such treatment will taint the entire 
Recycle Wheel, causing the Recycle Wheel to seem overdone and irrelevant. A 
Recycle Wheel, therefore, can be used to treat Data Quality measurements for only 
those data elements that merit such treatment, while all other data elements can 
be treated by another method. Such discriminate use of a Recycle Wheel will cast 
a connotation of relevance and value to those data elements that are treated by a 
Recycle Wheel method.

The disadvantage of a Recycle Wheel is that management and, therefore, mem-
bers of the business area quickly lose the commitment necessary to correct the data 
in the Recycle Wheel on a daily basis. When the management and members of the 
business area lose their commitment to the Recycle Wheel, the result is a Recycle 
Wheel that continues to grow larger as the data accumulates, and the data that is 
accumulating in the Recycle Wheel will probably never be loaded into the data 
warehouse, depriving the data warehouse of any value in that data.

Data Quality Repository
In the figures above, the boxes labeled Data Quality Results and Data Quality 
Reporting implicitly refer to a Data Quality Repository. A Data Quality Repository 
is a Fact table, or set of Fact tables, each documenting individual instances of data 
in the data warehouse that did not meet the expectations of a Data Quality mea-
surement. The Data Quality function that performs a Data Quality measurement 
will record the results of errant data warehouse data in a Data Quality fact table.

Retention of Data Quality Fact rows requires two levels of planning. The first 
level of retention planning is true of all data in a data warehouse – How long should 
rows be retained? For a Data Quality Repository, the answer is usually based on 
the duration of time required to identify trends in the quality of the data in a data 
warehouse. How much data is required to identify and report individual processes 
that are out of control? The answer should be tailored to the individual process. A 
process that occurs annually will have different retention requirements from a real-
time process. For each process, retention requirements are based on the data needed 
to monitor, triage, and treat the individual process. Retention requirements can be 
stated in the following:

An absolute period of time (two months)
A relative period of time (two months without a Data Quality incident)
An absolute number of iterations (42 ETL cycles)

n
n
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A relative number of iterations (42 ETL cycles without a Data Quality 
incident)

The second level of retention planning is specific to a Data Quality Repository 
– How many individual rows of data are required to cause someone to notice a Data 
Quality incident has occurred? When an ETL process completely breaks (e.g., files 
are out of sequence, a wrong file was used, a job was restarted incorrectly, etc.), 
do you really need 400,000 rows of Data Quality Fact table rows to know that 
something went dreadfully wrong? Probably not. In such situations, a Data Quality 
Repository needs only enough rows to triage the situation, and a summary row that 
is guaranteed to draw attention to the ETL process that broke. In other data ware-
house Fact tables, the data warehouse team wants all of the rows. In a Data Quality 
Repository, however, when a single event causes an excessive number of rows to 
be inserted into a Data Quality Fact table, the data warehouse team may consider 
writing only enough rows to triage the process that is out of control.

Data Quality Fact Table: Dimensional Data Model

A Data Quality Repository should share Conformed Dimension tables with the 
Metadata Repository (Figure 8.5). This use of Conformed Dimension tables 
between the Data Quality and Metadata Repositories will enhance the ability of a 
data warehouse team to monitor individual instances of data warehouse processes 
and the quality of those processes. Therefore, if the Metadata Repository uses a 
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Dimension Data Model, then the Data Quality Repository should also use the 
Dimension tables within the Metadata Repository’s Dimensional Data Model.

By this approach, the tables unique to the Data Quality Repository should be 
the Data Quality Fact tables and any Data Quality Dimension tables that provide 
descriptions and look-up values to foreign keys in the Data Quality Fact tables. 
The remaining Dimension tables in the Data Quality Repository should be the 
Conformed Dimension tables that are shared by the Data Quality Repository and 
the Metadata Repository.

Data Quality Fact Table: Third Normal Form Data Model

The use of Conformed Dimension tables between the Data Quality and Metadata 
Repositories has a special significance for Third Normal Form Repositories (Fig-
ure 8.6). The data warehouse designer must design the Metadata and Data Quality 
Fact and Dimension tables so that they join at the same grains (Unit of Measure-
ment and Hierarchy). The tables, ETL processes, Batch_ID, etc. referenced in the 
Data Quality Repository must match their corresponding references in the Metadata 
Repository. Otherwise, the data warehouse team’s ability to monitor the data ware-
house by joining the Data Quality and Metadata Repositories will be limited to the 
Dimensions that are Conformed Dimensions.
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Figure 8.6  Third Normal Form Data Quality Repository.
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Data Quality Reporting
Data Quality Reporting occurs by leveraging the BI Reporting infrastructures 
already present in a data warehouse. The list of recipients of a Data Quality Report 
is based on the DQ_ID. Those members of the enterprise and data warehouse team 
who have an interest in occurrences of a specific DQ_ID receive predefined reports, 
driven by a Data Quality Fact table, which are pushed to the DQ_ID Recipients.

Unlike conventional BI Reporting, Data Quality Reporting can have varying 
levels of repetition:

Following conventional BI Reporting design, a single Data Quality incident 
can be reported once with no follow up or repetition.
A single Data Quality incident that requires a follow-up action or resolution can 
continue to report until the follow-up action or resolution is complete.
A summary Data Quality report that measures the number of Data Qual-
ity incidents, responses to Data Quality incidents that require follow up or 
resolution can provide a high-level view of the quality of the data in a data 
warehouse.

Follow Through
Deming taught the real purpose behind process measurements was to identify pro-
cesses that are out of control. The Data Quality Measurements discussed above are 
such process measurements. From the perspective of a data warehouse, there are 
two groups of processes that are measured: Source System and Data Warehouse 
processes.

The Data Quality measurements that measure the raw data from a source system 
are process measurements of the source system. The Subject Matter Experts (SMEs) 
of the source system will probably not believe or appreciate the measurements and 
results (when not favorable) of their source system. Regardless, the diplomatic mis-
sion of a data warehouse designer is to triage the Data Quality measurements.

On the one hand, the data warehouse designer may have misunderstood the 
data coming from the source system. The data coming from the source system 
may indeed be perfect and without error. The error may be in the data warehouse 
designer’s understanding of the data coming from the source system. Such a mis-
understanding could not be revealed until the ETL application began reporting 
Data Quality measurement results that were unfavorable. In such situations, the 
data warehouse designer must revise the Source System Analysis. The revision of 
the Source System Analysis ripples through the Data Model, ETL, Data Quality, 
and Metadata designs.

In another scenario, the source system has been modified. The Source System 
Analysis document, at the time of its writing, was correct. Since then, however, the 
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source system has been modified, resulting in data that behaves differently than 
expected by the ETL application. In such situations, the data warehouse designer 
must revise the Source System Analysis. The revision of the Source System Analysis 
ripples through the Data Model, ETL, Data Quality, and Metadata designs.

In the last scenario, the source system has a bug. The Source System Analysis 
document is still correct and should not be updated. The SME of the Source Sys-
tem, however, has the task of fixing the source system. Data Quality measurements 
will continue to report results that indicate errors in the source system data. The 
challenges of this scenario are:

Resist the temptation to ignore Data Quality measurement results from that 
source system. The identification and negotiation of a single Data Quality 
measurement does not mean that is the only error that can occur in a source 
system. Other source system errors can occur and be detected. Those addi-
tional Data Quality measurements should not be ignored.
Communicate when the identified and negotiated source system bug is fixed. 
The source system SME may fix the bug and tell no one about it. The Data 
Quality measurements may continue to report the same bug manifestation. 
The data warehouse designer, unaware of the bug fix, thinks the Data Qual-
ity measurement results are still revealing the same source system bug, which 
apparently has not been fixed yet.

The second group of processes that are measured are the processes internal to 
the data warehouse. These processes, because they are internal to the data ware-
house, are much easier for the data warehouse designer to triage and fix. All the 
processes are known and controlled by the data warehouse team. So, assessing the 
root cause and resolution of internal data warehouse processes can happen with 
much less negotiation.

In the life cycle of a data warehouse, the processes internal to a data warehouse 
must be addressed before any source system processes. Any flaws in data warehouse 
processes will be perceived (or at least accused) by source system SMEs to be the 
complete and total source of all data imperfections. In the case of a new data ware-
house implementation, this is unfortunately usually more true than false. After the 
data warehouse internal processes have been fixed, so that data warehouse processes 
create no data flaws, the data warehouse designer is poised to address the source sys-
tem. If after fixing the data warehouse processes, the source system is still creating 
data with flaws, the data warehouse designer can negotiate them with the source 
system SME. If the source system SME is willing to address the data flaws and fix 
the source system, then the data warehouse has realized an additional benefit to the 
enterprise beyond its purpose as a decision support system; the data warehouse has 
revealed errors in the operational applications of the enterprise. The fact that, at 
that point, the data flaws continued to occur, no one in the enterprise had known 

n

n

AU6462.indb   257 2/7/08   9:54:12 AM



258  n  Building and Maintaining a Data Warehouse

about or addressed the bug in the operational application that was creating the 
flawed data.

Closing Remarks
A data warehouse is intended to improve the decisions and processes of the enter-
prise. The data warehouse’s contribution to the enterprise is muted by the presence 
of errant data. By focusing on a continuous improvement of the processes that cre-
ate the data in a data warehouse, the data warehouse team and Data Stewards can 
mitigate the muting effect of errant data.

Errant processes in the ETL applications are the first processes to be improved. 
Once the ETL processes have been improved, the processes in the source systems 
can be addressed. As long as the data warehouse, through its ETL applications, 
continues to introduce errant data, the SME of the source system will point to the 
ETL applications as the sole source of errant data.

The first generation of Data Quality applications focused on mailing addresses 
and lists of names and addresses. Customer Relationship Management (CRM) 
continues to rely heavily on these first generation Data Quality applications to pro-
vide correct mailing addresses and consolidate duplicate names. These are difficult 
tasks. The Data Quality applications are available on the shelves of software stores 
and perform the CRM Data Quality functions very well.

The next generation, this generation, of Data Quality applications focuses on 
the data processes in a data warehouse. Following Deming’s Fourteen Points, these 
Data Quality applications are intended to identify data warehouse processes that 
are out of control. Once identified, a data warehouse process that is out of control 
can be adjusted, and, once adjusted, that process will forward data to the data 
warehouse that meets the expectations of the designer and customers of the data 
warehouse.
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Chapter 9

Metadata

Introduction
We all use Metadata daily (Figure 9.1). We may not be aware of it. But, we do use 
Metadata throughout the day. For example:

The copyright date of this book tells us when this book was published.
The timestamps on e-mail tell us when an e-mail was sent, received, and 
read.
“Flammable” signs on the side of a truck tell us to be careful, and why.

Typically, Metadata is the weakest aspect of a data warehouse, not because 
Metadata itself is weak, but because we seldom associate metadata with, well, 
Metadata.

To understand Metadata, let’s look at a few examples of the need for 
Metadata.

On January 15, Fred ran a data warehouse profitability report, which showed 
the profitability of his business unit in the fourth quarter of the previous 
year was 12.7 percent. Fred’s boss was thrilled by this profitability and asked 
Fred to drill down into the data to find the secret of their success. When 
Fred began to drill into the data, it was January 23, and, to Fred’s shock and 
dismay, the profitability of his business unit in the fourth quarter of the previ-
ous year had changed to 3.1 percent. What changed? Why were the numbers 
different? If Fred’s data warehouse had a metadata solution, Fred would know 
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that fourth quarter labor payroll adjustments arrived in the data warehouse 
on January 16, drastically increasing the labor expense of his business unit.
Susan was a new internal auditor for a mid-size corporation. She had been 
assigned the task of auditing the Real Estate Department. The Real Estate 
Department had been getting their performance ratios from the corporate 
data warehouse. Susan, not knowing that she is expected to accept the data 
warehouse performance ratios at face value, asked how the performance ratios 
were derived. Without a metadata solution that explains this, the Real Estate 
Department had to find a programmer to explain the Extract, Transform, 
and Load (ETL) application and Business Intelligence (BI) Reporting appli-
cation, which together derive the performance ratios.
Alice, the sales manager of a retail franchise, was alarmed when she ran the 
daily sales report from the data warehouse. The sales report showed a definite 
downward trend in sales in franchise outlets in southern California. If Alice’s 
data warehouse had a metadata solution, Alice would have known that three 
of the franchise outlets in southern California were not able to send their sales 
data to the warehouse. Once these three stores were able to send their sales 
data, Alice was relieved. Had the data warehouse included a metadata solu-
tion, Alice would have been aware of the absence and arrival of the missing 
sales data.

Data about data. That’s the textbook definition of Metadata. But, that doesn’t 
really connote the ability to know what is and is not happening in a data ware-
house, and when. The examples of Fred, Susan, and Alice demonstrate the need 
and application of insider knowledge of a data warehouse, of Metadata. Therefore, 
having understood the need to know what the numbers inside a data warehouse 
mean, when they didn’t arrive and when they did arrive, the first question that must 
be answered is, “How?”

Types of Metadata
The answer to “how” begins by finding the answer to “what.” What is Metadata 
and how can a data warehouse use it? The answer to what Metadata is begins with 
the two types of Metadata: Static and Dynamic.

Static Metadata

Static Metadata is information that does not change. Static Metadata provides the 
information about a data element that does not change. For all instances of a data 
element, the information in Static Metadata is always true. If a data element holds 
400 rows, the information in Static Metadata is equally true for all 400 rows.
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When a data element changes state (e.g., reviewed to approved to closed), the 
Static Metadata is specific to each state of a data element. The description of a Pur-
chase Order in its Reviewed state is different from a Purchase Order in its Approved 
and Closed states. A single data element will have a Metadata description for each 
of its states. So, Static Metadata is more than a description of a column in a table 
or the table itself.

The audience of Static Metadata is the business side of the enterprise. Static 
Metadata provides the business meaning of a data element. That data element can 
be an entity in a Dimension table, an event in a Fact table, or a derived field in a 
BI Report. The information captured in Static Metadata should provide enough 
information about the business meaning and origin of a data element (i.e., entity, 
event, transaction, derived data, etc.) to equip the business side of the enterprise to 
use that data element. In the examples above, Fred, Susan, and Alice had data, but 
they were not equipped to use that data correctly. A Metadata solution frames its 
information in the language and context of the business, to equip members of the 
business to use the data from a data warehouse.

Static Metadata is everywhere. The nutrition information on food labels equips 
consumers with the information necessary to select and eat the food they want. The 
octane information on a fuel pump equips consumers with the information neces-
sary to pump and burn the fuel they want. The table of contents of a book equips a 
reader with the information necessary to know whether or not that book might be 
of interest. Static Metadata equips data warehouse customers with the information 
necessary to select and use the data from a data warehouse that satisfies the busi-
ness’ data needs.

Dynamic Metadata

Dynamic Metadata describes each individual instance of a data element (Fig-
ure 9.2). A common form of Dynamic Metadata is a Load Timestamp field on 
each row of a table, which tells the moment, down to a subsecond, when each row 
was inserted into a table. Had Fred, in the example above, been querying data ware-
house tables with Load Timestamp fields, he would have been able to isolate the 
rows that he had seen on January 15, and Fred would have been able to isolate the 
data that had arrived since that date. Without this simple Dynamic Metadata, Fred 
was unable to isolate what changed between January 15 and January 23.

For a time-variant data warehouse, Dynamic Metadata is extremely helpful. As 
entities change state, Dynamic Metadata includes:

The moment the ETL application extracted the change of state from the 
source system.
The moment the ETL application loaded the change of state into the data 
warehouse.
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The job number, start time, end time, and duration of the ETL job that 
extracted the change of state data.
The job number, start time, end time, and duration of the ETL job that trans-
formed the change of state data.
The job number, start time, end time, and duration of the ETL job that 
loaded the change of state data.
The name, timestamp, and version of the BI Report that Fred delivered to 
his boss.

n

n

n

n

Source Extract Stage Outbound
With DQ_ID

ETL EnvironmentSource System

Stage Inbound
with DQ_ID Transform Stage Outbound

with DQ_ID

ETL Environment

Metadata Metadata
Load

A

A

Metadata
Repository

System
Tables

Log
Files

Metadata Metadata
Load

B

Stage Inbound
with DQ_ID

Load

ETL Environment

B

Data
Warehouse

Metadata Metadata
Load

System
Tables

Log
Files

System
Tables

Log
Files

Figure 9.2  Metadata processes.
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As events occur, Dynamic Metadata captures:

The moment the ETL application extracted the event from the source 
system.
The moment the ETL application loaded the event into the data warehouse.
The job number, start time, end time, and duration of the ETL job that 
extracted the event data.
The job number, start time, end time, and duration of the ETL job that trans-
formed the event data.
The job number, start time, end time, and duration of the ETL job that 
loaded the event data.
The name, timestamp, and version of the BI Report that Fred delivered to 
his boss.

These two sets of Dynamic Metadata look very similar for a good reason; both 
sets of Dynamic Metadata are describing the same thing—an update of a data 
warehouse. An update of a data warehouse is any action that changes any row in 
any table of a data warehouse. Thus, an entity-changing state is an update to a data 
warehouse, and an event record inserted into a data warehouse is also an update to 
a data warehouse. Both the entity change of state and the insertion of a new event 
row change the data warehouse. From the perspective of Dynamic Metadata, both 
are events that can be described by information specific to each data warehouse 
update event.

The dynamic part of a data warehouse is the ETL application because the ETL 
application creates and performs all the updates to a data warehouse. ETL appli-
cations, therefore, have the responsibility of gathering Dynamic Metadata and 
loading it into a Metadata Repository. The ETL application platform provides the 
source for some Dynamic Metadata in the form of a system clock, system tables, 
and log files. The ETL application will generate some Dynamic Metadata, prob-
ably the number of records inbound, rejected, and outbound, and others. Large 
data warehouse Relational Database Management System (RDBMS) platforms 
include system tables and log files that provide additional Dynamic Metadata. 
These system tables and log files are sources of Dynamic Metadata. So, there is no 
single source of Dynamic Metadata. The sources of Dynamic Metadata will change 
for every Source, ETL, and Target configuration. ETL application design should 
include functions necessary to retrieve Dynamic Metadata from available sources 
of Dynamic Metadata.

Metadata Service Level Agreement (SLA)
Metadata requirements are captured and documented in a Metadata Service 
Level Agreement (SLA). For Static Metadata, the Metadata SLA will indicate the 
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features and layout of a data dictionary. The Metadata SLA will also document the 
methods by which data warehouse customers will be able to see the data in a data 
dictionary.

For Dynamic Metadata, the Metadata Repository will capture and hold meta-
data as it becomes available. The data warehouse team and Data Stewards will use 
the Metadata SLA as a place to document and agree on the Dynamic Metadata that 
will be loaded into the Metadata Repository; in other words, the Metadata SLA 
documents the metadata requirements. By including a Dynamic Metadata require-
ment in the Metadata SLA, the data warehouse team and Data Stewards agree:

The Dynamic Metadata is available.
An ETL application will retrieve the required Dynamic Metadata.
Dynamic Metadata will be available to the business member, or application, 
that required the Dynamic Metadata in question.

Once the metadata requirements are identified and documented in a spread-
sheet, the data warehouse team will know what metadata to load into the Metadata 
Repository.

Metadata Repository
Static Metadata describes each data element in a data warehouse and Dynamic 
Metadata describes each instance of each data element. In the language of Dimen-
sional Data Modeling, Static Metadata is a Dimension and Dynamic Metadata 
is a Fact of a Metadata Warehouse. A Metadata Warehouse is a data warehouse 
that records the entities and events of a data warehouse, while the data warehouse 
records the entities and events of the enterprise. A Metadata Warehouse usually 
goes by the name Metadata Repository.1

Therefore, to go back to the original question, understanding the need to know 
what the numbers inside a data warehouse mean, when they didn’t arrive and when 
they did arrive, the first question that must be answered is “how.” The answer 
to “how” is a two-part answer. First, Static Metadata describes the meaning and 
being of data elements, and Dynamic Metadata describes the events (i.e., instances) 
wherein these data elements are updated. Second, Static Metadata is recorded as 
Dimensions and Dynamic Metadata as Facts in a Metadata Repository.

A Metadata Repository can exist in three forms. These three forms are not nec-
essarily mutually exclusive. Elements of each can be used in conjunction with ele-
ments from the others. However, for purpose of discussion, the three forms will be 
presented as though they are mutually exclusive. When choosing a permutation of 
the three Metadata Repository forms, the form that is chosen should be instituted 
as a standard, to avoid confusion in subsequent and future data warehouse devel-
opment efforts. Unlike the data warehouse, which experiences some design inertia 

n
n
n
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force from the source system, a Metadata Repository does not experience any design 
inertia. Future data warehouse designers, who design using the Metadata Reposi-
tory, will be tempted to interpret a Metadata Repository to their own preferences 
(even in the presence of design standards). Thus, a Metadata Repository, once estab-
lished will benefit from the design inertia created by instituted design standards.

A Metadata Repository should include data elements, such as these listed 
here.

Job number: The number assigned to a job by the application environment.
Start date and time: The date and time at which the application environment 
began running the ETL application.
End date and time: The date and time at which the application environment 
finished running the ETL application.
Batch_ID: A sequential identification number assigned to a group of data by 
the ETL application.
Rows/Records extracted: The number of rows or records retrieved from the 
source system by the Extract application.
Rows/Records transform inbound: The number of rows or records passed 
from the Extract application to the Transform application.
Rows/Records transform outbound: The number of rows or records that are 
allowed to leave the Transform application as load-ready data.
Rows/Records transform rejected: The number of rows or records that are not 
allowed to leave the Transform application as load-ready data.
Rows/Records loaded: The number of rows that were loaded by the Load 
application.
Rows/Records load rejected: The number of rows that were rejected by the 
RDBMS during the Load application.

Central Metadata Repository: Dimensional Data Model

A centralized Metadata Repository can be designed as a Dimensional Data Model. 
The Static Metadata are the Dimensions. The Dynamic Metadata are the Facts, the 
events that update the data warehouse. The Dimensions in a Dimensional Meta-
data Repository are the:

Tables: Source System table, Data Warehouse tables, Stage tables, and Look-
up tables.
Columns: The vertical fields in each of the tables.
ETL Update Processes: Each individual process that updates a data 
warehouse.
BI Report Processes: Each individual process that reads a data warehouse.
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The Facts in a Dimensional Metadata Repository are the:

Inserts: The instance of an event that inserts data into a data.
Updates: The instance of an event that updates data in a data.
Deletes: The instance of an event that deletes data from a data.
BI Reports: The instance of a BI Report execution.

A data warehouse table is represented as a Metadata Dimension row. A data 
warehouse process is also represented as a Metadata Dimension row. A Metadata 
Fact row joins with the Metadata Dimension (table) and Metadata Dimension 
(process), and a Metadata Fact row joins with a data warehouse row by the methods 
discussed below (Figure 9.3).

A Central Metadata Repository uses a surrogate key (e.g., Batch_ID) to iden-
tify a group of rows. That surrogate key is placed as a foreign key in each row of 
a data warehouse table. The ETL application that transforms and loads the data 
warehouse, also calculates the next sequential surrogate key. That is the key that is 
placed in the data warehouse rows. The same ETL process also inserts a row into a 
Metadata Fact table. That Metadata Fact row should identify the data warehouse 
table, group of rows in that data warehouse table, and the ETL process that trans-
formed and loaded them. A Batch_ID’s only purpose and value is that of a primary 
key/foreign key, facilitating a join between a Metadata table and a data warehouse 
table. So, a Batch_ID can be physically stored in the most compressed format pos-
sible. Any data warehouse customer who queries a Batch_ID will find a sequential 

n
n
n
n
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Figure 9.3  Dimensional Metadata.
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number that has no meaning of its own. So, no concern should be given to the 
data value that will be seen by data warehouse customers querying the Batch_ID. 
Instead, the Batch_ID should be compressed to the smallest space possible, to 
reduce the overhead it creates on every row in a data warehouse.

A Metadata Dimension table identifies the source of data, target data ware-
house table, and the transformation processes that created a batch of data. The 
identification of transformation processes varies in importance from one data ware-
house to another. The formula by which financial figures (e.g., profitability, return 
on investment [ROI], net present value, etc.) are calculated may change over time. 
The identification of the exact formula that was used to calculate a number in the 
data warehouse may be valuable Metadata. Formulas for productivity, throughput, 
and customer queuing may also be valuable Metadata. The enterprise may need to 
know the exact formula that was used to derive a number can be important and 
valuable Metadata. For this reason, and other similar reasons, the identification of 
the exact transformation process that created a row in a data warehouse may be 
valuable enough to require its own Metadata. The identification of source data also 
enhances the data in a data warehouse. The inclusion of source data as a Metadata 
Dimension allows a data warehouse to directly associate data in a data warehouse 
with its source.

In all forms of Metadata Repository, the ETL application that writes data to a 
data warehouse table also writes data to Metadata Repository tables. An ETL appli-
cation can identify itself and its attributes through hard-coded values, parameter-
ized input variables, control tables, or any other mechanism by which self-defining 
data (e.g., program name and version number, job name and version number, etc.) 
can be fed into that ETL application. Once an ETL application knows its own 
identity (e.g., program name and version number, job name and version number, 
etc.), it can transform and load that information into a Metadata table.

An ETL application can also gather job statistics from generic platform tables. 
Typically, application and RDBMS platforms provide generic performance data 
(number of rows, central processing unit (CPU) cycles, inputs/outputs (I/Os), etc.). 
An ETL application can gather data from these generic performance tables and 
transform and load that data into a Metadata Repository. Job specific information 
can be derived by the ETL application as it transforms data. Information that an 
ETL application can gather or know about itself includes:

Self-identifying information: Information that an ETL application can 
provide that defines and describes itself.

Program name: The name of the ETL application.
Program version: A sequence number that identifies a specific version of 
an ETL application.
Job name: The name of the ETL job.
Job version: A sequence number that identifies a specific version of an 
ETL job.

n

−
−

−
−
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Job Information: Information that an ETL application can derive from 
the application environment and the data passing through it. Job Infor-
mation can be gathered and recorded at three different levels of granular-
ity. At the most granular is every individual function or job. The second 
level is all the individual functions or jobs that comprise the Extract 
application grouped together as a collective Extract application (et al., 
for the Transform and Load applications). The least granular is the entire 
ETL application, with all its functions and jobs summed up into one 
statement of application activity.

Central Metadata Repository: Third Normal Form

A Third Normal Form Metadata Repository provides the same data as its Dimen-
sional counterpart. At the center of a Third Normal Form Metadata Repository is a 
Fact table that captures the intersection of a data warehouse table, a group of rows 
in the table, and the ETL process that transformed and loaded the data.

A Third Normal Form Metadata Repository, like its Dimensional counterpart, 
is loaded in the same batch cycle that loads a data warehouse table. A Third Normal 
Form Metadata Repository, unlike its Dimensional counterpart, affords additional 
flexibility, which is the nature of Third Normal Form data models (Figure 9.4). A 
single ETL Process can be associated with multiple Transformations without los-
ing its identity as a single ETL Process. A Dimensional Metadata Repository, by 
denormalizing the ETL Process and Transformation into a single row treats each 
permutation of ETL Process and Transformation as separate and distinct from 
other permutations of ETL Process and Transformation, even though both permu-
tations may share the same ETL Process.

Both the Dimensional and Third Normal Form Metadata Repositories add 
value only as truly time-variant data models, specifically, Type II time-variant data 
models. The data in a Metadata Repository must provide the information necessary 
to see past iterations of data warehouse activity in their historical context. The data 
in a Metadata Repository references discreet events in a data warehouse.

Distributed Metadata Repository

A Distributed Metadata Repository (Figure 9.5) differs from a Centralized Metadata 
Repository by embedding the join between a data warehouse row and its Metadata 
Dimensions within each data warehouse row. Row-level Metadata using a Central-
ized Metadata Repository would effectively duplicate every data warehouse table 
as Metadata tables. Rather than double the capacity of a data warehouse, foreign 
keys that relate back to data warehouse Dimension tables are used in the Metadata 
Repository.

−

AU6462.indb   269 2/7/08   9:54:17 AM



270  n  Building and Maintaining a Data Warehouse

A Distributed Metadata Repository based on a Third Normal Form data model 
typically includes associative (i.e., join) tables that consolidate each Metadata sub-
ject area. The primary key of those associative (i.e., join) tables is embedded in a 
data warehouse row. A data warehouse row could include foreign keys from each 
Dimensional entity; however, this approach tends to expand the storage capacity 
consumption of data warehouse tables. The primary key of associative (i.e., join) 
tables is often a sufficient compromise.

A Distributed Metadata Repository (Figure 9.6) can also include a Dimensional 
Metadata Repository. Each data warehouse row carries the primary key of a row 
from the Metadata Repository. A primary key/foreign key relation between Meta-
data Repository rows and data warehouse rows works best with surrogate keys.

Row-level Metadata tends to be most helpful when used in an Operational Data 
Store (ODS). The currency of the data in an ODS tends to make each row more 
immediate, focusing attention on the current activity of the enterprise. Row-level 
Metadata also works well if the volatility of rows in a table is relatively low, afford-
ing each individual row increased focus and attention.
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Figure 9.4  Third Normal Form Metadata.

AU6462.indb   270 2/7/08   9:54:17 AM



Metadata  n  271

Data Warehouse Table
Row_ID, Table, Process

Data Warehouse Metadata Repository

Attribute

Hierarchy Property

Target

Transformation

Source

Tables
Table

Processes
Process

Figure 9.5  Distributed Metadata Repository.
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Figure 9.6  Distributed Dimensional Metadata Repository.
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Real-Time Metadata

Real-Time ETL applications extract, transform, and load data into a data ware-
house at the maximum throughput that can be reasonably maintained. The num-
ber of rows/records loaded at any one moment, therefore, is much lower than the 
number of rows/records loaded by a batch application that loads 24 hours of data in 
one job iteration. So, the challenge of capturing real-time Metadata is time.

If the true cycle of a real-time ETL application is six seconds (an iteration of 
ETL application every 6 seconds), then the Metadata might record 14,400 indi-
vidual iterations of ETL application in a single day (10 6-second ETL iterations × 
60 minutes in an hour × 24 hours in a day). Metadata requirements may indicate 
this level of granularity should indeed be recorded as Metadata.

The application environment may support continuous throughput without 
stopping and starting. ETL applications may use the continuous throughput infra-
structure, which is real-time ETL. Metadata requirements must be very clear and 
precise in the presence of real-time ETL. Unless stipulated otherwise, data ware-
house customers will expect real-time ETL to be recorded by real-time Metadata. 
If real-time Metadata is a true requirement such that the data warehouse custom-
ers can use real-time Metadata, the Metadata Repository and its applications can 
record the continuous throughput of ETL applications in real-time.

Data warehouse customers may not be able to use or leverage real-time Meta-
data. In that case, the Metadata Repository will superimpose a surrogate Batch_ID 
that will identify data warehouse rows received during a range of time (e.g., five sec-
onds, five minutes, one hour) or other systemic event (e.g., Trade Cycle, Purchase 
Order, Activity Quota). The assignment of a surrogate Batch_ID must support the 
business in its needs to access data warehouse rows that were received via a real-time 
ETL application. Otherwise, data warehouse customers are left to search for a row 
of data like a needle in a haystack.

Data Quality as Metadata

The information derived by a Data Quality application is Metadata. Multiple Data 
Quality measurements can be applied to a single row/record of inbound data as it 
travels through an ETL application. Therefore, a one-to-one relationship cannot be 
implied for a row/record of data. Even more so, a one-to-one relationship cannot be 
implied for a batch of data. Thus, within the Metadata Repository, a Data Quality 
identifier (DQ_ID) can identify the permutation of Data Quality measurements 
and results that describes a batch of data.2

Data Quality Metadata can be captured in a Dimensional Data Model (Fig-
ure 9.7). Each individual row represents an individual permutation of Data Quality 
measurements, results, and meaning that should be interpreted by data warehouse 
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customers. The DQ_ID is embedded in the Metadata Fact table, which joins with 
the data warehouse table.

A data warehouse customer can find the level of Data Quality by joining the 
data warehouse table to the Metadata Fact table, and then joining to the Data 
Quality Confidence table. This level of information increases the data warehouse 
customer’s ability to discern whether or not data from a data warehouse table should 
be trusted and, therefore, used to make decisions.

Data Quality Metadata that is captured in a Third Normal Form data model 
adds an additional level of granular flexibility (Figure 9.8). At its least granular, 
a Third Normal Form Data Quality table can be a normalization of the Dimen-
sional Data Quality table. The tables that relate to the central Data Quality table 
can identify each individual Data Quality measurement and result, so that at its 
most granular a Third Normal Form Data Quality table resembles a Fact table 
chronicling every Data Quality measurement, result, and meaning that should be 
interpreted by data warehouse customers.

The end result of Data Quality Metadata is informed data warehouse custom-
ers. Not all data is perfect. Considering the volume of data passing through an ETL 
application into a data warehouse, inevitably some of that data will have imperfec-
tions. An ETL application cannot alter this reality. But, an ETL application can 
identify the instances when this reality occurs. In the examples at the beginning of 
this chapter, had Fred and Alice known the data in the data warehouse was incom-
plete, they might have calmed down and waited for the complete data to arrive. For 
them, and all data warehouse customers, Data Quality Metadata is a key compo-
nent of the data warehouse.
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Figure 9.7  Data Quality Dimensional Metadata.
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Make or Buy a Metadata Repository

The data warehousing marketplace includes a significant offering of Metadata 
Repositories. For new data warehouse development, these off-the-shelf applications 
deserve at least a review. These applications reflect years of experience, research, 
and development in Metadata Repositories. Since Metadata is usually the weakest 
element of a data warehouse, a review of Metadata Repository applications can only 
help.

On the one hand, a review of Metadata Repository applications can reveal 
the functions and features that have been deemed valuable enough to be included 
in a Metadata Repository. By understanding the meaning and purpose of these 
functions and features, a data warehouse designer can strengthen the Metadata 
design of the data warehouse under design. By taking this information back to the 
drawing board, a data warehouse designer can strengthen his or her own Metadata 
Repository design.

On the other hand, a review of Metadata Repository applications can reveal the 
scope and effort of a Metadata Repository. Considering the budgetary and timeline 
constraints of a data warehouse development effort, the purchase of a Metadata 
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Figure 9.8  Data Quality Third Normal Form Metadata.
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Repository may be the optimal compromise. Delivering an off-the-shelf Metadata 
Repository is better than delivering no Metadata Repository, or a weak Metadata 
Repository.

Closing Remarks
Data about data. That is the textbook definition of Metadata. Yet, Metadata is so 
much more than that. Metadata is the information that provides the context and 
meaning of data. Metadata is also the least understood and most under-imple-
mented aspect of data warehouses. By understanding the plight of Fred, Susan, and 
Alice, a data warehouse designer can understand how little information is available 
in the data of a data warehouse. For example:

Sales = $54,234,293.23
Manufactured Units = 43,524
ROI = 14.4 percent

What do these numbers really mean? Can these numbers be trusted? When a 
data warehouse presents data such as this without a Data Dictionary to explain the 
numbers, without a context for these numbers, and without a confidence rating of 
the numbers, that data warehouse is not answering these questions.

Unfortunately, data warehouse designers and customers tend to think the mean-
ing of the numbers corresponds to their personal interpretation of the name of the 
data field, and the context of the numbers is a perfect world where nothing goes 
wrong. These assumptions create risks for the data warehouse and the enterprise. 
These risks are significantly mitigated by a Metadata Repository solution.
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Chapter 10

Data Warehouse 
Customers

Introduction
A data warehouse is like a highway. Both require significant investment. Both have 
a return on investment (ROI) that is so diverse as to prevent its quantification. Both 
have an almost infinite capacity to allow their cargo to pass through and yet a finite 
throughput. And, both will be used by a countless number of customers, most of who 
are currently unaware of the existence of either the highway or data warehouse. This 
is the challenge of a data warehouse, to meet the needs of myriad customers (Figure 
10.1). Some do not yet know they need a data warehouse. Meanwhile, some have firm 
and concrete expectations of a data warehouse.

Back in the day, Decision Support Systems were small local databases with a 
single user interface. Joey from the second floor would bring a diskette up to the 
fourth floor to update the database. With that information and the ability to smell 
a shift in customer buying patterns, a manager would make the strategic and tac-
tical decisions necessary to keep the business afloat. Since then, information has 
become a strategic weapon. The precision with which information is sliced and 
diced by all members of the enterprise has reached an art and science never seen by 
Joey from the second floor. The expansive use of information, shared with manag-
ers and workers on the line, has pervaded the enterprise to an extent not seen by 
Joey’s manager. This new world of information was partially created by Decision 
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Support Systems, growing and integrating, growing and integrating, until some of 
them became a warehouse holding the data of the enterprise.

This growth of information from Decision Support Systems on the fourth floor 
to Data Warehouses used 24/7 around the globe is the context of Data Warehous-
ing today. Today customers use a data warehouse through various interfaces, for 
multiple reasons, and all expect the same thing—subsecond response time. This 
expectation has been created by the information infrastructures that surround us 
today. Twenty years ago, everyone had to wait until the bank opened to find out 
whether or not a check had cleared; the delay was tolerated because it was expected. 
Ten years ago, a Web site without graphics required two minutes to load on a 
personal computer; the delay was tolerated because it was expected. Today, if an 
Internet-enabled cell phone experiences any delay downloading an online bank 
account, we feel unnecessarily inconvenienced. And then, we query a data ware-
house and our expectations are framed in the twenty-first century. We expect sub-
second response time, all 1,531 of us who just submitted a query.

For these reasons, a data warehouse team must profile the users of a data ware-
house. The data warehouse team may never associate a name or face with a query. 
But, a data warehouse team can associate groups of people, groups of purposes, 
groups of usage patterns, and groups of expectations. A data warehouse team must 
at least try to profile the customers using the data warehouse. Like the highway, a 
data warehouse team may not know all the people using the data warehouse, but 
a highway engineer can estimate that 2.5 million cars and 1.4 million trucks and 
500 military vehicles will use the highway in a year. Based on that sort of informa-
tion—How many lanes? How wide will the lanes be? How much curvature and 
slope should the highway have? How steep can the highway incline? What speed 
limit? So, let’s take a look at some of the customers of the data warehouse to see how 
they will use the data warehouse.

Strategic Decision Makers
These customers have the longest and strongest history with Decision Support Sys-
tems. Local Strategic Decision Makers want to see the trends and anomalies sur-
rounding the enterprise. These customers have traditionally consumed historical 
data because all of history is leading to tomorrow, and they use historical data in 
their effort to be the first to see tomorrow.

To achieve this level of analysis, they need historical data using Type II Dimen-
sions. They need to see historical data in its historical context. Their data warehouse, 
therefore, must be able to join Fact rows to their historical Type II Dimension rows. 
Since these customers are going to look for large and long-running trends, they will 
join the Fact tables with the data of greatest duration with the historical Type II 
Dimensions. In other words, they are going to join large Fact tables to large Dimen-
sion tables.
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These customers will not use detailed granular data to see long-running trends. 
Instead, typically Fact data summarized to a less granular, less detailed form will 
provide the long-range information they need. This is fortunate because Summary 
tables perform better than Fact tables.

These customers are few, usually only the immediate subordinates of strategic-
level executives. They understand their queries require a lot of churning. Therefore, 
fortunately these customers do not expect subsecond response time. They do, how-
ever, expect consistent response time within a tolerable (a few hours?) time frame. If 
they feel the data warehouse is not responding to their queries, these are the custom-
ers who can make their displeasure known.

These are not the customers who will sit and stare at an hourglass waiting for 
a query to return an answer set. Knowing their queries will churn a lot of data, 
these customers expect to submit a query, walk away, and come back after lunch 
(or maybe tomorrow) to the answer set. Given the toolset, strategic decision mak-
ers will submit their queries overnight so they don’t have to watch an hourglass all 
day.

The bottom line is that these customers will join large Summary tables to Type 
II Dimension tables in large data volumes. But, they do not expect these queries 
to return a subsecond response time. In fact, these customers will wait until after 
lunch, or until tomorrow, to get their answer set back.

Tactical Decision Makers
Tactical Decision Makers have a history that rivals that of the Strategic Decision 
Makers. These customers began as the manager on the fourth floor with a single 
database with a single interface. They need the detailed data of their business area. 
They compile that detailed data into information. In the parable of “seeing the for-
est for the trees,” data is the trees and information is the forest. These customers 
have always recognized the need for both data and information. They will do what-
ever is necessary to get the data and information they need. If the data warehouse 
does not provide the data and information they need, they will get it somewhere 
else.

Typically, these customers are not interested in the long-term trends of the 
Strategic Decision Makers. Also, they are not interested in the historical Type II 
Dimension or the entire enterprise. They are interested in the state of their business 
unit now. Their managers have given them tactical goals and objectives that will 
lead to achievement of a strategic plan. The tactical decisions these customers make 
require Type I Dimensions, which show the enterprise as it is now because that is 
where they operate—now.

Depending on each individual task, these customers may use detailed granular 
Fact tables or less-detailed and less-granular Summary tables. Fortunately, these 
customers will understand that Summary tables perform better and, therefore, will 
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use Summary tables if detailed granular data is not required. But, when the task 
requires data sliced in a peculiar way (e.g., productivity by time of day, vendor 
delivery time minus scheduled time, throughput by machinist, etc.), these custom-
ers will not hesitate to use the large Fact tables to find what they need.

An enterprise will have many more Tactical Decision Makers. So, while their 
queries will have a relatively well-defined scope, more people will submit these 
queries. These customers need the data and information from the data warehouse 
within their business cycle. The window of opportunity to use the data and infor-
mation from each query is short. So, their use of a data warehouse throughout the 
day consists of numerous focused queries in a rapid sequence, all within their busi-
ness day.

The bottom line is that these customers will join large Fact and Summary 
tables to Type I Dimension tables in both large and small data volumes. They need 
these queries to return a subsecond response time, but will tolerate a subminute 
response time. These customers will submit numerous queries in a seemingly rapid 
sequence.

Knowledge Workers
Knowledge Workers are a relatively recent addition to the list of data warehouse 
customers. These customers have emerged as a logical progression in the world of 
Decision Support Systems, which began as a consolidated and consistent source of 
data. Data is the raw facts and figures of the business: How many, when, where? 
The raw facts and figures in Data provide a mostly objective view of the business, 
but only the business. Next, Decision Support Systems began to juxtapose and 
calculate Data to derive Information. Information is the set of observations and 
conclusions that can be drawn from the data. Today, Knowledge is the next frontier 
of Decision Support Systems. The search for Knowledge is the search for the science 
behind the Information. Science cannot always tell us why the universe works the 
way it does, but science can tell us how the universe works the way it does.

In the enterprise, Knowledge Workers are the explorers. They understand the 
enterprise and its business and they understand the data. Some would call them the 
Power Users. Within the business of the enterprise, these are the people to whom 
the business people turn for help understanding the data of their business. Knowl-
edge Workers will use the data warehouse to maximize their ability to expand the 
knowledge base of the enterprise. Thus, these customers will use every feature and 
function within a data warehouse with no consistent pattern.

Knowledge Workers will occasionally need the data of the data warehouse 
reformatted to allow them to derive knowledge from the data warehouse. They may 
need data expressed in time intervals not included in the data warehouse. They 
may need data summarized by odd sets of attributes. They may need a Data Mart 
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constructed specifically to answer a single question. Or, they may need a flat file of 
time series data for a Data Mining exercise.

Fortunately, Knowledge Workers understand that their potential to answer 
questions is directly linked to the data warehouse’s ability to help them. The only 
way to make a symbiotic relationship succeed, such as this one, is by cooperation. 
For that reason, Knowledge Workers also understand how to cooperate with the 
data warehouse. These are the customers who know the members of the data ware-
house team and their phone extensions. These are the customers who know which 
data warehouse team member to call in any given situation dealing with the data 
warehouse.

The bottom line is that Knowledge Workers will consume all aspects of a data 
warehouse with no consistent usage pattern. An enterprise usually has only a few 
Knowledge Workers. They expect a higher level of personal cooperation and they 
get it because Knowledge Workers are among the best allies for a data warehouse.

Operational Applications
The marriage of Data Warehouses and Operational Applications was driven more 
by politics and ROI than data. Considering that much of what happens in an 
enterprise is driven by politics and ROI, this marriage of Data Warehouses and 
Operational Applications is not surprising, and not all bad or all good.

The advantages of Operational Applications as customers are significant and 
real.

A data warehouse team can point to their Operational Application customers 
as a real and tangible ROI for the enterprise.
Leveraging the Extract, Transform, and Load (ETL) infrastructures of a data 
warehouse, the enterprise can increase the speed to market of new applica-
tions and decrease the infrastructure costs of new applications.
A data warehouse team can point to its operational customers as a justifica-
tion for continued and expanded investment in the data warehouse, which 
will benefit all the customers of the data warehouse.
An Operational Application can cause a data warehouse team to increase the 
discipline and rigor of the data warehouse. By enforcing Data Quality Service 
Level Agreements (SLA), an operational customer can force a data warehouse 
team to achieve data quality service levels (e.g., latency, completeness, meta-
data, data quality, etc.) that had previously been lacking.

The disadvantage of an Operational customer is the syndrome of sitting with 
an elephant. Where does an elephant sit? Anywhere it wants. If an Operational 
Application has more clout, prestige, or ROI than the data warehouse, the mem-
bers of the operational team will likely try to dictate how data will be stored in and 
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reported from the data warehouse. At that point, the data warehouse is sitting with 
an elephant.

Unfortunately, this becomes a political discussion in the context of a Decision 
Support System. In these situations, the Data Warehousing Philosophy provides 
the guiding principles. A data warehouse is a nonvolatile, time-variant, long-term 
investment for the enterprise. The Operational Application will be replaced in five 
years (a normal application life cycle).

For these reasons, the marriage of Data Warehouses and Operational Applica-
tions best occurs in a Data Mart. The Operational Application can have their data 
in any form they want. The other data warehouse customers (Strategic, Tactical, 
and Knowledge) are buffered from the activity of the Operational Application. 
Without a buffer between Operational Applications and data warehouse customers, 
the Operational Applications will eventually gain the lion’s share of design deci-
sions and performance. When that happens, the value of the data warehouse to the 
enterprise has diminished.

The bottom line is that Operational Applications as customers can increase 
the ROI and visibility of a data warehouse causing a data warehouse to increase its 
rigor and discipline. Simultaneously, an Operational Application customer can be 
an elephant in the parlor. A data warehouse team must be careful not to allow an 
Operational Application to overwhelm the data warehouse.

External Partners
An enterprise will normally agree to share data with other enterprises or organiza-
tions. This data sharing can include marketing, productivity, or demographic data. 
Since a data warehouse has already gathered and integrated this data, a data ware-
house is an obvious source of data for sharing with External Partners.

External Partners are the easiest of data warehouse customers. Their require-
ments are known and documented. The data they need can probably be generated 
by a batch job and distributed by another batch job. Any additional requests for 
data, because they come from outside the enterprise, must first be negotiated by 
enterprise management. This negotiation usually filters out frivolous requests.

Typically, External Partners are interested in the state of the enterprise as it 
is now. This means their queries will probably use the Type I Dimension tables, 
which consumes fewer resources than the Type II historical Dimensional tables. 
Also, External Partners are not given access to the detailed granular data of the 
enterprise. So, rather than querying the fine grain Fact tables, their queries will use 
Summary tables, which also consume fewer resources.

The bottom line is that External Partners are the easiest of customers. Their 
queries are predefined, optimized, and scheduled in batch jobs. This allows a data 
warehouse team to plan the queries for External Partners at a time and condition 
that has the least impact on other data warehouse customers.
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Electronic Data Interchange (EDI) Partners
Electronic Data Interchange (EDI) Partners receive data from the enterprise on 
either a near real-time, or at least frequent batch, basis. Typically, EDI Partners are 
the suppliers and vendors in the critical path of a supply chain. EDI Partnerships 
streamline the speed to market and low overhead of Just In Time (JIT) manufac-
turing and distribution. Rather than wait until the enterprise needs 500,000 bolts, 
the enterprise periodically shares its consumption and balance on hand of bolts 
with an EDI Partner. On the other side of this data sharing, the EDI Partner agrees 
to monitor EDI data so the EDI Partner can deliver 500,000 bolts at the precise 
moment the 500,000th bolt has been consumed by the enterprise, rendering an 
empty bolt bin.

A data warehouse may be tasked with the responsibility of sharing data with 
EDI Partners. That assignment includes two functions. First, the data warehouse 
must be able to extract operational data from the source system at a frequency equal 
to, or faster than, the frequency of the EDI data sharing. If data is gathered every 
hour, sharing that data every 15 minutes makes no sense. Conversely, if the data is 
gathered every 5 minutes, then sharing that data every 15 minutes does make sense. 
Second, the data warehouse must be able to return an EDI query and distribute 
the result set at a frequency equal to, or faster than, the frequency of the EDI data 
sharing.

EDI Partners have precise and documented data requirements. Their queries are 
known, optimized, and scheduled. These render EDI Partners relatively easy cus-
tomers. On the flip side, however, if a runaway query is allowed to consume the data 
warehouse Relational Database Management System (RDBMS), the EDI Partner 
will not receive the required data on schedule, which will defeat the whole JIT sup-
ply chain concept. That sort of visibility does not bode well for a data warehouse.

The bottom line is that EDI Partners can be a wonderful customer for a data 
warehouse. Their data needs are known, documented, and optimized. Their queries 
run on a schedule that is probably more frequent than any other customer. But, if 
a data warehouse is not able to support the required frequency then the data ware-
house would be hindering, rather than helping, the enterprise achieve its business 
goals.

Data Warehouse Plan
A data warehouse does not exist for its own existence. A data warehouse exists to 
provide data information to the enterprise, its members, and partners. A data ware-
house designer, therefore, must incorporate a plan to meet the data and information 
needs of the enterprise from the beginning of the data warehouse design, and carry 
that focus all the way through to the implementation of the data warehouse. A data 
warehouse comprised of 25 years of Type II time-variant Third Normal Form data 
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is a truly magnificent testament to relational technology and design—and futile. In 
data warehousing, bigger is not better; rather, closer (to the customers’ data needs) is 
better. Bigger is easier, but not better. In carpentry, this called “hitting a nail with a 
sledgehammer.”

Strategic Decision Makers
These customers will join large Summary tables to Type II Dimension tables in 
large data volumes. But, they do not expect these queries to return a subsecond 
response time. In fact, these customers will wait until after lunch, or until tomor-
row, to get their answer set back.

Strategic Decision Makers need Type II Dimension history data, going as far 
back in time as possible. They also need Fact and Summary tables that join well 
with the Type II Dimension history tables. The useful history goes only as far back 
as the shallowest table because the Strategic Decision Makers will switch back and 
forth between Summary and Fact tables as they investigate cause and nature of the 
trends and patterns they find.

For the Strategic Decision Makers, bigger is better because they are looking at 
the bigger picture. The ability to join Type II Dimension history tables will be key 
to their success.

Tactical Decision Makers
These customers will join large Fact and Summary tables to Type I Dimension 
tables in both large and small data volumes. They need these queries to return a 
subsecond response time, but will tolerate a subminute response time. These cus-
tomers will submit numerous queries in a seemingly rapid sequence.

These customers don’t need the overhead of a large Type II time-variant data 
warehouse. They need the speed and agility of a smaller Type I Dimensional Opera-
tional Data Store (ODS). By giving them a smaller, faster architecture, they will be 
able to answer the tactical questions they are asking. They are not asking strategic  
questions, and do not need strategic data to answer the strategic questions they are 
not asking. By segregating tactical data and tactical queries, they will not interfere 
with those who are asking the big strategic questions.

The ETL application feeding their Type I Dimensional ODS should operate in 
either real-time or near real-time (i.e., very frequent batch jobs). The smaller size of 
the ODS will make the frequent update cycle feasible. The frequent updates will 
provide the most current data possible.

Knowledge Workers
Knowledge Workers will consume all aspects of a data warehouse with no consis-
tent usage pattern. An enterprise usually has only a few Knowledge Workers. They 
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expect a higher level of personal cooperation and they get it because Knowledge 
Workers are among the best allies for a data warehouse.

Knowledge Workers need Type II Dimension history and granular detailed 
Fact tables. Knowledge Workers will use these tables directly for some of their 
analysis, but, for other analysis, they will use these tables to create Data Marts or 
datasets specifically for Data Mining efforts. This will allow them to create attri-
butes and entities that don’t yet exist from those that do exist. When helping them 
set up these Data Marts and Data Mining datasets, the important skill is listening, 
not so much to what they are saying they want, but the meaning of what they want. 
At that level of analysis, where few members of the enterprise are able to venture, 
even the Knowledge Workers can get one or two of the data elements wrong.

Operational Applications

Operational Applications as customers can increase the ROI and visibility of a data 
warehouse causing a data warehouse to increase its rigor and discipline. Simulta-
neously, an Operational Application customer can be an elephant in the parlor. A 
data warehouse team must be careful not to allow an Operational Application to 
overwhelm the data warehouse.

For Operational Applications, the keys to success are Data Quality and RDBMS 
performance. Unfortunately, an Operational Application is not going to respond 
to Data Quality confidence levels. So, the data warehouse team should diligently 
identify and repair any processes that are out of control. As processes are found to 
be out of control and repaired, the data warehouse team should communicate these 
developments with the operational team.

The required RDBMS performance is usually best achieved by an ODS or Data 
Mart. For each situation, the distinction is the data required by the Operational 
Application. If the ODS can meet the needs of the Operational Application, then 
a Data Mart is not required. If, however, the ODS cannot meet the needs of the 
Operational Application, then a Data Mart is required.

External Partners

External Partners are the easiest of customers. Their queries are predefined, opti-
mized, and scheduled in batch jobs. This allows a data warehouse team to plan the 
queries for External Partners at a time and condition that has the least impact to 
other data warehouse customers.

Data for External Partners is usually provided via a batch job. The only chal-
lenge is to make sure the batch job that creates and delivers the data completes it by 
the required date and time.
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Electronic Data Interchange (EDI) Partners
EDI Partners can be a wonderful customer for a data warehouse. Their data needs are 
known, documented, and optimized. Their queries run on a schedule that is prob-
ably more frequent than any other customer. But, if a data warehouse is not able to 
support the required frequency, then the data warehouse would be hindering, rather 
than helping, the enterprise achieve its business goals.

EDI Partners typically require the most current and up-to-the-minute data pos-
sible. The business cycles typically associated with EDI require that the data move 
very quickly. For these customers, the ODS is the only choice. An ODS has the 
current and up-to-the-minute data, and an ODS is able to return queries of simple 
to moderate complexity quickly.

Closing Remarks
All of these group profiles and data needs are based on a normal enterprise. Your 
enterprise may have some or none of these groups. Your enterprise may have all 
these groups, and more. The point is to plan for the groups of customers in your 
enterprise.

What is their business function?
What data and information do they need?
How do they need that data and information delivered?
What are the points of failure and success?
How can the data warehouse avoid the points of failure while achieving the 
points of success?

Understanding the data warehouse customers in this way enables a data ware-
house team to plan to meet the customers’ needs and success points. All too often, 
data warehouse teams work diligently to build a data warehouse without account-
ing for the needs of the customers. In the twenty-first century, we can no longer get 
away with building a large database, expecting that if we build it, they will come. 
Instead, we have to build a Decision Support solution that is simultaneously close 
to the needs of the customers and close to the Data Warehousing Philosophy.

n
n
n
n
n
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Chapter 11

Future of Data 
Warehousing: An Epilogue
Introduction
For years, Data Warehousing was the future of Decision Support. Now, as Data 
Warehousing enters its adolescence, we consider the future of Data Warehousing. 
Fortunately, Data Warehousing has proven itself scalable and flexible enough to 
have a future. Very few technologies pass their 10th birthday without rendering 
themselves obsolete. Data Warehousing has demonstrated the ability to maintain 
its core competence and support an ever-increasing Decision Support audience.

Scalability and Performance
The vendors who create Relational Database Management System (RDBMS) plat-
forms for Data Warehousing continue to extend the possible data volumes, without 
a loss in query performance, in every budget range. Companies that can afford to 
invest multiple millions of dollars in RDBMS hardware will always be able to scale 
their data warehouse. But, for enterprises with lesser budgets, the ability to scale 
their data warehouse is more feasible every year. As scalability and performance 
improve annually, the feasibility of building and expanding a data warehouse in 
small- to mid-size companies continues to grow. As this trend continues, the infor-
mation and knowledge available via Data Warehousing will become available to 
those same small- to mid-size companies.
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Real-Time Data Warehousing
RDBMS and Asynchronous Transfer Mode (ATM) technologies now include the 
capacity to support a continuous stream of data for extended periods of time. With 
that capacity, RDBMS vendors give a lot of attention to Real-Time Data Warehous-
ing. They advertise the ability to have up-to-the-moment real-time data in a data 
warehouse. For Real-Time Data Warehousing, the weak link is Extract, Transform, 
and Load (ETL). ETL applications are now catching up with RDBMS and ATM 
technologies. As the ETL applications catch up, the quality of real-time data will 
improve. For now, real-time ETL applications focus so much on the mechanics of 
moving a stream of data that they forget the basics and principles learned in batch 
ETL jobs. This gap is closing rapidly as real-time ETL incorporates more and more 
of the rigor and discipline of batch ETL.

When Real-Time Data Warehousing is seen as a peer among equal-yet-different 
Data Warehousing methodologies, data warehouse teams will be better equipped to 
weigh the cost, benefit, and return on investment (ROI) of Real-Time Data Warehous-
ing. When that happens, data warehouse teams will be as confident assessing the need to 
not use real-time as they are assessing the need to use Real-Time Data Warehousing.

Increased Corporate Presence
Success begets success. Data Warehousing will become, to some extent, a victim 
of its own success. Data Warehousing has proven to be a stable and value-adding 
source of enterprise data. Thus, operational systems have begun, and will continue, 
to leverage the data in a data warehouse. This development saves the operational 
system from the overhead of gathering and integrating its own data. But, it foists 
onto the data warehouse the Service Level Agreements (SLA) promised by the oper-
ational system. And, it foists onto the operational system the gaps in data quality 
from the data warehouse.

Both environments, Operational and Data Warehousing, will realize this is 
not a short-term trend. Rather, this is the way of the future. They will learn how 
to mutually resolve their constraints. Data Warehousing will learn how to absorb 
the SLAs promised by the operational system. Operational systems will learn how 
to respond to Data Quality confidence levels and data remediation (e.g., delivery 
of missing data, repair of corrupted data, etc.). As they learn how to work together, 
Operational applications will be able to continue being operational, and Data 
Warehouses will be able to continue being informational.
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Back to the Basics
While RDBMS vendors advertise their ability to scale a data warehouse ever larger, 
Data Warehouses continue to grow larger. The size and scale of Data Warehouses 
will continue to grow until they expand beyond their ability to meet the needs of the 
Tactical, Operational Application, and EDI customers. When that happens, data 
warehouse teams will go back to the basics, by reincorporating smaller Operational 
Data Store (ODS) and Data Mart solutions in their Data Warehouse. This will pro-
vide a solution to the Tactical, Operational Application, and EDI customers with-
out impeding the improvements in Data Warehouse scale, size, and performance.

Data Quality
Data Quality is the next frontier in data warehousing. For the past decade, advances 
in technology have influenced the progression of data warehousing. Large data vol-
umes, continuous throughput, complex application logic, and Web-based processes 
have expanded the scope and boundaries of data warehouses, which also increases 
the exposure to risks. The data warehousing community has done very well to 
assimilate technology changes.

In the coming years, the data warehousing community will strive to master 
the technology changes as they affect the quality of data in a data warehouse. 
When Structured COBOL and Customer Information Control System (CICS) 
screens were first introduced, they required an initial adjustment to assimilate their 
functions and features. Then, a subsequent adjustment occurred as programmers 
mastered Structured COBOL and CICS screens, which increased the quality and 
robustness of the resulting data. Likewise, the data warehousing community has 
begun to master the effects and impacts of recent technology changes. Soon, data 
warehouses will be able warranty the quality of all data, regardless of its source or 
the technology by which the source data arrived.
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