

Building and
Maintaining a
Data Warehouse

AU6462.indb 1 2/7/08 9:41:54 AM

AUERBACH PUBLICATIONS
www.auerbach-publications.com

To Order Call: 1-800-272-7737 • Fax: 1-800-374-3401
E-mail: orders@crcpress.com

The Business Value of IT: Managing Risks,
Optimizing Performance and
Measuring Results
Michael D. S. Harris, David Herron,
and Stasia Iwanicki
ISBN: 1-4200-6474-6

CISO Leadership: Essential Principles
for Success
Todd Fitzgerald and Micki Krause
ISBN: 0-8493-7943-1

The Debugger's Handbook
J.F. DiMarzio
ISBN: 0-8493-8034-0

Effective Software Maintenance and
Evolution: A Reuse-Based Approach
Stanislaw Jarzabek
ISBN: 0-8493-3592-2

The Ethical Hack: A Framework for
Business Value Penetration Testing
James S. Tiller
ISBN: 084931609X

Implementing Electronic Document
and Record Management Systems
Azad Adam
ISBN: 0-8493-8059-6

Implementing the IT Balanced Scorecard:
Aligning IT with Corporate Strategy
Jessica Keyes
ISBN: 0-8493-2621-4

Information Security Cost Management
Ioana V. Bazavan and Ian Lim
ISBN: 0-8493-9275-6

The Insider's Guide to Outsourcing Risks
and Rewards
Johann Rost
ISBN: 0-8493-7017-5

Interpreting the CMMI (R): A Process
Improvement Approach, Second Edition
Margaret K. Kulpa and Kent A. Johnson
ISBN: 1-4200-6052-X

Knowledge Management, Business
Intelligence, and Content Management:
The IT Practitioner's Guide
Jessica Keyes
ISBN: 0-8493-9385-X

Manage Software Testing
Peter Farrell-Vinay
ISBN: 0-8493-9383-3

Managing Global Development Risk
James M. Hussey and Steven E. Hall
ISBN: 1-4200-5520-8

Patterns for Performance and Operability:
Building and Testing Enterprise Software
Chris Ford, Ido Gileadi, Sanjiv Purba,
and Mike Moerman
ISBN: 1-4200-5334-5

A Practical Guide to Information Systems
Strategic Planning, Second Edition
Anita Cassidy
ISBN: 0-8493-5073-5

Service-Oriented Architecture: SOA
Strategy, Methodology, and Technology
James P. Lawler and H. Howell-Barber
ISBN: 1-4200-4500-8

Six Sigma Software Development,
Second Edition
Christine B. Tayntor
ISBN: 1-4200-4426-5

Successful Packaged Software
Implementation
Christine B. Tayntor
ISBN: 0-8493-3410-1

OTHER NEW BOOKS FROM AUERBACH

AU6462.indb 2 2/7/08 9:41:54 AM

Building and
Maintaining a
Data Warehouse

A N A U E R B A C H B O O K

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

Fon Silvers

AU6462.indb 3 2/7/08 9:41:55 AM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2008 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131031

International Standard Book Number-13: 978-1-4200-6463-6 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

�

Dedication

This book is dedicated to my three lovely ladies

	 Deborah,

		 Emelie,

			 Cara

AU6462.indb 5 2/7/08 9:41:55 AM

AU6462.indb 6 2/7/08 9:41:55 AM

vii

Contents

Preface..xv
Acknowledgments..xvii
The Author..xix
Introduction..xxi

1	 The Big Picture: An Introduction to Data Warehousing........................1
Introduction...1
Decision Support Systems...2
Dimensional and Third Normal Form Data Models.....................................4
Storing the Data...4
Data Availability...7
Monitoring Data Quality...9

2	 Data Warehouse Philosophy...11
Introduction...11
Enterprise Data...12
Subject Orientation...13
Data Integration...13

Form..14
Function...14
Grain..15

Nonvolatility...15
Time Variant..16
One Version of the Truth..18
Long-Term Investment..19
References...19

3	 Source System Analysis...21
Introduction...21
Source System Analysis Principles...24

System of Record..24

AU6462.indb 7 2/7/08 9:41:56 AM

viii  n  Contents

Entity Data..25
Arithmetic Data...27
Absolute Arithmetic Data..28
Relative Arithmetic Data...28
Numeric Data That Isn’t Arithmetic..28
Alphanumeric Data...29

Granularity..29
Latency...30
Transaction Data..30
Snapshot Data..32

Source System Analysis Methods..32
Data Profile..33
Data Flow Diagram..37
Data State Diagram..37
System of Record..39
Business Rules... 40

Closing Remarks...41
References.. 42

4	 Relational Database Management System (RDBMS)...........................43
Introduction...43
Relational Set Theory..43
RDBMS Product Offerings... 46

Residual Costs..48
Licensing...49
Support and Maintenance...49
Extensibility...49
Connective Capacity..50

Closing Remarks...50
References...51

5	 Database Design..53
Introduction...53
Data Modeling Methodology...55

Conceptual Data Model...56
Logical Data Model.. 60

Logical (Primary) Key...61
Attribute..62
Primary Key/Foreign Key Relation..62
Cardinality..63
Super Types and Subtypes...65
Putting It All Together..65

Physical Data Model..69

AU6462.indb 8 2/7/08 9:41:56 AM

Contents  n  ix

Dimensional Data Model..74
Third Normal Form Data Model.. 90
Recursive Data Model... 116
Physical Data Model Summary...125

Data Architecture...126
Enterprise Data Warehouse...126
Data Mart..128
Operational Data Store..130
Summaries and Aggregates..134

Closing Remarks...135
References...135

6	 Data Acquisition and Integration...139
Introduction...139
Source System Analysis...141
Target System Analysis...142

Direct Requirements..143
Indirect Requirements..144
Direct and Indirect Requirements..145
Language..146
Data Profile..147
Data State..148
Data Mapping..148
Business Rules..149

Architecture.. 152
Extract, Transform, and Load (ETL)... 153
Extract, Load, and Transform (ELT)... 155
ETL Design Principles... 155

ETL Process Principles..157
Principle 01: One Thing at a Time...157
Principle 02: Know When to Begin...161
Principle 03: Know When to End..163
Principle 04: Large to Medium to Small..164
Principle 05: Stage Data Integrity..166
Principle 06: Know What You Have..168
Process Principles Conclusion..169

ETL Staging Principles...170
Principle 07: Name the Data..171
Principle 08: Own the Data...172
Principle 09: Build the Data..173
Principle 10: Type the Data... 174
Principle 11: Land the Data...176
Staging Principles Conclusion..178

AU6462.indb 9 2/7/08 9:41:56 AM

�  n  Contents

ETL Functions...179
Extract Data from a Contiguous Dataset...179
Extract Data from a Data Flow..180
Row-Level Transformation..182
Dataset-Level Transformation...182
Surrogate Key Generation: Intradataset...183
Data Warehouse-Level Transformation...184
Surrogate Key Generation: Intra-Data Warehouse...........................185
Look-Up..185
Changed Data Capture..185
 ETL Key..187
Universe to Universe and Candidate to Universe.............................189
Load Data from a Stable and Contiguous Dataset...........................190
Load Data from a Data Flow...190
Transaction Summary... 191
Dimension Aggregation...193

Common Problems..194
Source Data Anomalies...194
Incomplete Source Data..194
Redundant Source Data..195
Misstated Source Data...195
Business Rule Changes..195
Obsolete Data..195
Redefined Data..196
Unrecorded Data...196

Closing Remarks...196
References...198

7	 Business Intelligence Reporting..199
Introduction...199
BI Reporting Success Factors..199

Performance...201
User Interface...201
Presentation of the Data Architecture..202
Alignment with the Data Model..202
Ability to Answer Questions..203
Mobility...203
Flexibility...203
Availability.. 204

BI Customer Success Factors...205
Proactive Processes...205
Reactive Processes..205
Predefined Processes.. 206

AU6462.indb 10 2/7/08 9:41:57 AM

Contents  n  xi

Ad Hoc Processes.. 206
Data Needs... 206
Information Needs...207
Analytic Needs...207

BI Reporting Application..207
Architecture.. 208

BI Reporting Methods... 209
Predefined Reports.. 209
Interactive Reports.. 209
Online Analytical Process (OLAP) Reports...210

MOLAP..212
ROLAP...212
HOLAP...212
Drilling..212

Push versus Pull...213
Push...213
Pull..213

Printed on Paper...213
Report Archives..213
Web-Based BI Reporting..214
Operational BI Reporting: From an ODS..214
Operational BI Reporting: From an Operational System (Real-Time)	214
Operational BI Reporting: EDI, Partnerships, and Data Sharing......... 215

BI Reporting: Thus Far... 215
Customer Relationship Management (CRM)...................................... 215
Business Metrics Measure the Enterprise..216
Decisions and Decision Making Closer to the Action..........................216

BI Reporting: Coming Soon...216
Reporting around the Event...216
BI Search..217
Sarbanes–Oxley and BI Reporting...217

Data Mining...217
Statistics Concepts...218

Random Error...218
Statistical Significance.. 220
Variables: Dependent and Independent.. 220
Hypothesis...221

Data Mining Tools...221
Data Mining Activities.. 222

Data Cleansing... 222
Data Inspection...223
Compound Variables...223
Lag Variables...223

AU6462.indb 11 2/7/08 9:41:57 AM

xii  n  Contents

Numeric Variables...224
Categorical Variables...224
Hypothesis...225

Data Mining Algorithms..225
Neural Network... 226
Decision Tree...227
CHAID.. 228
Nearest Neighbor... 230
Rule Induction..231
Genetic Algorithm...231

Rule Validation and Testing...233
Overfitting...233

Closing Remarks.. 234
References.. 234

8	 Data Quality...237
Introduction...237
Deming’s Definition of Quality..237
Data Quality Service Level Agreement (SLA)...240
Deming’s Statistical Process Control...241
Process Measurement... 242
Methods and Strategies.. 246

Data Stewardship...247
Post-Load Audit and Report Errant Data...247
Plug in a Default Value and Report Errant Data..................................248
Reject a Record and Report the Errant Record.....................................249
Reject a Dataset and Report the Errant Dataset...................................249
Recycle the Data: In Place and Report Errant Data.............................250
Recycle the Data: Recycle Wheel and Report Errant Data...................252

Data Quality Repository...253
Data Quality Fact Table: Dimensional Data Model.............................254
Data Quality Fact Table: Third Normal Form Data Model.................255
Data Quality Reporting...256

Follow Through..256
Closing Remarks...258
References...258

9	 Metadata..259
Introduction...259
Types of Metadata..261

Static Metadata..261
Dynamic Metadata..262

Metadata Service Level Agreement (SLA).. 264

AU6462.indb 12 2/7/08 9:41:58 AM

Contents  n  xiii

Metadata Repository...265
Central Metadata Repository: Dimensional Data Model.................... 266
Central Metadata Repository: Third Normal Form..............................269
Distributed Metadata Repository...269
Real-Time Metadata...272
Data Quality as Metadata..272
Make or Buy a Metadata Repository..274

Closing Remarks...275
References...275

10	 Data Warehouse Customers..277
Introduction.. 277
Strategic Decision Makers...279
Tactical Decision Makers... 280
Knowledge Workers..281
Operational Applications..282
External Partners..283
Electronic Data Interchange (EDI) Partners.. 284
Data Warehouse Plan.. 284

Strategic Decision Makers..285
Tactical Decision Makers...285
Knowledge Workers...285
Operational Applications.. 286
External Partners... 286
Electronic Data Interchange (EDI) Partners..287

Closing Remarks...287

11	 Future of Data Warehousing: An Epilogue...289
Introduction...289
Scalability and Performance..289
Real-Time Data Warehousing...290
Increased Corporate Presence...290
Back to the Basics...291
Data Quality...291

Bibliography...293

Index..297

AU6462.indb 13 2/7/08 9:41:58 AM

AU6462.indb 14 2/7/08 9:41:58 AM

xv

Preface

This book began years ago when I joined the Data Warehousing Team. We read the
books and articles by Ralph Kimball and Bill Inmon. We spent years understand-
ing the full meanings and ramifications of Data Warehousing concepts and meth-
ods. We lived with our successes and we lived with our failures. That is what sets
this book apart from other Data Warehouse literature—the perspective of a data
warehouse analyst who has created data warehouses and then lived with them.

When I began in Data Warehousing in 2000, I understood the concepts and
principles easily enough. They made sense. Making those Data Warehouse con-
cepts and principles happen in a data warehouse was an entirely different matter.
I searched the Data Warehousing literature and found many pockets of very help-
ful information. Over the years, I have collected and assimilated those pockets
of information. Colleagues have given me opportunities to share and refine those
pockets of knowledge. Eventually, they melded together to form a single cohesive
and holistic approach to Data Warehousing. That single approach is the subject and
content of this book.

I invite you to agree or disagree, accept or modify the methods presented in this
book as you apply them to your data warehouse. If you agree and accept the meth-
ods in this book, they will serve you well. If, however, you disagree and modify
the concepts and methods in this book, you will find concepts and methods that
more closely fit your data warehouse. Either way, you will find a set of concepts and
methods, either from this book or in response to this book, which will serve you
well in your data warehouse. After all, that is the purpose of this book— to answer
the question: “How do I build a data warehouse?”

Thank you for reading Building and Maintaining a Data Warehouse. I enjoyed
writing this book. Writing it was an opportunity to capture in one document the
concepts, principles, and methods that are common throughout Data Warehousing.
Writing such a book, without the normal pressures and deadlines of a data ware-
house development project, has also given me the opportunity to reflect on and con-
sider all aspects of Data Warehousing. My intention is that, as you read this book,
you will also gain insights into Data Warehousing beyond the obvious databases

AU6462.indb 15 2/7/08 9:41:58 AM

xvi  n  Preface

and tables, and that reading this book will be as much or more of a learning and
understanding experience for you as writing it was for me.

AU6462.indb 16 2/7/08 9:41:58 AM

xvii

Acknowledgments

I thank my family for their patience and understanding as I wrote this book, espe-
cially my wife, Deborah, who reviewed and edited the manuscript as well as encour-
aged me throughout this entire journey. Many thanks go to Jack Rader for giving
me my first opportunity in Information Systems, and mentoring me through my
rookie years. I thank Kevin Lewis for inviting me to join the Data Warehousing
Team, and, yes, I would like to join the team.

A lot of appreciation and gratitude goes to my colleagues who have mentored and
inspired me through many Data Warehouse development efforts, including Kevin
Lewis, Michael Feist, Naresh Agarwal, Brian Christjohn, Mark Beyer, Dan Koller,
Carla Aber, Brian Terrell, Mike Steeves, Dennis Fortier, and Anthony Jones. I thank
J.D. and Sue Anderson for allowing the children to spend the summer with them,
so I could have the peace and quiet necessary to write this book. I thank God for
making this book possible in so many ways. And, I thank Steve Olive, who years ago
recognized a rookie who was in over his head and helped me succeed. Finally, I thank
Auerbach Publishing for this opportunity.

AU6462.indb 17 2/7/08 9:41:58 AM

AU6462.indb 18 2/7/08 9:41:58 AM

xix

The Author

Fon Silvers began his career in Information Systems as a one-person IS shop, doing
everything from hardware, software, application development, and data entry. After
completing his MBA with a concentration in Information Systems from the Uni-
versity of South Florida (Tampa), he moved to a position with a Fortune 500 com-
pany, which is where Silvers was introduced to Data Warehousing. While there, he
participated in the creation of Data Warehouse solutions that included retail sales
transactions, Online Analytical Process (OLAP) analytics, and real-time logistics
transactions.

AU6462.indb 19 2/7/08 9:41:59 AM

AU6462.indb 20 2/7/08 9:41:59 AM

xxi

Introduction

Purpose
The purpose of this book is answer the question: “How?” How can a data ware-
house team build a data warehouse, a data warehouse that actually works? It’s very
easy to build a data warehouse that incorporates all the Data Warehousing concepts
and principles, and, yet, is useless. But, how to build a data warehouse that provides
the answers needed by all the data warehouse customers, when they need it? That’s
difficult.

Building and Maintaining a Data Warehouse provides a cohesive and holistic
approach to building a data warehouse. Written from the perspective of having
created a successful data warehouse as well as a failed data warehouse, Building and
Maintaining a Data Warehouse presents the success factors that should be achieved
along with the failure factors that should be avoided. The Data Warehouse Philoso-
phy presents, in Chapter 2, the concepts and principles that are the foundation of
every data warehouse. In the chapters following, as data warehousing methods are
presented and explained, these methods are presented within the context of the
concepts and principles in the Data Warehouse Philosophy. By doing so, the Data
Warehouse Philosophy provides a consistent focus.

Audience
Building and Maintaining a Data Warehouse is intended for four groups of people.
First, those considering the creation of a data warehouse will find this book very
helpful in scoping the work and magnitude of a data warehouse. Building a data
warehouse is like building a house. Most of the work necessary to build a house,
and a data warehouse, is neither visible nor obvious when looking at the com-
pleted product. Thus, an enterprise considering their first data warehouse will not
perceive all the work necessary to create one by visiting existing data warehouses.

AU6462.indb 21 2/7/08 9:41:59 AM

xxii  n  Introduction

Building and Maintaining a Data Warehouse opens the hood and exposes the bits
of work necessary to build a data warehouse.

The second are those who are currently building a data warehouse. Having
jumped into Data Warehousing without the help of Building and Maintaining a
Data Warehouse, a data warehouse team can become quickly overwhelmed. The
areas of a data warehouse are presented individually and in sequence. By under-
standing how each piece of a data warehouse fits in the entire data warehouse, a
data warehouse team is able to focus on each piece, making each piece fit correctly
in its data warehouse.

The third are those who have a data warehouse. Having moved to the main-
tenance and support stage of a data warehouse, a data warehouse team begins to
understand the relevance and impact of gaps in their data warehouse. Building and
Maintaining a Data Warehouse identifies the pieces of the puzzle that fill those gaps,
and how those pieces fill their gaps. Recognizing that a gap exists is the first step.
Understanding where that gap exists is the second step. Building and Maintaining
a Data Warehouse can guide a data warehouse team through these two steps to the
third step: filling the gap.

Finally, the managers and planners who define the scope of a data warehouse are
the fourth group of people. The success of a data warehouse begins in the planning
stages, where the scope and boundaries of a data warehouse are defined. Building
and Maintaining a Data Warehouse provides the big picture perspective necessary
to understand the work inside the scope and boundaries.

Organization
The organization of Building and Maintaining a Data Warehouse is from general
to specific, and left to right. Chapter 1 presents, in summary, an entire data ware-
house. For those new to Data Warehousing, this provides a general outline and
context for all the detailed elements of a data warehouse. Chapter 2 presents Data
Warehousing concepts and principles that are the foundation of every data ware-
house. These two chapters present the general information necessary to understand
the detailed information presented in the subsequent chapters.

Chapters 3 through 10 present the detailed elements of a data warehouse and
the work necessary to create a data warehouse, from left to right. Beginning with
source data, Building and Maintaining a Data Warehouse follows the flow of data
from its source to its home in a data warehouse to its use and consumption by data
warehouse customers. These chapters present the nuts and bolts of a data ware-
house. The methods presented in each subject area are presented so that they can
be assimilated and incorporated individually as well as within the context of a
holistic approach. These chapters serve as instructions, advice, examples, and refer-
ence material.

AU6462.indb 22 2/7/08 9:41:59 AM

Introduction  n  xxiii

Time to Build a Data Warehouse
The best way to begin any endeavor, including a data warehouse, is to learn from
those who have gone before. That is the approach of Building and Maintaining a
Data Warehouse. Beginning with the foundation laid by Data Warehousing pio-
neers and visionaries Ralph Kimball and Bill Inmon, Building and Maintaining
a Data Warehouse presents the knowledge, insights, and lessons learned of Data
Warehousing. Having learned the concepts, principles, and methods from two
decades of Data Warehousing, it’s time to build a data warehouse.

AU6462.indb 23 2/7/08 9:41:59 AM

AU6462.indb 24 2/7/08 9:41:59 AM

�

Chapter 1

The Big Picture:
An Introduction to
Data Warehousing

Introduction
In 1977, Jimmy Carter was President of the United States, Star Wars hit the big
screen, and Apple Computer, Inc. introduced the world to the first personal com-
puter. Four years later, Ronald Reagan was president, Prince Charles and Lady
Diana married, and IBM began selling its IBM PC. From that beginning, com-
puting power started moving from the mainframe to the desktop. Soon thereafter,
spreadsheets and word processing applications began their journey to replace clip-
boards and typewriters. By 1985, Mikhail Gorbachev was the leader of the Soviet
Union, New Coke hit the shelves, and data was going everywhere. Even inside the
mainframe computers, data was finding its own home. Supervisors, managers, and
executives alike were no longer able to look at a single clipboard to find out how the
business was performing. The data was hopelessly entrenched in applications and
nooks and crannies that would never again see the light of day. Such was the origin
of Decision Support Systems.

AU6462.indb 1 2/7/08 9:52:26 AM

�  n  Building and Maintaining a Data Warehouse

Decision Support Systems
Decision Support Systems allowed managers, supervisors, and executives to once
again see the clipboard with all its information. The information, which previously

had been on a clipboard, had become
a report, either printed on paper or
displayed on a screen. One report
revealed one single business area.
Another report revealed a different
business area. By 1992, Windows® 3.1
was in the stores and Ralph Kimball
and Bill Inmon were figuring out how
to gather data from two business areas
and figuring out how to warehouse
the data of an enterprise (Figure 1.1).

Kimball and Inmon, working sep-
arately, arrived at a common set of guide-
lines (or principles). These principles are:

Subject Orientation: Data will
be grouped by subject, rather than
author, department, or physical loca-
tion. So, all manufacturing data goes
together, and the sales data, and the
promotions data, etc., regardless of
where it came from.
Data Integration: Even though data comes from separate applications,
departments, etc., differences should be smoothed out so they have the same
look and feel.

Form: When two data elements (e.g., phone numbers) have different lay-
outs (e.g., 123-123-1234 and (123) 123-1234), one layout will be super-
imposed on both of them.
Function: When two data elements identify the same thing (e.g., a ham-
mer) with two different names (e.g., part 32G and part B49), these two
names will be replaced with one name.
Grain: When two data elements apply different hierarchies (e.g., region
and district) to the same thing, or different levels of detail (e.g., miles and
feet), the two data elements will be resolved to the same level of hierarchy
or detail.

Nonvolatility: Unlike the data in operational applications, which is dis-
carded once the company is finished using it, the data in a data warehouse
will remain in the warehouse.

n

n

−

−

−

n

Ralph Kimball was a co-creator of the
Xerox Star Workstation, the world’s first
commercially viable GUI application.
Ralph was the founder and CEO of Red
Brick Systems, the group which cre-
ated an extremely fast RDBMS targeted
specifically for data warehousing. When
he authored The Data Warehouse Lifecycle
Toolkit, Ralph introduced the Dimension-
al Data Model (discussed in Chapter 5,
Database Design).

Bill Inmon was the creator of the
Corporate Information Factory and
Government Information Factory.
In so doing, Bill also established
many of the principles of Data
Warehousing.

AU6462.indb 2 2/7/08 9:52:27 AM

The Big Picture  n  �

So
ur

ce
 D

at
a

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts
M

et
ad

at
a

Ap
pl

ic
at

io
n(

s)

D
at

a Q
ua

lit
y

D
at

ab
as

e
M

et
ad

at
a

D
at

ab
as

e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

RD
BM

S

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

O
LA

P

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

M
et

ad
at

a
Re

po
si

to
ry

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

D
at

ab
as

e
D

es
ig

n

Fi
gu

re
 1

.1 

Th
e

bi
g

pi
ct

ur
e.

AU6462.indb 3 2/7/08 9:52:29 AM

�  n  Building and Maintaining a Data Warehouse

Time Variant: All data has a context at a moment in time. A data warehouse
will keep that context. So, all data from 1995 will retain its context within
1995.
One Version of the Truth: The proliferation of data in the 1980s and 1990s
yielded many copies of the same data. Only the one, true gold, standard copy
of each data element would be included in a data warehouse.
Long-Term Investment: A data warehouse should be flexible enough to
absorb changes in the company and the world, and scalable enough to grow
with the company. By doing so, a data warehouse can add value to the com-
pany for a long time.

Dimensional and Third Normal Form Data Models
Kimball and Inmon arrived at the same set of principles, yet each used completely
different designs. Kimball created the Dimensional Data Model (Figure 1.2).

Also known as the Star Schema (because it resembles a star), a Dimensional
Data Model has a distinct shape. In the middle is a Fact table (a Fact is an event,
transaction, or something that happens at a single moment in time). Surrounding
the Fact table are Dimension tables. Each Dimension table holds all the permu-
tations of a single hierarchy of the company (e.g., geography: city, county, state,
region, district, etc.; or time: second, minute, hour, day, fiscal week, payroll week,
fiscal quarter, etc.).

Bill Inmon preferred the Third Normal Form Data Model (Figure 1.3). Rather
than capture hierarchies and relationships in Dimension tables, the Third Normal
Form allowed the data to have the same flexibility as the company.

Within the data warehousing community, a debate emerged. Which was bet-
ter, the Dimensional Data Model or the Third Normal Form data model? By the
twenty-first century, the answer was clear — both. Both designs had their strengths
and their weaknesses. Rather than apply a “one size fits all” mindset, data ware-
house designers learned to apply the strengths and avoid the weaknesses of both in
each situation.

Storing the Data
While the debate between Dimensional Data Model and Third Normal Form
Data Model was still going on, the data warehousing community was also deciding
how to physically store the data. Three methods were found: a central Enterprise
Data Warehouse (EDW), several distributed Data Marts, and an Operational Data
Store (ODS).

The central EDW held all the data from all the business subjects in one data-
base (Figure 1.4). The Data Mart held one subject area only (Figure 1.5). If another

n

n

n

AU6462.indb 4 2/7/08 9:52:29 AM

The Big Picture  n  �

subject area were needed, then that would be another Data Mart. The best method
of feeding data to a Data Mart was to integrate that data into an Enterprise Data
Warehouse first and then send the data on to its Data Mart.

The Operational Data Store (Figure 1.6) lives on the other side of the EDW and
retrieves operational data from the business, integrates the data, and stores the data
in its own database. Unlike the EDW, the data in an ODS is volatile. Volatile means
the ODS only stores the value for a data element (e.g., balance on hand) that is true
at real-time (e.g., balance on hand as of right now). This is different from the non-
volatile data in an EDW (e.g., balance on hand for every day for the past two years).
When an ODS is present, the EDW can gather its data from the ODS rather than
from the business. There’s no need to ask the business the same question twice.

Transaction Event

Time
�ing
Place
Person
Equipment

Equipment Dimension

Equipment
Equipment Name
Equipment Description
Equipment Purpose

Place Dimension

Place
Place Name
Place Address
Place Purpose

�ing Dimension

�ing
�ing Name
�ing Weight
�ing Height

Person Dimension

Person
Person Name
Person Class
Person Type

Time Dimension
Date
Time
Week
Month
Year

Figure 1.2  Dimensional Data Model.

AU6462.indb 5 2/7/08 9:52:30 AM

�  n  Building and Maintaining a Data Warehouse

Tr
an

sa
ct

io
n

H
ea

de
r

Tr
an

sa
ct

io
n_

ID

Tr
an

sa
ct

io
n

Ti
m

e
D

at
e

Ti
m

e

Tr
an

sa
ct

io
n

�
in

g

�
in

g

Tr
an

sa
ct

io
n

Pl
ac

e

Pl
ac

e

Tr
an

sa
ct

io
n

Pe
rs

on

Pe
rs

on

Tr
an

sa
ct

io
n

Eq
ui

pm
en

t

Eq
ui

pm
en

t

Ca
le

nd
ar

 Y
ea

r

Ye
ar

Ti
m

e o
f D

ay

Ti
m

e

Ca
le

nd
ar

 M
on

th

M
on

th

Ca
le

nd
ar

 W
ee

k

W
ee

k

Ca
le

nd
ar

 D
at

e

D
at

e

W
ei

gh
t

�
in

g
W

ei
gh

t

�
in

g

�
in

g

H
ei

gh
t

�
in

g
H

ei
gh

t

Pl
ac

e
Pl

ac
e

Pu
rp

os
e

Pl
ac

e P
ur

po
se

Eq
ui

pm
en

t P
ur

po
se

A
dd

re
ss

Pl
ac

e A
dd

re
ss

Eq
ui

pm
en

t
Eq

ui
pm

en
t

D
es

cr
ip

tio
n

Eq
ui

pm
en

t D
es

cr
ip

tio
n

N
am

e

�
in

g
N

am
e

Pl
ac

e N
am

e
Eq

ui
pm

en
t N

am
e

Pe
rs

on
 N

am
e

Pe
rs

on

Pe
rs

on

Cl
as

s

Pe
rs

on
 C

la
ss

Ty
pe

Pe
rs

on
 T

yp
e

Fi
gu

re
 1

.3 

Th
ir

d
N

or
m

al
 F

or
m

 D
at

a
M

od
el

.

AU6462.indb 6 2/7/08 9:52:30 AM

The Big Picture  n  �

The set of applications that gather data from the business and bring that data into
the data warehouse are called extract, transform, and load (ETL) applications. The
ETL analyst is responsible for making the data warehouse philosophy happen.

Data Integration: ETL applications integrate the data from the business,
regardless of its origin, form, function, or grain.
Nonvolatility: ETL applications introduce new data without destroying old
data.
Time Variant: ETL applications store the data with a key structure that
points to a timeframe.
One Version of the Truth: ETL applications reference only the one gold
standard for every data element.
Long-Term Investment: Populate data into a data warehouse, realizing the
long-term flexibility of the data warehouse design.

Data Availability
The data inside a data warehouse is of no use to a business without a way to use that
data. Business Intelligence Reporting, also known as BI Reporting, is a set of appli-
cations by which a business can harness data and information in a data warehouse.
Data is individual bits of facts and figures. By itself, data tells the business very
little. Information is the compilation of individual bits of data into an observation
or conclusion, which adds value to the business.

BI Reporting includes various methods by which data and information can be
available to the business. Predefined reports, a staple of all information systems, can
disseminate answers to the same questions (e.g., who, how many, where) on a daily
basis. Interactive reports allow the business to ask a new question, or revise an exist-
ing question, and then receive the answer. OLAP (online analytical processing)

n

n

n

n

n

Sales Manufa-
cturing

LogisticsPersonnel

Marketing

Purchasing

EDW

Figure 1.4  Enterprise Data Warehouse (EDW).

AU6462.indb 7 2/7/08 9:52:31 AM

�  n  Building and Maintaining a Data Warehouse

EDW

Sales Manufacturing

LogisticsPersonnel

Marketing

Purchasing

ODS

Marketing

Operational
Application

Business
Unit

Figure 1.6  Operational Data Store.

EDW

Sales Manufac-
turing

Logistics Personnel

Marketing

Purchasing

DataMart

Purchasing

DataMart

Logistics

DataMart

Marketing

Figure 1.5  EDW and Data Marts.

AU6462.indb 8 2/7/08 9:52:32 AM

The Big Picture  n  �

reporting allows business analysts to drill up and down, left and right in stream of
consciousness analysis. Using the Internet, all of these reporting options are avail-
able online. The next frontier of BI Reporting is data mining, the search for correla-
tions in the business, which cannot be seen.

Metadata provides the background and context, which gives concrete meaning
to the facts and figures in a data warehouse. Every four years, on the first Tues-
day of November, all Americans use the same metadata — the number of voting
precincts reporting. With 50 percent of the precincts reporting, no one believes
the result. With 75 percent of the precincts reporting, we begin to take the result
seriously. When 90 percent of the precincts have reported their numbers, we turn
the TV off and go to bed; the election is over. Metadata in a data warehouse works
the same way.

How complete is the data?
What is the formula for that number?
When did the new numbers come in?

Like the number of precincts reporting, metadata in a data warehouse gives mean-
ing and context to data.

Monitoring Data Quality
Finally, data quality is the continuous effort to monitor the accuracy, complete-
ness, and confidence of the data in a data warehouse. The world is full of surprises,
and some of them affect the data in a data warehouse. Only the naïve assume the
business and its data warehouse live in a perfect world where nothing goes wrong.
Diligently monitoring data before it enters the data warehouse, the goal is to deliver
data and information from which a business can derive its strategic and tactical
decisions with confidence.

The explosion of data and information truly was an explosion. The facts and
figures of business found their own homes in accounting systems, inventory data-
bases, and a myriad of home-grown applications, all of which help run the busi-
ness. Data warehousing gathers and integrates that disparate data so the business,
through its data, can be seen in one place.

n
n
n

AU6462.indb 9 2/7/08 9:52:32 AM

AU6462.indb 10 2/7/08 9:52:32 AM

11

Chapter 2

Data Warehouse
Philosophy

Introduction
A data warehouse is an asset of an enterprise and exists for the benefit of an entire
enterprise. It does not exist for the benefit of a single entity (e.g., business unit,
individual customer, etc.) to the exclusion of all others in the enterprise. As such,
data in a data warehouse does not conform specifically to the preferences of any
single enterprise entity. Instead, a data warehouse is intended to provide data to the
entire enterprise in such a way that all members can use the data in the warehouse
throughout its lifespan.

Traditionally, an information system succeeds by satisfying specific require-
ments of a specific customer. A data warehouse, however, succeeds by satisfying
the data needs of an entire enterprise, not just one entity. The “one size fits all”
approach to data positions a data warehouse to fail in its mission to provide data to
the whole enterprise. All data warehouses would fail in this mission were it not for
the foundational principles created by the data warehousing pioneers and visionar-
ies Ralph Kimball and Bill Inmon.

In the 1990s, Kimball and Inmon created and documented the concepts and
principles of data warehouses, which today are the foundation of all data ware-
houses. These concepts and principles will not immediately equip a reader to design
and develop a data warehouse; however, they will equip a reader to understand the
reasons and intentions underlying data warehouse design. For that reason, these

AU6462.indb 11 2/7/08 9:52:32 AM

12  n  Building and Maintaining a Data Warehouse

concepts and principles are collectively known as the data warehouse philosophy. The
concepts and principles within the data warehouse philosophy guide the design and
development of a data warehouse.

Inclusion of all elements of the data warehouse philosophy is not mandatory
for the success of a data warehouse. Awareness of the elements of this philosophy,
however, increases its success and value. A data warehouse designer may choose
to include or exclude elements of the data warehouse philosophy. Such decisions
should be made from the context of cognitive understanding of the philosophy.

The elements of the data warehouse philosophy are explained in the following
sections. Those elements are:

Enterprise Data
Subject Orientation
Integration
Nonvolatility
Time Variant
Single Version of the Truth
Long-Term Investment and Return on Investment (ROI)

Enterprise Data
A data warehouse should include data that is applicable to the enterprise. The value
and relevance of a data warehouse is rooted in that data. If members of the enter-
prise perceive as superfluous or irrelevant the data in a data warehouse, those same
members will cast that perception onto the data warehouse. This principle is not as
restrictive as it seems. Frequently, data that is acted on by a single business unit is
also relevant to the remainder of the enterprise. For example:

The Accounting Department uses tax codes; members of other departments
understand the relevance of tax codes to the enterprise.
The Manufacturing Department uses part numbers; members of other depart-
ments understand the relevance of part numbers to the enterprise.

Tax codes are not directly applicable to the Manufacturing Department; however,
they understand tax codes are relevant to the enterprise. Part numbers may not be
directly applicable to the Accounting Department; however, they understand that
part numbers are relevant to the enterprise.

Data that is not relevant to the enterprise is localized in its relevance. Localized
relevance renders data irrelevant to the enterprise. For example:

The Accounting Department maintains a list of notary publics in its office.

n
n
n
n
n
n
n

n

n

n

AU6462.indb 12 2/7/08 9:52:33 AM

Data Warehouse Philosophy  n  13

The Manufacturing Department keeps a list of machinists who own and use
their own tools, including a designation for United States and metric tools.

The names and availability of notary publics are handy in the Accounting Depart-
ment, but irrelevant to the rest of the enterprise. Likewise, a list of machinists and
their tools helps the shop foreman assign individual tasks, but has little relevance
to the rest of the enterprise.

Subject Orientation
Data in a data warehouse is organized around the business subjects of the enter-
prise.1 Operational data is organized by its physical manifestations, including file
names, job schedules, and application dependencies. A data warehouse does not
present data, which reflects the physical manipulation of operational data. Instead,
a data warehouse presents data, which reflects major subject areas within the enter-
prise.2 For example:

Business Entities
Customers
Vendors
Agents

Business Processes
Sales
Receiving
Manufacturing
Distribution

Subject orientation of data allows a data warehouse to maintain its overall
architecture throughout its lifespan. Individual data elements may change in the
enterprise and in the data warehouse. The subject orientation of a data warehouse
enables a data warehouse to absorb inevitable changes without drastic changes to
its architecture.3

Data Integration
The data in a data warehouse is presented in a uniform manner. Uniformity allows
data warehouse customers to query data across subject areas without traversing
through data translations or look-ups from other data sources.4 By integrating its
data, a data warehouse presents a consistent and seamless statement of the enter-
prise, which relieves data warehouse customers of the need to reconcile differences

n

n
−
−
−

n
−
−
−
−

AU6462.indb 13 2/7/08 9:52:33 AM

14  n  Building and Maintaining a Data Warehouse

and inconsistencies within data from disparate business areas. Data integration
occurs in multiple ways, which can be combined into the following three groups:

Form
Function
Grain

Form
Data form includes the types and layouts of data.5 These are the way data is
expressed. Disparate business units may express similar data elements in different
ways. For example:

Money can be expressed as currency or integer data types.
Phone numbers can be expressed as (123) 123-1234 or 123-123-1234 or
123.123.1234.
Names can be expressed as First Last or Last, First.

In a data warehouse, the disparate expressions of similar data elements (e.g.,
money, phone number, names, etc.) are integrated into a single form, which creates
consistency within a data warehouse. This helps data warehouse customers query
across business subjects.

Function
Function includes the substance and meaning of the data within the data element.
Codes and cryptic values often differ between business units and must be recon-
ciled so the entire organization can leverage these codes and values. For example:

Part Status = 32B: In the Manufacturing Department, 32B means the manu-
facturing part is on back-order. This translation needs to be provided to oth-
ers in the enterprise.
Closing Code = 32B: In the Accounting Department, 32B means the finan-
cial statement is out of balance and cannot be closed. This translation needs
to be provided to others in the enterprise.

Business units may use the same code or value with two distinct and sepa-
rate meanings. For example, in the Accounting Department, 32B means “Out of
Balance,” while in the Manufacturing Department, 32B is a jacket size. Business
units may use different codes or values with the same meaning. For example, the
Marketing Department refers to a 30-second TV spot as a promotion, while the
Distribution and Logistics Department refers to the same 30-second TV spot as an

n
n
n

n
n

n

n

n

AU6462.indb 14 2/7/08 9:52:33 AM

Data Warehouse Philosophy  n  15

advertisement. In such cases, disparate data from business units must be integrated
into one data element, which expresses the function of both.

Grain

Grain refers to the unit of measurement at which data is expressed.6 Business units
may store data using different units of measurement:

Purchasing measures product by the barrel.
Transportation measures product by the shipload.
Sales measures product by the gallon.

In this scenario, a data warehouse will reconcile these different units of mea-
surement, which will allow the integration of data from the Purchasing, Transpor-
tation, and Sales business units.

Grain can also refer to a hierarchical level. Individual people, objects, and events
are organized into hierarchical groups. Business units may store data using different
hierarchical groupings of people, objects, and events:

A captain commands a vessel in the Third Fleet.
Captain Roy P. Jones commands a vessel in the Third Fleet.
A captain commands the USS Hawkins.
Captain Roy P. Jones commands the USS Hawkins.

In this scenario, a data warehouse will reconcile these different levels of hier-
archical grouping, which will allow the integration of data from the Personnel
Department and the Third Fleet.

Grain of data has two physical implications for a data warehouse. First, fine
grain data expresses more detailed information, but at a cost. The increased detail
consumes increased resources to capture, store, and retrieve. Second, a data ware-
house cannot provide data to customers at a grain lower than the grain at which it
is stored.7

A data warehouse must integrate the Form, Function, and Grain of data from
disparate business units. Once integrated, data warehouse customers can traverse
data within business subjects from across the enterprise.

Nonvolatility
Data, once written to a data warehouse, is never deleted or updated.8 Operational
applications manipulate data to reflect only the current state of a business unit. A
data warehouse reflects both the historical and current state of the enterprise by

n
n
n

n
n
n
n

AU6462.indb 15 2/7/08 9:52:33 AM

16  n  Building and Maintaining a Data Warehouse

inserting new rows.9 A data warehouse retains historical rows as well as the most
recent rows, which allows a data warehouse to present data in the context of the
past and the present. Nonvolatility allows a data warehouse to express the enter-
prise across time, by retaining that data.10

Time Variant
A data warehouse expresses the events of the enterprise across time.11 Nonvolatile
historical data allows a data warehouse to express historical enterprise events in
their historical context. For example:

During the month of January, Fred was the manager of store #1024. January
net profit for the store totaled $140,000.
During the month of February, Alice was the manager of store #1024. Febru-
ary net profit for the store totaled $70,000.
During the present month, George is the manager of store #1024.

The presence of historical data allows analysis and comparison of these three
store managers, even though they occurred at different times. An analyst can ask
such questions as:

What was the profitability of store #1024 when Fred was the manager?
What was the profitability of store #1024 when Alice was the manager?
What is the profitability of store #1024 now that George is the manager?

These questions can be answered by translating these questions into a surrogate
question based on a simultaneous and coincidental event (e.g., the month).

What was the profitability of store #1024 in January?
What was the profitability of store #1024 in February?
What is the profitability of store #1024 in the current month of March?

Stores will not normally (in fact, rarely) change store managers on a sched-
ule that coincides with the change of the month. So, a business analyst cannot
expect to track the performance of store managers by tracking months, expecting
each month to represent a different store manager. A data warehouse facilitates the
answers to the real questions (e.g., How profitable was each manager?) by allow-
ing a business analyst to track the performance of the managers, regardless of the
historical context. The historical data in a data warehouse provides answers to ques-
tions of historical events and conditions in this context, based on the events or
conditions. A data warehouse does not require its customers to translate historical

n

n

n

n
n
n

n
n
n

AU6462.indb 16 2/7/08 9:52:33 AM

Data Warehouse Philosophy  n  17

questions into their historical context because the data in a data warehouse has
already framed its data in its historical context.

Time variant data allows a data warehouse to express the enterprise as of a
moment in time.12 That moment in time has a grain. A moment in time can be
expressed as a millisecond, minute, hour, day, week, month, year, etc. In the con-
text of digital versus analog, Time is analog. Information systems, however, can
only capture Time digitally. Every expression of Time, therefore, is a digital repre-
sentation of analog Time; hence, Time expressed as a millisecond, minute, hour,
day, week, month, year, etc.13

Historical data allows a data warehouse to express the enterprise from three
different historical contexts:15

As It Was: In this context, a data warehouse can express states of the enter-
prise at the moment they occurred, including the moment the state began
and ended. For example:

Fred was the manager of store #1024 during the month of January.
Alice was the manager of store #1024 during the month of February.
George is the manager of store #1024 now.

As It Is: In this context, a data warehouse can superimpose the current (i.e.,
now) state of the enterprise over the entire history of the enterprise. All his-
torical data is still present in the data warehouse, but not used in the result set
returned to the data warehouse customer. For example:

George (the current manager) has always been the manager of store
#1024.

As If Nothing Changed: In this context, a data warehouse can superimpose
a historical state of the enterprise over subsequent periods of the enterprise.
All current (i.e., now) data is still present in the data warehouse, but not used
in the result set returned to the data warehouse customer. For example:

Fred was the manager of store #1024 during the month of January.
Alice was the manager of store #1024 during the month of February.
Alice (not George) is the manager of store #1024 now.

Ralph Kimball authored these three variations of Time Variance. He named
them Type 1, Type 2, and Type 3.15 These three names have since become part of
the data warehousing lexicon.

Type 1 (As it is): Cast all of history so the enterprise looks as it does now.
Type 2 (As it was): Express historical data as it was, with each data value as
of its moment in history, retaining its context in time.
Type 3 (As if nothing changed): Cast the enterprise to look as if a change
had not occurred.

n

−
−
−

n

−

n

−
−
−

n

n

n

AU6462.indb 17 2/7/08 9:52:34 AM

18  n  Building and Maintaining a Data Warehouse

The retention of nonvolatile historical data allows a data warehouse to express
the enterprise within a historical context. This Time Variant principle is a signifi-
cant difference from operational applications, which function in the now, rather
than the past.

One Version of the Truth
For every question that can be answered by data, an enterprise will derive a myriad
answers. For example:

Q: How many widgets were assembled?
A: Total number of widgets assembled — 32,000
A: Total widgets net of scrap — 31,195
A: Total widgets adjusted by Activity Costing — 32,120
A: Total widgets approved by Quality Control — 31,148

These different answers illustrate the confusion that occurs when business units
look at a question (How many widgets were assembled?) and actually see more than
just that one question.

Q: How many widgets were physically assembled?
Q: How many widgets were successfully assembled?
Q: How much assembly activity occurred in conjunction with the widgets?
Q: How many widgets were assembled and approved by Quality Control?

A data element stores the answer to a question. The question is the definition
of that data element. A data warehouse must define every data element so that all
members of the enterprise will associate one and only one question with that data
element. Having narrowed a data element down to one and only one question, a
data warehouse must also provide one and only one answer to the question posed
by that data element. By doing so, a data warehouse provides the truth (i.e., the
true answer to the question posed by a data element) and only one version of that
truth.16

The One Version of the Truth principle allows a data warehouse to express the
entire enterprise. When all members of an enterprise look at a data element with a
single understanding of its meaning, then members of the enterprise can use a data
warehouse as a shared point of communication across the enterprise.

AU6462.indb 18 2/7/08 9:52:34 AM

Data Warehouse Philosophy  n  19

Long-Term Investment
A data warehouse achieves it greatest ROI through longevity and stability. As the
number of subject areas integrated into a data warehouse increases, a data ware-
house increases its expression of the enterprise. As time variant history accumulates
in a data warehouse, it increases its ability to answer historical questions. A data
warehouse must, therefore, be designed and developed as a long-term investment.

A data warehouse team cannot build the entire data warehouse in a single
project. The cost would be too high and the delivery schedule would be too slow.
Instead, a data warehouse begins with one or two business subjects (e.g., sales,
transportation, manufacturing, etc.). Then, each subsequent data warehouse devel-
opment effort adds another business subject, or a subset of a large or complex sub-
ject. Each individual data warehouse project should last only six to nine months.
When the duration of an individual data warehouse project exceeds nine months,
management typically begins to question the ROI of the project. As multiple indi-
vidual data warehouse projects integrate multiple business subjects into a single
data warehouse, that data warehouse presents a picture of the enterprise, a picture
which becomes more complete and comprehensive as each business subject is added
to that data warehouse. A data warehouse, therefore, is a long-term investment
with a long-term horizon. In fact, a data warehouse may never express the entire
enterprise. The success of a data warehouse is not its ability to express the entire
enterprise; rather, the success of a data warehouse is its ability to return value to the
enterprise using the business subjects included in that data warehouse.

The very first data warehouse project of an enterprise defines the enterprise-level
architecture of the data warehouse. The decisions made during the first data ware-
house project will lay the foundation for all subsequent data warehouse projects
within the enterprise. Physically, these decisions will lay the foundation for the
platforms and infrastructures that will be the data warehouse. Logically, these deci-
sions lay the foundation for the subject areas, entities, attributes, and processes as
they are captured in a data warehouse. These architectural and foundational deci-
sions will enable, or prevent, the data warehouse and its customers as they include
new and additional subject areas in subsequent development efforts. The long-term
nature of a data warehouse means the “return” of a data warehouse exists signifi-
cantly beyond the “investment.” If done correctly, the investment should be of a
short duration, and the return should extend for years, if not decades.

References
	 1.	 Mark Peco, TDWI Data Warehousing Concepts and Principles: An Introduction to the

Field of Data Warehousing, TDWI World Conference (The Data Warehousing Insti-
tute: Renton, WA, 2004).

AU6462.indb 19 2/7/08 9:52:34 AM

20  n  Building and Maintaining a Data Warehouse

	 2.	 William H. Inmon and Richard D. Hackathorn, Using the Data Warehouse (New
York: John Wiley & Sons, 1994).

	 3.	 William H. Inmon, Claudia Imhoff, and Ryan Sousa, Corporate Information Factory
(New York: John Wiley & Sons, 1998).

	 4.	 Inmon and Hackathorn, Using the Data Warehouse.
	 5.	 Inmon, Imhoff, and Sousa, Corporate Information Factory.
	 6.	 Inmon and Hackathorn, Using the Data Warehouse.
	 7.	 William H. Inmon, Building the Data Warehouse, 2nd ed. (New York: John Wiley

& Sons, 1996).
	 8.	 Peco, TDWI Data Warehousing Concepts and Principles.
	 9.	 Inmon and Hackathorn, Using the Data Warehouse.
	 10.	 Inmon, Imhoff, and Sousa, Corporate Information Factory.
	 11.	 Peco, TDWI Data Warehousing Concepts and Principles.
	 12.	 Inmon and Hackathorn, Using the Data Warehouse.
	 13.	 Inmon, Imhoff, and Sousa, Corporate Information Factory.
	 14.	 Ralph Kimball, The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing,

Developing, and Deploying Data Warehouses (New York: John Wiley & Sons, 1998).
	 15.	 Ibid.
	 16.	 Louis Agosta, The Essential Guide to Data Warehousing (Upper Saddle River, NJ:

Prentice Hall PTR, 2000).

AU6462.indb 20 2/7/08 9:52:34 AM

21

Chapter 3

Source System Analysis

Introduction
A data warehouse expresses the enterprise through its data. An enterprise can be
any organization capable of funding, owning and operating a data warehouse,
including a corporation, educational institution, department or extremely solvent
individual. A data warehouse expresses an enterprise, much like a mirror expresses
a reflection, by reflecting the subject areas, entities, attributes and processes of that
enterprise by the data structures in the data warehouse and the data which is inte-
grated into those data structures. Applications retrieve data from the enterprise and
load this data into a data warehouse. That expression of the enterprise, therefore,
begins within the enterprise; begins with the data within the enterprise. To express
the enterprise via a data warehouse, a data warehouse designer must understand the
enterprise, its environment, processes, and the data within the enterprise as well as
the data surrounding the enterprise.

Source system analysis (Figure 3.1) is thought by some to be strictly a tool
dedicated to the design of data acquisition and integration applications.1 To the
contrary, source system analysis provides significant insight and understanding of
the enterprise and its data, which is vital to the success of all phases of data ware-
house design and development. A data warehouse cannot express the enterprise
at any level (data model, data acquisition and integration, or business intelligence
reporting) without a thorough and insightful understanding of the enterprise and
its data.

AU6462.indb 21 2/7/08 9:52:34 AM

22  n  Building and Maintaining a Data Warehouse

So
ur

ce
 D

at
a

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts

M
et

ad
at

a
Ap

pl
ic

at
io

n(
s)

D
at

a Q
ua

lit
y

D
at

ab
as

e
M

et
ad

at
a

D
at

ab
as

e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

RD
BM

S

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

O
LA

P

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

M

et
ad

at
a

Re
po

si
to

ry

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

D
at

ab
as

e
D

es
ig

n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts

M
et

ad
at

a
Ap

pl
ic

at
io

n(
s)

D
at

a Q
ua

lit
y

D
at

ab
as

e
M

et
ad

at
a

D
at

ab
as

e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

RD
BM

S

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

O
LA

P

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

M

et
ad

at
a

Re
po

si
to

ry

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

D
at

ab
as

e
D

es
ig

n

Fi
gu

re
 3

.1 

So
ur

ce
 S

ys
te

m
 A

na
ly

si
s.

AU6462.indb 22 2/7/08 9:52:36 AM

Source System Analysis  n  23

Source system analysis is exactly that: an analysis of the enterprise via an analysis
of its data. During source system analysis, a data warehouse designer focuses solely
on the enterprise, with no thought whatsoever of how it will be expressed in a data
warehouse. The Source System Analysis methods, which are discussed in the follow-
ing sections, are intuitively easy to understand and perform. These analysis methods
remove preconceptions about enterprise data that are the result of familiarity with
that data. At the end of Source System Analysis, a data warehouse designer should
understand the agents, entities, and processes of the enterprise, yet be no closer to the
design of a data warehouse.

An early and common mistake in data warehouse design is the use of Source
System Analysis to search for source data within the enterprise. When a data ware-
house designer is confident that he or she possesses sufficient knowledge of the
enterprise to create a data model, which captures and expresses the enterprise,
Source System Analysis is then used to search for data that fits the definition of the
data warehouse. This backward approach results in a data warehouse that expresses
the data warehouse designer’s preconceptions rather than the enterprise’s. Having
put the cart before the horse, the data warehouse designer has designed a square
hole and uses Source System Analysis to search for a square peg to fill it. Invari-
ably, this misuse of Source System Analysis results in an abbreviated and errone-
ous understanding of the enterprise and a misstatement of the enterprise in a data
warehouse,1 and possibly rework that is significant. The discrepancies created by
this backward approach may eventually require the data warehouse team go back
to Source System Analysis to revisit the data within the enterprise.

The source system itself may be an obstacle to Source System Analysis. No
human endeavor ever results in perfection. This truth applies to architecture, medi-
cine, and information systems. The subject matter expert (SME) who is in charge
of, and responsible for, a source system may prefer to simply tell about the source
system, rather than expose the source system to the scrutiny of a Source System
Analysis. There may be a valid reason for this hesitation— or there may not. Either
way, the data warehouse designer performing the Source System Analysis will need
to employ comforting and reassuring social skills, possibly political skills, or some
other tactic. But, the bottom line is the data warehouse designer must be allowed
to query and survey the enterprise data, not just a summary or description of the
enterprise data.2 Without the information provided by a survey of the enterprise
data, the design of a data warehouse cannot continue and cannot be considered
complete.

Source System Analysis examines enterprise data for its informational con-
tent—the meaning of the data and how it captures and expresses that meaning.
This examination is discussed in the following sections: Source System Analysis
Principles and Source System Analysis Methods. The Principles explain what the
data warehouse designer is looking for. The Methods explain how the data ware-
house designer examines the source system.

AU6462.indb 23 2/7/08 9:52:36 AM

24  n  Building and Maintaining a Data Warehouse

Source System Analysis Principles
System of Record
Entity Data
Transaction Data
Snapshot Data

Source System Analysis Methods
Data Profile
Data Flow
Data State
System of Record

Source System Analysis Principles
Source System Analysis principles identify what the data warehouse designer is
looking for when examining enterprise data. These are the questions that guide the
examination of a source system. Enterprise data is observed for its operational con-
tent as well as for its nature and interaction within the enterprise.

System of Record
Frequently, separate business units and applications within an enterprise will main-
tain their own copy of a set of data. A data element central to the core function of
an enterprise may be copied within every business unit. In this maze of copies, the
Source System Analysis is looking for the point of origin,3 the one dataset, applica-
tion, etc., that is recognized by the enterprise as the authoritative expression of that
data element.4

An enterprise may divide a data element among multiple systems of record. This
may happen for operational or political reasons. For example:

The enterprise manufactures replacement automobile parts. The search for an
authoritative expression of those automobile parts yields multiple systems of
record:

Drivetrain parts (domestic)
Drivetrain parts (import)
Chassis parts (domestic)
Chassis parts (import)
Body parts (domestic)
Body parts (import)

The enterprise sells home improvement products through a series of retail
outlets. A search for an authoritative expression of those retail outlets yields
multiple systems of record:

n
−
−
−
−

n
−
−
−
−

n

−
−
−
−
−
−

n

AU6462.indb 24 2/7/08 9:52:36 AM

Source System Analysis  n  25

Retail outlets (West Division)
Retail outlets (East Division)
Retail outlets (recently merged, but not yet integrated)

These examples of multiple Systems of Record should lead the data warehouse
designer to ask two questions: Do the multiple Systems of Record indicate
that the single data element (e.g., product, retail outlet) is actually multiple
data elements? If so, then the single data element (e.g., product, retail outlet)
is actually a bit of language shorthand, which combines separate data ele-
ments to make discussing them easier. Members of the enterprise will use
shorthand language to render their documentation and discussions cleaner
and easier (for those in the enterprise) to understand. This is similar to the
common practice of referring to a dog as a dog. Within the word dog is a
myriad individual species. But, rather than name all the species, we simply
use the word dog.
Do the multiple Systems of Record indicate that a single data element is
fragmented within the enterprise and must be recombined into a complete
and cohesive data element in the data warehouse? If so, then Source System
Analysis has identified an early requirement for the data acquisition and inte-
gration phase of data warehouse design and a risk to the quality of data in the
data warehouse.

Source System Analysis includes a search for those datasets, applications, etc.
that are the original and authoritative expression of the data within the enterprise.
This search will provide insights into enterprise data elements and their point of
origin.

Entity Data

Source System Analysis includes a search for the data that defines, describes, and
qualifies the entities of the enterprise.5 Enterprise entities include the physical and
logical members, agents, facilities, and resources within an enterprise. An excel-
lent way to identify entities within the enterprise is to document all the business
processes of the enterprise using only simple sentences with no pronouns. Using
this method, the nouns (names and proper titles) are most likely the entities of the
enterprise. The difficulty of this method is understanding the business processes of
the enterprise well enough to document them with simple sentences. This method
will yield two classes of entities: physical and logical.

Physical entities can be touched and include machines, buildings, people,
and hardware. These are the people and facilities that are the material mani-

−
−
−

n

n

n

AU6462.indb 25 2/7/08 9:52:36 AM

26  n  Building and Maintaining a Data Warehouse

festation of the enterprise. Physical entities can be uniquely identified (e.g.,
part number, employee number, facility number, etc.). Instances of physical
entities can also be identified (e.g., lot number, vehicle identification number,
serial number, etc.). Physical entities can also be described and qualified (e.g.,
color, region, size, etc.).
Logical entities cannot be touched and include calendar, class, type, and sta-
tus. Although they cannot be touched, logical entities are equally real and
relevant to the enterprise. These are the concepts, constructs, and hierarchies
that organize and enhance the meaning of enterprise events and entities.
Logical entities can be uniquely identified (e.g., regulatory statutes, organiza-
tional hierarchy, etc.); however, instances of logical entities cannot exist and,
therefore, cannot be uniquely identified. Logical entities can be described
and qualified, the same as physical entities.

Without a logical “weekday” entity, all days would be the same day.
Without a logical “geography” entity, all places would be here, and none
there.

We use logical entities on a daily basis with a tangible perception of their reality.
So, it may seem a bit odd to think of a day or job title as a logical construct. But,
they are. While one company defines Sunday as the first day of the week, another
defines Sunday as the last day of the week. While one job title imbues specific
authority, another job title does not. By these logical constructs (e.g., business week
and chain of authority) a company is able to organize itself.

Entities, both physical and logical, can identify themselves. Also, entities can
describe and qualify each other by their association. For example:

Building #10 can identify itself as a unique physical facility as well as identify
the location of employee #AB-132.
Employee #AB-132 can identify himself or herself as a unique person as well
as identify the manager of the Parts Department.
The Parts Department can identify itself as a unique enterprise department as
well as identify the retail distributor of all products within the class “Replace-
ment Parts.”
The class “Replacement Parts” can identify itself … and so on.

Entity data manifests itself in multiple forms. The form may mislead the data
warehouse designer. The function and form of entity data must be considered
together. Later, during data warehouse design, this information will be vital to an
accurate data warehouse design. The permutations of function and form discussed
below are:

Arithmetic Data
Absolute Arithmetic Data

n

−
−

n

n

n

n

n
n

AU6462.indb 26 2/7/08 9:52:37 AM

Source System Analysis  n  27

Relative Arithmetic Data
Numeric Data That Isn’t Arithmetic
Alphanumeric Data

This list of function and form permutations is not exhaustive. It does, how-
ever, demonstrate that you can’t judge a book by its cover and you can’t assume an
entity’s function from its form.

Arithmetic Data

Arithmetic data applies a measurement to an entity. Such measurements include
miles per hour, units of work, length, etc. Arithmetic data is applied to an entity
and, therefore, is not an entity or entity identifier. An arithmetic description of an
entity must be accompanied by a unit of measurement, otherwise, the measurement
has no meaning. The unit of measure identifies the rate of movement (speed), activ-
ity (work), or existence (physical dimensions) identified by the arithmetic data.6

The unit of measurement can be either explicit or implicit. An explicit unit of
measurement is expressed by an accompanying unit of measure data element (e.g.,
liters, dollars, units, etc.). A unit of measurement is implicit when arithmetic data
is accompanied by a unit of measure, which is assumed, implied, or expressed by
alternative means. For example:

Assumed unit of measure
Age (in years)
Distance (in miles)

Implied unit of measure
2 × 4 piece of wood (in inches)
24 × 7 (in hours and days)

Unit of measure by alternative means
The name of a data element is the unit of measure—a field named “Miles”
indicates the unit of measure is Miles.
The meaning of a data element is a formula—miles/hour = a field named
“Miles Per Hour” indicates the unit of measure is miles per hour.

The data type of arithmetic data can be misleading. Enterprise applications may
use large numeric data types to store small numbers. A large data type will allow
large numbers, regardless of its intended use. During Source System Analysis, a
data warehouse designer will look for discrepancies between each data type and
its use. Eventually, when least expected, an enterprise application will write a large
number into a large numeric data type. If the data warehouse is not aware of, and
prepared for, this circumstance, the large number will become a problem for a data
warehouse.

n
n
n

n
−
−

n
−
−

n
−

−

AU6462.indb 27 2/7/08 9:52:37 AM

28  n  Building and Maintaining a Data Warehouse

Absolute Arithmetic Data

Absolute arithmetic measurements are arithmetic measurements that are complete
within themselves. They express completely an arithmetic measurement within a
transaction event. For example:

The amount of currency consumed in a transaction.
The quantity of products purchased in a transaction.

In these cases, the amount and quantity express completely the currency and quan-
tity in a transaction and, therefore, are absolute.

Relative Arithmetic Data

Relative arithmetic measurements are arithmetic measurements that are incom-
plete within themselves. They are incremental and require a context arithmetic
value. Without a context, Relative Arithmetic Data has no meaning. For example:

Balance on Hand was increased by two units. This does not tell the new
BoH.
Federal Reserve increased prime interest rates by 0.25 percent. This does not
tell the new prime interest rate.

In these cases, the amount and quantity are relative to a previous arithmetic value,
which is the context. Given that context, and only in that context, Relative Arith-
metic Data has meaning.

Numeric Data That Isn’t Arithmetic

Data written in a numeric data type may not necessarily apply a measurement to an
enterprise entity. Such cases can include codes (e.g., zip code), flags (e.g., 1 = on),
or unique identifiers (e.g., version number, sequence number, etc.). Nonarithmetic
data does not require an accompanying unit of measure (explicit or implicit). In the
context of nonarithmetic data, the inclusion of a unit of measure would be non-
sense (e.g., part number 321145 liters).

Nonarithmetic numeric data usually occurs when the enterprise needs to
uniquely identify multiple instances of an entity. Common examples include build-
ing number, part number, and employee number. The numbers used to identify
such enterprise entities do not have arithmetic properties.

This information will be useful in data warehouse design. If these numbers are
brought into the data warehouse as numeric data, data warehouse customers will
be tempted to perform arithmetic operations on them. Also, if a source system uses

n
n

n

n

AU6462.indb 28 2/7/08 9:52:37 AM

Source System Analysis  n  29

a large numeric data value (e.g., a 32-digit unique identifier), the data warehouse
Relational Database Management System (RDBMS) will consume unnecessary
space if it tries to store this data value as a 32-digit number. Since the 32-digit
unique identifier has no arithmetic properties, the data warehouse RDBMS can
conserve its resources by storing the data value as a 32-character text value.

Alphanumeric Data

Data written as alphanumeric data type provides names, codes, and text descriptions,
which identify, describe, and qualify enterprise entities. Alphanumeric data has no
arithmetic or measurement properties. The meaning of alphanumeric data corre-
sponds to the meaning of the text inside the data element.

An enterprise application may choose to write only numbers into an alphanu-
meric data element. During Source System Analysis, a data warehouse designer
will look for discrepancies between each data type and its use. Eventually, when
least expected, an enterprise application will write an alphanumeric character into
an alphanumeric data type, which had previously stored only numbers. If the data
warehouse trusts the enterprise to write only numbers into an alphanumeric data
type, without preparing for the possibility of alphanumeric data, the alphanumeric
data will become a problem for that data warehouse.

Granularity
The grain of data is determined by its level of detail,7 hierarchical depth,8 or mea-
surement precision.

The level of detail refers to the specificity and uniqueness by which data iden-
tifies an enterprise entity, or instance of an enterprise entity. Data that identi-
fies the exact person involved in a transaction is more granular than data that
identifies the job class of that person.
Hierarchical depth refers specificity and uniqueness within the context of an
enterprise organizational structure. The top of the hierarchy is least granular.
The bottom of the hierarchy is most granular and closest to uniquely identify-
ing a specific instance of an enterprise entity.
A measurement that uses a small unit of measure (e.g., millimeter) is more
precise and granular than a measurement that uses a larger unit of measure
(e.g., meter).

A data warehouse designer must be aware of the grain of all source data ele-
ments. Grain is relevant to the design of a data warehouse because separate business
units may use the same entity at different grains. When a data warehouse juxta-
poses entities from across the enterprise, the least granular entity or measurement

n

n

n

AU6462.indb 29 2/7/08 9:52:37 AM

30  n  Building and Maintaining a Data Warehouse

is the grain of that juxtaposition. Data warehouse customers, from those business
units as well as others, will have an expectation of the grain of data with which they
work. The grain of data in a data warehouse, therefore, must be a designed decision,
which can be understood by the enterprise.

Latency
Latency refers to the time gap between an enterprise event (e.g., a new entity is
created, an existing entity changes state, a transaction occurs, etc.) and its expres-
sion in enterprise data. Latency is built into the business and operating cycles of an
enterprise. For example:

Transactions occur throughout the day, but are uploaded once each night.
Payroll updates are accumulated throughout the week and applied prior to
generating payroll checks.
Purchase orders are placed online in a real-time user interface.

Latency determines the earliest moment data will be available to the data ware-
house. Data cannot appear in a data warehouse until it first appears in the enterprise.
The latency built into enterprise data is an important consideration, as it directly affects
the earliest moment data will be available in a data warehouse.

Transaction Data
Transaction data is also known as Event data. Transaction and Event data identify
the moment when an enterprise performs its primary functions. Again, a good
way to identify Transactions or Events within the enterprise is to document all the
business processes of the enterprise, using only simple sentences with no pronouns.
Using this method, the verbs are most likely the transactions of the enterprise. The
difficulty of this method is understanding the business processes of the enterprise
well enough to document them with simple sentences. For example:

Sales: The moment when a retail enterprise sells something.
Manufacturing: The moment when an assembly plant builds something.
Service: The moment when a consulting firm provides a service.

Transaction and Event data also identify the moment when an enterprise
performs those secondary functions, which enable it to perform its primary
functions.

Sales
Primary: The moment when a retail enterprise sells something.

n
n

n

n
n
n

n
−

AU6462.indb 30 2/7/08 9:52:37 AM

Source System Analysis  n  31

Secondary: The moment when product is ordered.
Secondary: The moment when product is delivered.
Secondary: The moment when product is invoiced.
Secondary: The moment when the invoice is paid.
Secondary: The moment when product is received.
Secondary: The moment when product is placed on the shelf.

Manufacturing
Primary: The moment when an assembly plant builds something.

Secondary: The moment when an order is received.
Secondary: The moment when parts are ordered.
Secondary: The moment when parts are delivered.
Secondary: The moment when parts are invoiced.
Secondary: The moment when the invoice is paid.
Secondary: The moment when product is assembled.
Secondary: The moment when product is inspected by Quality
Control.
Secondary: The moment when product is certified by Quality
Control.

Service
Primary: The moment when a consulting firm provides a service.

Secondary: The moment when a customer is identified.
Secondary: The moment when a customer requests a service.
Secondary: The moment when a consultant is identified.
Secondary: The moment when a consultant signs a contract.
Secondary: The moment when a customer interviews a consultant.
Secondary: The moment when a customer accepts a consultant.
Secondary: The moment when a customer signs a contract.
Secondary: The moment when a consultant begins work for a
customer.
Secondary: The moment when a consultant ends work for a
customer.

Typically, Transaction data includes the following elements:

Who: The entities that are active during the enterprise event. In an enterprise
event, the active entities may be people, corporations, governments, or gov-
ernment agencies. Typically, active entities have the free will (unless acting by
proxy) to participate or not participate in the event.
Action: The function (primary or secondary) that was performed. The Action
is the activity (e.g., buy, sell, deliver, etc.) that was performed by the active
entities in the event.
What: The entities that are passive during the enterprise event. In an enter-
prise event, the passive entities may be product, property, or logical entities.

n
n
n
n
n
n

n
−

n
n
n
n
n
n
n

n

n
−

n
n
n
n
n
n
n
n

n

n

n

n

AU6462.indb 31 2/7/08 9:52:38 AM

32  n  Building and Maintaining a Data Warehouse

Passive entities have no free will and cannot choose to participate or not
participate in the event.
Where: The geographic place of the Action.
When: The temporal time of the Action.
Why: The meaning or motivation for the event. Of all the elements of Trans-
action data, Why is most optional. Enterprise entities may not be required
to reveal a reason or motivation. Sometimes a reason is included for manage-
ment oversight. In such cases, the reason is probably a fabrication.

Snapshot Data

Snapshot data expresses the cumulative effect of a series of transactions or events
over a range of time. For example:

Web site hits per hour
Ball bearings assembled per hour

Snapshot data may be used when the individual events (e.g., Web site hits per
hour) are simultaneously too insignificant individually and numerous collectively
to justify the capture and storage of each individual event. If the operational system
is not able to uniquely identify each individual instance of a Transaction or Event, a
data warehouse will also be unable to uniquely identify each individual instance of
a Transaction or Event. Snapshot data may also be used when the enterprise specifi-
cally requires cumulative data (e.g., ball bearings assembled per hour).

Snapshot data is less granular than individual Transaction data. During Source
System Analysis, no judgments should be made regarding which data (Snapshot or
Transaction) will be included in a data warehouse. Instead, Source System Analysis
should only document the presence of either data (Snapshot or Transaction). The
decision to include either or both will be made during data warehouse design, not
Source System Analysis.

Source System Analysis Methods
The methods and activities of Source System Analysis are a search to understand
how the enterprise and its data interact. System documentation provides informa-
tion about how an enterprise system is intended and expected to behave. This is
a good start. But, it is only a start. Source System Analysis should document this
information. The intended and expected behavior and interaction of enterprise data
is a good baseline from which to start. Source System Analysis, however, should
also document how an enterprise system misbehaves, creating unexpected data and
results.9

n
n
n

n
n

AU6462.indb 32 2/7/08 9:52:38 AM

Source System Analysis  n  33

Source System Analysis is a data warehouse designer’s opportunity to find
those pockets of the enterprise system that are fraught with anomalies. The reason
is simple. Most members of an enterprise do not know about the anomalies that
already exist in enterprise applications and data. If anomalous enterprise data is
integrated into a data warehouse, data warehouse customers will perceive the data
warehouse to be the source and cause of the anomalous data. They never saw the
anomalous data in their enterprise data, but, now they see the anomalous data in a
data warehouse. The data warehouse, therefore, must be the cause of the anomalous
data and should not be trusted or used. Source System Analysis is, therefore, the
first opportunity to protect the quality of the data in a data warehouse, which also
protects the data warehouse.

Data Profile

A Data Profile provides multiple cross sections of enterprise data. These cross sec-
tions fall into four basic groups: Data Stores, Data Elements, Data Entities, and
Data Model. Each group is intended to provide a cross section description of enter-
prise data in terms of where data is stored (inventory of Data Stores), what is stored
in the data (inventory of Data Elements), how the data is grouped (inventory of
Data Entities), and how the data elements relate to each other (Data Model).

Inventory of Data Stores: This is a list of the physical hardware on which
the enterprise places its applications and data. This will provide information
about the availability, nature, interface, and security requirements of enter-
prise data.

Servers: The physical platforms that do the work of the enterprise. The
inventory should indicate the physical location of servers, operating sys-
tems, applications, and interface requirements.
Databases: The physical storage of enterprise data. The inventory should
include the operating system, database system, and version, and a list of
physical databases, tables, views, macros, etc. For each data structure,
the inventory of databases should provide the Data Definition Language
(DDL), including constraints and relationships.
Directories: The physical placement of data in directories. The inventory
should include a list of network locations, directories and subdirectories,
and the files they contain.
Files: The physical placement of data in datasets. The inventory should
include a list of files, including file name, path, and layout.
Physical and logical partitions: The physical work of the enterprise is
divided among various servers. Sometimes this division of work is physi-
cal and sometimes the division is logical. The inventory should indicate
the physical location of the work of the enterprise.

n

−

−

−

−

−

AU6462.indb 33 2/7/08 9:52:38 AM

34  n  Building and Maintaining a Data Warehouse

Caveat: Any published discussion of the physical manifestations of hard-
ware and software is obsolete before it hits the shelf because hardware
and software technology changes constantly. So, if at the reading of this
book, the physical manifestations in this chapter (e.g., servers, databases,
files, etc.) are no longer in common use, then please apply the goal of an
Inventory of Data Stores (identify the physical objects and geographic
locations on which source system data resides) to the physical hardware
or software in use.

Inventory of Data Elements
Name: The name by which applications reference a data element. Members
of the enterprise may have shorthand names for a data element (e.g., the
Item file, the list of Items, etc.). Source System Analysis should reconcile all
the shorthand names for each physical data element.
Format: The layout or DDL for each data element. A single data element
may have multiple layouts (e.g., COBOL Redefines, Structured Query
Language (SQL) Substring, etc.). The layout should indicate all of the
layouts for each data element.
Domain of values: When a data element has a known set of values (e.g.,
Yes or No, Male or Female, provinces of Canada, etc.), the inventory
should provide a list of those values.10

Range of values: When a data element has an infinite and bounded set
of values (e.g., Product cost, Assembly throughput, etc.), the inventory
should provide the upper and lower boundary values.
Frequency of distinct values: A list of distinct values and the number
of occurrences of each. In SQL, Select Field_1, count(*) as Freq from
Table 1 group by Field_1. The results of a list of distinct values and their
frequency are often surprising to both the data warehouse designer and
the SME. This method has the potential to reveal unexpected data and
data anomalies.

Most frequent distinct values: The distinct values that occur most
often. These are typically the expected and accepted values. In SQL,
Select Field_1, count(*) as Freq from Table 1 Group by Field_1 Order
by Freq Desc.
Least frequent distinct values: The distinct values that occur least
often. These are typically the unexpected and anomalous values. In
SQL, Select Field_1, count(*) as Freq from Table 1 Group by Field_1
Order by Freq Asc.

Histogram of enterprise activity: The data in enterprise systems
chronicles the activity (e.g., manufacturing, sales, contracts, etc.)
of the enterprise. This activity occurred through time, across
geographic locations, and within hierarchical levels of the enter-
prise. A histogram of this activity will reveal trends and patterns
within the enterprise. Time, geography, and hierarchy are not

−

n
−

−

−

−

−

n

n

−

AU6462.indb 34 2/7/08 9:52:38 AM

Source System Analysis  n  35

the only possible histograms, just the most universally helpful.
Another histogram may prove to be equally or more revealing
and helpful.

Activity by time (e.g., years, months, days): A histogram of enterprise
activity by calendar years, months, and days will reveal the cardinal-
ity of enterprise activity as represented in time by the data of the
enterprise. Invariably, some data will predate the enterprise because
some operational application will not prevent someone from input-
ting a date value in the 1800s, or some data will show future activ-
ity because another operational application will not prevent someone
from inputting a date in the 2900s. A histogram of enterprise activity
in time will highlight such aberrations in enterprise data.
Activity by geography (e.g., region, large municipality, small munici-
pality): A histogram of enterprise activity by physical geographic loca-
tions will reveal the cardinality of enterprise activity as represented
geographically by the data of the enterprise. Invariably, some data
will show states, provinces, and countries that do not exist because
some operational application does not validate input geographic val-
ues, and the multiple permutations and abbreviations of states, prov-
inces, and countries are nearly infinite and can be found somewhere
in enterprise data. A histogram of enterprise activity by physical geo-
graphic locations will highlight such aberrations in enterprise data.
Activity by hierarchy (e.g., corporation, division, department, subde-
partment): A histogram of enterprise activity by the hierarchical level
of the enterprise entities (e.g., people, buildings, products) involved
in the activity will reveal the cardinality of enterprise activity as rep-
resented hierarchically by the data of the enterprise. Invariably, some
data will reference unknown or nonsense hierarchies or no hierarchy
at all because some operational application does not validate input
hierarchical values. Typically, corporate reports based on key perfor-
mance indicators (KPIs) will identify to management hierarchical
data that is incorrect. Underneath the radar of KPI reports, however,
often lurks another set of data with incorrect hierarchical values. A
histogram of enterprise activity by hierarchy will highlight such aber-
rations in enterprise data.

Inventory of Data Entities: Enterprise entities (e.g., people, building, prop-
erty) are recorded in enterprise systems as data. The inventory of data elements
will identify the methods by which enterprise data identifies each entity and
records its attributes.

Core data element: An individual and unique entity as defined in enter-
prise data. The inventory should include the unique identifier for a Core
entity and an explanation of what makes that identifier unique.

n

n

n

n

−

AU6462.indb 35 2/7/08 9:52:38 AM

36  n  Building and Maintaining a Data Warehouse

Combined data elements that define a Logical entity: A logical entity may
be an intersection of multiple Core data elements. For example:

Project Team: Multiple people from disparate departments brought
together to achieve a single goal. The Core entities are the individual
people.
Product Offering: Multiple individual products merchandised as one
logical unit. The Core entities are the individual products.
Facility Groups: Multiple individual facilities from various geographic
regions, which are grouped together based on common shared demo-
graphic criteria. The Core entities are the individual facilities.

The inventory should include the unique identifier for a Logical entity, an
explanation of what makes that identifier unique, and how Core entities are
associated to a Logical entity.

Descriptive data elements: The attributes of a Core or Logical data element
may be stored in an associated data element. The inventory should include
descriptive data and its association with a data element.
Associative data elements: The associations between multiple Core or
Logical data elements may be stored in an associative data element. The
inventory should indicate the associative data element(s) and the method
by which it associates data elements to each other.

Data Model of the Source System: Enterprise system documentation will
probably include data models. These should be included in the data profile
in conjunction with the inventories of data entities and data elements. If,
however, an enterprise system does not have a data model (Logical, Physical,
or otherwise), the data warehouse designer should create one. The Logical
and Physical data models will prove to be beyond value through the design
of a data warehouse and data acquisition applications.11 If a data warehouse
designer does not have sufficient knowledge of enterprise systems to model
the enterprise data, then the Source System Analysis has not delivered infor-
mation sufficient to allow the design of a data warehouse. The Source Sys-
tem Data Model should, at a minimum, include a Logical and Physical data
model.

Logical: A Logical data model typically indicates the business under-
standing and meaning of the data within the enterprise. The Logical data
model will indicate the relationships by which entities are grouped and
associated.
Physical: A Physical data model indicates the data structures within which
enterprise data is physically stored. The Physical data model should indi-
cate the Primary key/Foreign key relationships between data structures.

The purpose of a Data Profile is to provide a cross section of enterprise data.
Typically, an enterprise will have too much data for every row to be reviewed and
understood within the context of the enterprise. A sufficient number of “slices” of

−

n

n

n

n

−

−

n

−

−

AU6462.indb 36 2/7/08 9:52:39 AM

Source System Analysis  n  37

enterprise data will provide more insight into the enterprise and its data than could
be garnered by a review of every row or record in the enterprise.

Data Flow Diagram
The Data Flow Diagram method (Figure 3.2) that is used to design a source sys-
tem is also used during Source System Analysis. After the data profile identifies
enterprise data elements, the Data Flow Diagram identifies where the data comes
from, goes to, and by what transport mechanism it moves. The Data Flow Diagram
should include all the names and descriptions of the physical environment provided
by the data profile. In addition to the names and descriptions of the physical envi-
ronment, a Data Flow Diagram will add the dimensions of time, sequence, and
movement to the Source System Analysis.

In a Data Flow Diagram, a data warehouse designer reverse-engineers the move-
ment of data within the enterprise. This is the opportunity to discover the lifespan
and location of data as it is used by enterprise systems. For example:

A file is deleted by the operational application that reads it.
Data is appended to previously existing data, permanently blending the two
sets of data together.
Data only occurs in the form of asynchronous messages.
A file is only available on the other side of a file transfer protocol (FTP)
firewall.

A Data Flow Diagram is intended to discover these and other aspects of the
physical movement of enterprise data. Typically, the diagram requires many pages
of diagrams to document the flow of data in an enterprise. The movement of a data
element should ideally be captured in a single page of a Data Flow Diagram.

Data State Diagram
The Data State Diagram (Figure 3.3) is used to capture the various business mean-
ings of a data element as it flows through the Data Flow Diagram. After the Data
Flow Diagram identifies where the data comes from, goes to, and by what transport
mechanism the data moves, the Data State Diagram identifies the business mean-
ing, the relevance to the enterprise of a data element at each point in its journey
through the enterprise.

A Data State Diagram is built from the Data Flow Diagram. In addition to the
names and descriptions of the physical environment, a Data State Diagram indi-
cates the relevance of a data element to the enterprise (Table 3.1).

A Data State Diagram also includes any physical indications of each state
(Table 3.2).

n
n

n
n

AU6462.indb 37 2/7/08 9:52:39 AM

38  n  Building and Maintaining a Data Warehouse

As data flows through the enterprise, its meaning and relevance change.
Throughout the life of a data element, what are all the business meanings (i.e.,
states) of that data element? When and where do these business meanings occur?
A Data State Diagram is the opportunity to discover the answers to these ques-
tions. At the conclusion of the Data Profile, Data Flow Diagram, and Data State
Diagram, a data warehouse designer is prepared to identify the System of Record
for each enterprise entity.

Employment
Application Application

Review

Approved?

Management
Review

Compliance
Review

Approved?

Application
Decline

Employee
Setup

No

Employment
Application

Payroll
Setup

Yes

Compliance
Report

Employee
Packet

Yes No

Figure 3.2  Data Flow Diagram.

AU6462.indb 38 2/7/08 9:52:39 AM

Source System Analysis  n  39

System of Record

The identification of the System of Record is the reason Source System Analysis is
directly associated with the data acquisition and integration applications, otherwise
known as ETL (extract, transfer, and load) applications. ETL applications retrieve
data from the enterprise. An ETL design must answer the question: “Where do I
get the enterprise data from that will go into the data warehouse?” The answer to
this question is the System of Record. These Profiles, Data Flow Diagrams, and

Employment
Application

Application
Review

Approved?

Management
Review

Compliance
Review

Approved?

Application
Decline

Employee
Setup

No

Employment
Application

Payroll
Setup

Yes

Compliance
Report

Employee
Packet

Received

Declined

Declined

Preliminary
Approval

Manager
Approval

Hired

Yes No

Figure 3.3  Data State Diagram.

AU6462.indb 39 2/7/08 9:52:40 AM

40  n  Building and Maintaining a Data Warehouse

Data State Diagrams allow a data warehouse designer to discover the authoritative
point of origin for each enterprise entity at any given state. That authoritative point
of origin is the System of Record.

The Data Profile, Data Flow Diagram, and Data State Diagram are intended
to allow significant discovery of the enterprise and its data. This information is
significant for the upcoming data warehouse design activities. The Data Model
of the data warehouse will derive much of its design from the Data Profile, Data
Flow Diagram, and Data State Diagram. The Business Intelligence Reporting will
use the information from the Data Profile, Data Flow Diagram, and Data State
Diagram to communicate its expression of the enterprise, so that the members of
the enterprise can understand it. Data Quality applications will rely heavily on the
expectations and anomalies discovered in the Data Profile, Data Flow Diagram,
and Data State Diagram. Metadata will be based directly on these three entities.

Business Rules
Finally, the Source System Analysis is the opportunity to document the business
rules that govern data in the source system. The Data Profile, Data Flow Diagram,
Data State Diagram, and System of Record provide the best opportunity to identify
the business rules of the source system. These business rules come in three basic
varieties:

Table 3.1  Data State
Data Element Data State

Product Proposed

Manufacturing Design Finalized

Invoice Paid in Full

 Table 3.2  Physical Indications of Data State
Data Element Data State Physical Indications

Product Proposed Product approvals are empty

Manufacturing Design Finalized Manufacturing design documents
were moved to the directory named
“Final”

Invoice Paid in Full The box marked “Paid in Full” is
checked (i.e., set to yes/on)

AU6462.indb 40 2/7/08 9:52:40 AM

Source System Analysis  n  41

Intrarecord Business Rules: Column A + Column B = Column C. The busi-
ness rule exists entirely within each individual record. All the data and infor-
mation necessary to validate the business rule is present in a single record or
row. An Intrarecord business rule can only be validated one record at a time
because that business rule applies to only one record at a time.
Intradataset Business Rules: Row 1. Column A + Row 2. Column A = Row
3. Column B. The business rule spans across records within a set of data, but
still remains within the set of data. All the data and information necessary
to validate the business rule is present in a single set of data. An Intradataset
business rule can only be validated one dataset at a time because that business
rule applies to only one dataset at a time.
Cross Dataset Business Rules: File 1. Column A = Table 2. Column B. The
business rule spans across sets of data within a source system. The data, there-
fore, may not be available in the source system. The data may be late arriving,
deleted, or renamed. Cross Dataset business rules, therefore, require more
effort to define and validate.

Business rules will be used to create the Data Quality validations of inbound
data from the source system. So, any data elements from the source system that
should maintain a consistent behavior, and can affect the data warehouse, should
be included in the list of Business Rules.

Closing Remarks
Thus far, this discussion of Source System Analysis has not addressed the require-
ments of the data warehouse customer or the preferences of the enterprise. Typi-
cally, budget and time constraints restrict the Source System Analysis activities. If,
however, a data warehouse designer has been so fortunate as to be allowed to per-
form most, if not all, of the Source System Analysis activities, that data warehouse
designer has the enterprise knowledge and context necessary to effectively discuss
customer requirements and preferences.

Rarely does an enterprise create a data warehouse as its initial decision support.
Typically, decision support systems evolve and mature along with the enterprise.
Eventually, the enterprise is simultaneously ready to invest in, and benefit from, a
data warehouse. By that time, an enterprise already has a decision support system
of some sort, official or unofficial. Source System Analysis provides the opportunity
to locate and identify previous decision support systems. Knowledge of previous
decision support systems is important. Individual members of the enterprise will
compare the data from a data warehouse to data from a previous decision support
system. Any differences between the data from a previous decision support system
and the data from a data warehouse will be perceived as errors and flaws in the data
warehouse. At the moment a data warehouse is released to the enterprise, the data

n

n

n

AU6462.indb 41 2/7/08 9:52:40 AM

42  n  Building and Maintaining a Data Warehouse

warehouse team must be prepared to identify and explain all differences between
the data warehouse and any previous decision support system. Without a statement
of the differences, members of the enterprise will probably perceive the data ware-
house to be incorrect, but, with a statement of the differences and explanations,
members of the enterprise will probably perceive the differences to be intentional
by the design of the data warehouse, and probably accept those differences and the
data warehouse.

References
	 1.	 Louis Agosta, The Essential Guide to Data Warehousing (Upper Saddle River, NJ:

Prentice Hall PTR, 2000).
	 2.	 Michael Scofield, Understanding and Reconciling Source Data for ETL and Data Ware-

housing Design, TDWI World Conference (The Data Warehouse Institute, Renton,
WA, 2002).

	 3.	 Ralph Kimball and Joe Caserta, The Data Warehouse Etl Toolkit: Practical Techniques
for Extracting, Cleaning, Conforming, and Delivering Data (Indianapolis, IN: John
Wiley & Sons, 2004).

	 4.	 William H. Inmon, Claudia Imhoff, and Ryan Sousa, Corporate Information Factory
(New York: John Wiley & Sons, 1998).

	 5.	 Agosta, The Essential Guide to Data Warehousing.
	 6.	 William H. Inmon, R. H. Terdeman, and Claudia Imhoff, Exploration Warehousing:

Turning Business Information into Business Opportunity (New York: John Wiley & Sons,
2000).

	 7.	 William H. Inmon, Building the Data Warehouse, 2nd ed. (New York: John Wiley
& Sons, 1996).

	 8.	 Les Barbusinski, Chuck Kelley, and Joe Oates, What does granularity mean in the
context of a data warehouse and what are the various levels of granularity? DM
Review. Online, June 25, 2002, www.dmreview.com/news/5460-1.html

	 9.	 Scofield, Understanding and Reconciling Source Data for ETL and Data Warehousing
Design.

	 10.	 Ibid.
	 11.	 TDWI Data Acquisition: Techniques for Extracting, Transforming and Loading Data,

(The Data Warehouse Institute, Renton, WA, 2001).

AU6462.indb 42 2/7/08 9:52:41 AM

43

Chapter 4

Relational Database
Management
System (RDBMS)

Introduction
Few things in life are certain—death and taxes are two of them. Another certainty
is that a data warehouse has to be stored on a Relational Database Management
System (RDBMS)(Figure 4.1). The reason is very simple. A RDBMS allows indi-
vidual data elements to be combined in an almost infinite set of permutations.1
Ad hoc reporting, a key advantage of a data warehouse can only be performed by
a platform that accommodates an almost infinite set of data permutations, such
as a RDBMS. But, we need to go back to the 1970s to understand the value and
versatility of the RDBMS.

Relational Set Theory
The patent for the ENIAC (electronic numerical integrator and computer) was filed
on June 26, 1947.2 Since then the volume of data stored and processed on computing
platforms has continued to grow. From 1947 onward data was stored in a flat format.
Records could not be joined to each other. So, records had to be complete within

AU6462.indb 43 2/7/08 9:52:41 AM

44  n  Building and Maintaining a Data Warehouse

So
ur

ce
 D

at
a

Op
era

tio
na

l
Ap

pli
ca

tio
n

Op
era

tio
na

l
Ap

pli
ca

tio
n

Op
era

tio
na

l
Ap

pli
ca

tio
n

Da
ta

Qu
ali

ty
M

ea
su

rem
en

ts
M

eta
da

ta
Ap

pli
ca

tio
n(

s)

Da
ta

Qu
ali

ty
Da

tab
as

e
M

eta
da

ta
Da

tab
as

e

RD
BM

S

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rts

In
ter

ac
tiv

e
Re

po
rts OL

AP

Da
ta

 Q
ua

lit
y

Re
po

sit
or

y
M

et
ad

ata

Re
po

sit
or

y

EL
T

ET
L

Da
ta

 A
cq

ui
sit

io
n

an
d I

nt
eg

ra
tio

n

S o
ur

ce
 D

at
a

Op
era

tio
na

l
Ap

p li
ca

tio
n

Op
era

tio
na

l
Ap

p li
ca

tio
n

O p
era

tio
na

l
A p

pl i
ca

tio
n

D a
ta

Qu
ali

ty
M

ea
su

re m
e n

ts
M

eta
da

ta
Ap

p li
ca

tio
n(

s)

D a
ta

Qu
al i

ty
Da

tab
as

e
M

eta
d a

ta
Da

tab
as

e

B I
 R

ep
or

tin
g

P r
ed

e fi
ne

d
R e

p o
rts

I n
ter

ac
tiv

e
R e

p o
rts O L

A P

D a
ta

 Q
ua

lit
y

R e
po

si t
or

y
M

eta
da

ta
R e

po
si t

or
y

EL
T

ET
L

D a
ta

 A
cq

ui
sit

io
n

an
d I

nt
eg

ra
tio

n

Fi
gu

re
 4

.1 

R
el

at
io

na
l D

at
ab

as
e

M
an

ag
em

en
t

Sy
st

em
.

AU6462.indb 44 2/7/08 9:52:42 AM

Relational Database Management System (RDBMS)  n  45

themselves. This flat format architecture resulted in significant data redundancy, as
seen in Figure 4.2. For example, every record had to include an item description to
provide a text definition of the item number.

Hierarchical databases significantly reduced data redundancy by isolating each
data element in its own file. The complete statement of purchase activity, as shown
in Figure 4.2, would be reassembled by reading the data from a parent file and then
reading related data from a child file (Figure 4.3). The data from each “read” would
be stored in internal memory and processed by a procedural computer program.
The reduced data redundancy also reduced the data volume. The introduction of
Read functions, by which a complete set of data can be assembled, rendered the
data accessible only by way of a procedural application (e.g., COBOL). The result
was reduced redundancy, reduced volume, and reduced accessibility.

In June 1970, Dr. E. F. Codd proposed a solution to all three problems (redun-
dancy, volume, and accessibility) when he published his groundbreaking article
“A Relational Model of Data for Large Shared Data Banks.”3 Dr. Codd’s article

Sue Smith Purchase March 4, 2007 1234-ab Computer Keyboard
Sue Smith Purchase March 4, 2007 2345-cd Backup Tape
John Jones Purchase March 5, 2007 1234-ab Computer Keyboard
John Jones Purchase March 6, 2007 2345-cd Backup Tape
John Jones Purchase March 7, 2007 2345-cd Backup Tape

Name Date Item Number Item DescriptionActivity

Figure 4.2

Sue Smith Purchase March 4, 2007 1234-ab
Sue Smith Purchase March 4, 2007 2345-cd
John Jones Purchase March 5, 2007 1234-ab
John Jones Purchase March 6, 2007 2345-cd
John Jones Purchase March 7, 2007 2345-cd

Sue Smith 123 Elm Lane Oakland CA
John Jones #4 Terrace Dr. Seattle WA

Read

Read

Read

Read
Read

Read

Read

Read Read

Read

Name Activity Date Item Number

Name Address City State

Item Number
1234-ab Computer Keyboard
2345-cd Backup Tape

Item Description

Figure 4.3  Hierarchical Database Architecture.

AU6462.indb 45 2/7/08 9:52:43 AM

46  n  Building and Maintaining a Data Warehouse

introduced relations and normalization, which are the basis of all RDBMSs. Rela-
tions and normalized data rendered large volumes of data accessible by the use of
Structured Query Language (SQL). By 1995, Ralph Kimball had documented and
published the direct connection between large volumes of normalized data in a
relational database and the almost infinite permutations of data elements, which
make the ad hoc reporting of a data warehouse possible.4 A data warehouse, there-
fore, must be stored on a RDBMS.

RDBMS Product Offerings
Relational databases offer a wide selection of features and functions. Primarily,
these features and functions include some permutation of data volume, through-
put, and price (Figure 4.4). Data volume and throughput are inversely related. As
data volumes increase, a RDBMS requires more time to process the additional data.
Throughput is directly related to price. The processing capacity required to increase
throughput also increases costs. Data volume is also directly related to price. The
data storage required to increase data volume also increases the costs.

Data volume and throughput are the primary features by which to compare
RDBMS product offerings. RDBMS products will typically fit one of the following
permutations of features:

Data Volume
�roughput

Price Price

Figure 4.4  RDBMS primary features.

AU6462.indb 46 2/7/08 9:52:44 AM

Relational Database Management System (RDBMS)  n  47

High Disk Capacity
Large number of CPUs

Result:
Able to store and process large data volumes
Able to quickly perform functions and operations

Moderate number of CPUs
Result:

Able to store and process large data volumes
Able to perform functions and operations with moderate speed

Moderate Disk Capacity
Large number of CPUs

Result:
Able to store and process moderate data volumes
Able to quickly perform functions and operations

Moderate number of CPUs
Result:

Able to store and process moderate data volumes
Able to perform functions and operations with moderate speed

The decision to purchase a RDBMS should include consideration of expected
data volume and throughput. By matching expected data volume and throughput
against the accepted price, an enterprise can select the RDBMS that best meets its
data warehousing needs, budget, goals, and plans.

This activity of matching volume and throughput to disk capacity and CPUs
(central processing units) is a bit tricky. RDBMS vendors need sales revenue to
keep their businesses afloat. They will represent the minimum cost for the mini-
mum hardware (i.e., disks and CPUs) necessary to achieve the storage capacity
and throughput required by the customer. Then the customer realizes they did
indeed purchase the minimum hardware, which was within the budget, and which,
coincidentally, achieves minimum performance. That customer soon has another
decision to make—scrap the minimum hardware already purchased and start over
with another RDBMS, or purchase the incremental hardware necessary to achieve
the desired performance. The money for the previously purchased hardware has
already been invested and cannot be considered in any future costs. So, invari-
ably, the least cost option is the purchase of the incremental hardware necessary to
achieve the desired performance. Therefore, when matching the hardware required
to achieve the desired performance, include all possible extenuating circumstances.
For example:

Many customers simultaneously contending for resources on the RDBMS.

n

−
n

−
−

−
n

−
−

n

−
n

−
−

−
n

−
−

n

AU6462.indb 47 2/7/08 9:52:44 AM

48  n  Building and Maintaining a Data Warehouse

Load jobs loading tables A, B, and C while many customers are using all the
other tables.
Backup jobs backing up tables A, B, and C while many customers are using
all the other tables.
Applications querying large volumes of data on the RDBMS.

If these answers are not available, then an alternative question is: At what den-
sity of processes, operations, and data volume will the RDBMS become pegged at
100 percent capacity? In other words, if the matching of requirements to hardware
cannot be achieved by starting from maximum processes, maximum operations,
and maximum data volumes, which lead to RDBMS capacity, then go the other
way, from maximum RDBMS capacity to the processes, operations, and data vol-
umes, which achieved that maximum RDBMS capacity. If either of these questions
can be answered, the RDBMS customer will most likely have the information nec-
essary to make the right selection the first time and not require a second purchase.

RDBMS product offerings often include other features and functions, such as:

Security: Protect the data from unauthorized access.
Reliability: Redundant array of independent disks (RAID)5 reduce the
downtime of the RDBMS and reduce the loss of data.
OLAP: Online analytical process.
Procedural Language: Allow the creation and use of native computer
programs.
Graphical User Interface (GUI): Present a user-friendly interface to the
RDBMS.

Features such as these are relevant in varying degrees to the success of a data
warehouse. All of these features, however, are secondary to the primary features—
data volume and throughput. A RDBMS vendor proposing a product offering
that is weak in data volume or throughput will try to sell a RDBMS based on
secondary features.

The decision to purchase a RDBMS is an investment decision. The enterprise
should expect a Return On Investment (ROI) from the creation of a data ware-
house. The best case scenario, therefore, is to purchase the data volume, throughput
capacity, and other RDBMS features key to the success of the data warehouse for a
price low enough to allow a reasonable ROI.

Residual Costs

RDBMS hardware can be, and often is, purchased. The cost of the hardware,
therefore, quickly becomes a “sunk cost.” The money and hardware asset trade
sides of the balance sheet and the cost of the hardware become irrelevant. The

n

n

n

n
n

n
n

n

AU6462.indb 48 2/7/08 9:52:44 AM

Relational Database Management System (RDBMS)  n  49

operating system (OS) and RDBMS application, however, are not purchased,
they are licensed. Future maintenance and support of the RDBMS is purchased
annually. The cost of licensing, support, and maintenance, therefore, are not sunk
costs, they are continuing costs. The negotiated purchase of a RDBMS should also
include fixed pricing of all costs (e.g., licensing, support, and maintenance) for as
long as possible. This will define a significant portion of the cost of ownership of a
data warehouse, which will be included in the ROI of a data warehouse.

Licensing

A License Agreement outlines the terms and conditions by which an enterprise is
allowed to use the OS and RBMS, and the price that the enterprise will pay for this
privilege. Typically, the price of a License Agreement is directly based on one, but
not all, of the following:

The number of physical CPUs in the RDBMS hardware
The number of individual logon IDs
The number of concurrent logon IDs active on the RDBMS at one time
A fixed price for the entire site

The willingness of a RDBMS vendor to negotiate the terms of a License Agree-
ment is inversely proportionate to the size of the RDBMS hardware purchased.

Support and Maintenance

Support typically refers to RDBMS assistance troubleshooting and the solving
of problems with the RDBMS. Maintenance typically refers to the resolution of
hardware problems, and installation of future code (OS and RDBMS) updates.
A RDBMS vendor will offer a menu of options for the support and maintenance,
which will be provided by the RDBMS vendor. The rule of thumb for these options
is simple:

Increased involvement by the RDBMS vendor will cost the enterprise
increased money.
Decreased involvement by the RDBMS vendor will cost the enterprise less
money.

Extensibility

Extensibility refers to the architected ability to increase the data storage and process-
ing throughput of a RDBMS by adding additional hardware (e.g., disk drives and

n
n
n
n

n

n

AU6462.indb 49 2/7/08 9:52:44 AM

50  n  Building and Maintaining a Data Warehouse

CPUs). An OS or RDBMS has a maximum capacity. Until that maximum capacity
has been reached, every addition to the RDBMS hardware (e.g., disk drives and CPUs)
is expected to improve the performance of the data warehouse.

Knowledge of the maximum capacity or maximum extensibility of a RDBMS
is extremely helpful, especially during the negotiation of the purchase of the hard-
ware. A data warehouse team must know the fully extended and maximum capac-
ity of a RDBMS when negotiating the purchase and licensing of a RDBMS.

Over time, the price for license, support, and maintenance will increase. The
negotiated license, support, and maintenance agreements should lock down the
price of these services for a duration as far into the future as possible.

Connective Capacity

Applications interact with a RDBMS via a connectivity interface. The methods
by which a RDBMS allows external applications to interact with the data within
that RDBMS is known as Connective Capacity (or Connectivity). The standard
method, an open database connectivity (ODBC), is provided to establish a SQL-
based connection by which external applications can interact with the data in a
RDBMS.

To create a competitive advantage, RDBMS vendors include Connectivity
methods in addition to ODBC, with enhanced features and capacity. The decision
to purchase a RDBMS must include a match between the Connectivity provided
by a RDBMS and the Connectivity required by the applications that will interact
with the data in a data warehouse.

Closing Remarks
A data warehouse must reside on a RDBMS. The question is: which RDBMS? A
data warehouse designer selects a platform and RDBMS based on many factors,
such as:

How will the customers connect to the RDBMS?
How will the customers use the RDBMS?
How will the data acquisition and integration applications connect to the
RDBMS?
How will the data acquisition and integration applications load data into the
RDBMS?
What are the goals and plans of the enterprise regarding the data
warehouse?
What is the current hardware budget?

n

n

n

n

n

n

AU6462.indb 50 2/7/08 9:52:45 AM

Relational Database Management System (RDBMS)  n  51

What primary and secondary features of the RDBMS product offerings are
within the hardware budget?

These and other similar factors are the considerations taken when selecting a
RDBMS. The right answer may not be the biggest, fastest, or most highly rated
RDBMS. Like a carpenter looking for a specific tool, a data warehouse designer is
looking for the right tool for the right job.

References
	 1.	 Louis Agosta, The Essential Guide to Data Warehousing (Upper Saddle River, NJ:

Prentice Hall PTR, 2000).
	 2.	 Martin H. Weik, The ENIAC story — The world’s first electronic digital computer was

developed by army ordnance to compute World War II ballistic firing tables, (1961).
http://ftp.arl.army.mil/~mike/comphist/eniac-story.html

	 3.	 Susan Harkins, Relational databases: The untold story, ZDNet Australia (2003).
	 4.	 Ibid.
	 5.	 The use of redundant disk arrays is an accepted best practice. Redundant disks, how-

ever, reduce the available data storage. If a megabyte of data is stored using redundant
disks, then that megabyte of data consumes two megabytes.

n

AU6462.indb 51 2/7/08 9:52:45 AM

AU6462.indb 52 2/7/08 9:52:45 AM

53

Chapter 5

Database Design

Introduction
Database Design is the first true design activity of a data warehouse (Figure 5.1).
In the preceding chapter, Source System Analysis was the primary analysis activity.
The information provided by this analysis, describing and defining the entities and
processes within the enterprise, is the information on which the Database Design is
based. A data warehouse designer organizes the entities and processes of the enter-
prise, via the principles in the Data Warehouse Philosophy, in the form of databases,
tables, and views. Equally important is the usage patterns by which data warehouse
customers will use a data warehouse. Discussed in Chapter 10 (Data Warehouse
Customers), customers and their usage patterns also influence the design of a data
warehouse. These two considerations, Source System Analysis and customer usage
patterns, taken together identify the resources (i.e., source data) and requirements
(i.e., usage patterns) of a data warehouse.

Database design simultaneously encompasses three architectural decisions. The
first decision has been made—the data warehouse will reside on a Relational Data-
base Management System (RDBMS). The remaining questions, in relation to Data
Models and Data Architecture, are more difficult to answer.

Data Model: How will the data be organized within relational tables? What
are the subject areas? What are the entities? How will they relate? What will
they mean?

n

AU6462.indb 53 2/7/08 9:52:45 AM

54  n  Building and Maintaining a Data Warehouse

So
ur

ce
 D

at
a

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts

M
et

ad
at

a
Ap

pl
ic

at
io

n(
s)

D
at

a Q
ua

lit
y

D
at

ab
as

e
M

et
ad

at
a

D
at

ab
as

e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

RD
BM

S

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

O
LA

P

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

M

et
ad

at
a

Re
po

si
to

ry

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

D
at

ab
as

e
D

es
ig

n

So
ur

ce
 D

at
a

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts
M

et
ad

at
a

Ap
pl

ic
at

io
n(

s)

D
at

a Q
ua

lit
y

D
at

ab
as

e
M

et
ad

at
a

D
at

ab
as

e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

RD
BM

S

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

O
LA

P

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

M

et
ad

at
a

Re
po

si
to

ry

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

D
at

ab
as

e
D

es
ig

n

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

D
at

ab
as

e
D

es
ig

n

Fi
gu

re
 5

.1 

D
at

ab
as

e
D

es
ig

n.

AU6462.indb 54 2/7/08 9:52:46 AM

Database Design  n  55

Data Architecture: How will the relational tables be organized? Will they
reside in a single central data warehouse, or will they reside in distributed
data marts? Will an Operational Data Store be included?

These design decisions have significant influence on each other. Every permuta-
tion of RDBMS platform, data integration volumes and throughput, BI Reporting
data volumes and throughput, and data warehouse customer needs will suggest its
own optimal combination of Data Architecture and Data Model. Some in the data
warehousing community will declare a “best practice” Data Architecture and Data
Model. Data warehousing, however, is not a “one size fits all” decision support sys-
tem. Data warehousing, instead, requires an understanding of the enterprise and
the data warehouse customers. In between the enterprise and the customers is data.
The big picture question is:” “What should that data look like?”

The following sections will explain the methods used in data warehousing to
organize data within tables. Data Architecture will explain how tables are orga-
nized within databases. The combined result of a Data Model and Data Architec-
ture is a data warehouse design. The individual deliverables in a data warehouse
design include:

Conceptual Data Model
Logical Data Model
Physical Data Model
Data Architecture

These are discussed in the following sections.

Data Modeling Methodology
Data modeling methodology includes three phases: Conceptual, Logical, and Phys-
ical Data Models. They are created in that sequence. A Conceptual Data Model is
a prerequisite for a Logical Data Model, which is a prerequisite for a Physical Data
Model. The physical database and table structures are based directly on the data
structures outlined in the Physical Data Model.

Conceptual Data Model: How will the enterprise be organized within the
data warehouse? The Conceptual Data Model defines the subject areas and
major entities.
Logical Data Model: Which entities exist within each subject area? How will
those entities relate to each other? The relationships extend beyond just pri-
mary key/foreign key relationships. They include Super Type, Subtype, Attri-
bute, and Associative Entities.1

n

n
n
n
n

n

n

AU6462.indb 55 2/7/08 9:52:47 AM

56  n  Building and Maintaining a Data Warehouse

Physical Data Model: Databases hold the data of a data warehouse. How will
that data be assigned to columns, which are inside tables that are organized
into databases that collectively hold the data of a data warehouse? Though not
quite the Data Definition Language (DDL) of the tables and databases, the
Physical Data Model is very close to the DDL of the tables and databases.

Data modeling can occur in one of two sequences: Top-to-Bottom and Bot-
tom-to-Top. The Top-to-Bottom approach begins with the top level Conceptual
Data Model. The Logical Data Model derives from the Conceptual Data Model,
and the Physical Data Model derives from the Logical Data Model. The Bottom-
to-Top approach begins with the detailed Physical Data Model. The Logical Data
Model explains the rationale behind the Physical Data Model, and the Concep-
tual Data Model explains the context of the Logical Data Model. Both methods
can be equally successful. The discussion that follows will use the Top-to-Bottom
approach, which begins with the Conceptual Data Model.

Conceptual Data Model

The Conceptual Data Model identifies the main subject areas of a data warehouse.2
Implicitly, the Conceptual Data Model also identifies the boundary of a data ware-
house because any subject area not included in the Conceptual Data Model is not
included in the data warehouse. The Conceptual Data Model provides an overall
map to a data warehouse. The applicable subject area can identify the location of
data within a data warehouse.

The definition of a subject area within the Conceptual Data Model is not a
binding statement that the data, tables, and possibly database for that subject area
will be created. Data warehouse development best occurs in iterative slices of devel-
opment, not all at once. Taken all at once the immediate cost of a data warehouse is
too high. Without the opportunity to generate return on investment (ROI), a data
warehouse development budget will be cut and data will be descoped. The result
would be a fully implemented data warehouse, which is missing some of its parts.
The better, as well as tried and true, method is iterative development. Iterative
development creates one subject area, or a portion of a subject area, at a time. This
allows an initial subject area to be created with a reasonable budget, and to generate
ROI, which justifies the budget for the development of subsequent subject areas.

Slicing along two axes can slice an enterprise into subject areas: business pro-
cesses and business entities. These two axes work well because they facilitate the
creation of mutually exclusive subject areas, which helps avoid confusion about the
subject areas. The importance of these axes is that the Logical and Physical Data
Models for each subject area will be based directly on a subject area in the Concep-
tual Data Model. Information from the source system analysis guides the selection

n

AU6462.indb 56 2/7/08 9:52:47 AM

Database Design  n  57

of subject areas that best express the structure and nature of the enterprise. Possible
subject areas for Business Process subjects are listed in Table 5.1.

An enterprise will typically have more than one major business process. Major
business processes are the first addition to a Conceptual Data Model (Figure 5.2).
Each major business process is listed with its subordinate areas. The example in
Table 5.2 shows the major business processes manufacturing and shipping, and their
subordinate areas. Major business processes are not related. The entities, which will
relate these business processes, will be added later.

Manufacturing

Metalwork
Electronics/Electrical
Chemistry
Upholstery
Energy
Inventory

Shipping

Transportation
Warehousing
Scheduling
Picking
Packing
Invoicing

Figure 5.2  Conceptual Data Model processes.

Table 5.1  Business Processes
Subject Areas by Business Process

Subject Area Definition Examples

Sales The exchange of a product or
service for a fee

Retail transactions
Consulting contract

Manufacturing The value-adding assembly of
a product from materials and
ingredients

Automotive assembly
Furniture carpentry

Billing Invoicing, collecting, and
posting the money owed to
the enterprise

Accounts Receivable
Collection agency

Receiving Accepting and storing
materials or product from a
supplier

Warehouse dockIn-store
delivery

Shipping Delivery of product to retail or
wholesale outlets or
customers

Delivery trucking
Third-party transportation

AU6462.indb 57 2/7/08 9:52:47 AM

58  n  Building and Maintaining a Data Warehouse

The selection of major business process subject areas can occur by two
methods.

One to Multiple: Select one major business process. Add subordinate busi-
ness processes. As the number of subordinate business processes exceeds the
meaning of the major business area, create new major subject areas, which
encompass them. Move the subordinate business areas to a new or previ-
ously existing major business area. As subordinate business areas accumulate,
assign them to a major business process, which naturally groups them.
Multiple to Few: Select all possible major business areas. Add subordinate
business areas to each major business process. Identify and consolidate redun-
dant subordinate business processes. As major business processes decline in
significance by losing subordinate business processes, move all subordinate
business processes to remaining major business processes, and remove the
unpopulated major business areas.

The selection of major business processes is iterative and multidirectional. Before
the selection of all major and subordinate business processes in a Conceptual Data
Model is complete, both methods (One to Multiple and Multiple to Few) will be
utilized in the selection process.

The subject areas of an enterprise are also sliced by the business entities within,
and possibly around, the enterprise. These are the physical and logical objects by

n

n

Table 5.2  Subject Areas by Business Entity
Subject Areas by Business Entity

Subject Area Definition Examples

Facilities Physical plants that house
enterprise operations

Store
Warehouse

Capital Equipment Materials, tools, and hardware
that contribute to the
functions of the enterprise

Forklift
Display cabinet
Drill and drill bits

Product The object of a retail or
wholesale sales transaction

Automobile
Groceries

Customer The participant in a sales
transaction who receives a
product or service

Grocery shopper
Corporate buyer

Supplier The vendor who provides to
the enterprise materials and
ingredients used in the
business of the enterprise

Automobile parts
manufacturer

Wholesale broker

AU6462.indb 58 2/7/08 9:52:48 AM

Database Design  n  59

which the enterprise achieves its business functions. Possible subject areas for Busi-
ness Entity subjects are shown in Table 5.2.

Major business entities are the second addition to a Conceptual Data Model
and an enterprise will typically have more than one. Each major business entity
is listed with its subordinate entities. The example in Figure 5.3 shows the major
entity areas: Product, Facilities, and Capital Equipment, and their subordinate
entities.

Major business entities relate to each other. Capital Equipment is located in
a Facility and used to manufacture a Product. Facilities are used to shelter the
manufacture of a Product. Major entities also relate and connect major business
processes, as seen in Figure 5.4. Manufacturing and Shipping both handle Product.
Manufacturing and Shipping both use Capital Equipment inside Facilities.

A subordinate entity can occur multiple times in a Conceptual Data Model. In
the Conceptual Data Model in Figure 5.4, the entity Function occurs three times
and the entity Inventory occurs twice. This is normal. As a Conceptual Data Model
is expanded into a Logical and then Physical Data Models, this phenomenon will
occur many times. Eventually, as the Physical Data Model is normalized, remov-
ing redundancy, redundant entities will be consolidated. The consolidated entity
will be referenced within each subject area. This highlights the need for consistent
entity names. For every instance of business meaning, use the same entity name.
You don’t want to discover redundant data after a data warehouse has been imple-
mented, and someone remarks, “Hey, did you know these two tables have different
names, but the same data?” This situation can be worse: If the two tables do not

Product
Function
Regulation
Composition
Minimum ROI
Retail/Wholesale
Inventory

Facilities
Function
OSHA Regulation
Real Estate
Dimensions
Capacity
Staffing

Capital Equipment
Function
Description
OSHA Regulation
Complement
Materials
Technology

Figure 5.3  Conceptual Data Model entities.

AU6462.indb 59 2/7/08 9:52:48 AM

60  n  Building and Maintaining a Data Warehouse

have exactly the same rows. The first defense against such confusion is consistent
entity names.

A Conceptual Data Model will require numerous iterations of brainstorming,
model, review, model, brainstorming, model, etc. Conceptual Data Modeling is not
just an activity that has been perpetuated for no apparent reason from the early days
of data warehousing. Rather, a Conceptual Data Model is the first foundation of a
data warehouse and provides the roadmap to a data warehouse via the subject areas
of the enterprise. Details and enhanced meaning are added to that roadmap as it is
transformed into a Logical Data Model.

Logical Data Model

A Logical Data Model presents the entities and relationships of the enterprise. Log-
ical Data Modeling uses Entity Relationship Diagram notation.3 An Entity Rela-
tionship Diagram visually displays the relations between the entities of a enterprise.
A Logical Data Model achieves this visual display by focusing on each major subject

Manufacturing
Metalwork
Electronics/Electrical
Chemistry
Upholstery
Energy
Inventory

Product
Function
Regulation
Composition
Minimum ROI
Retail/Wholesale
Inventory

Facilities
Function
OSHA Regulation
Real Estate
Dimensions
Capacity
Staffing

Capital Equipment
Function
Description
OSHA Regulation
Complement
Materials
Technology

Shipping
Transportation
Warehousing
Scheduling
Picking
Packing
Invoicing

Figure 5.4  Conceptual Data Model entities and processes.

AU6462.indb 60 2/7/08 9:52:49 AM

Database Design  n  61

area from the Conceptual Data Model. Each major subject area of a Conceptual
Data Model, therefore, will become a page by itself in a Logical Data Model. Each
page will present all entities relevant to the major subject area. Using the Concep-
tual Data Model in Figure 5.4, a Logical Data Model would include five pages.

Manufacturing
Shipping
Product
Capital Equipment
Facilities

A Logical Data Model enhances the information already available in a Concep-
tual Data Model by including five categories of information.

Logical (Primary) Key
Attribute
Primary Key/Foreign Key Relation
Cardinality
Super types and subtypes

Additional information may be included. That additional information, how-
ever, should not replace or alter the following five categories of information.

Logical (Primary) Key

What identifies each instance of an entity? Given that piece of information, a per-
son can search the enterprise and always identify the same instance of an entity. The
Logical Key does not identify an entity; rather, a Logical Key identifies an instance
of an entity. For example:

Facilities: An individual building
Capital Equipment: An individual lathe
Shipping: An individual invoice

The Logical Key is usually referred to as the Primary Key. The term Primary
Key is also used in other forms of data modeling, including the upcoming dis-
cussion of Physical Data Modeling. The Primary Key of a Logical Data Model is
similar to, but not exactly the same as, the Primary Key of a Physical Data Model.
During this discussion of Logical Data Modeling, the term Primary Key will refer
explicitly to the Logical (Primary) Key.

n

n

n

n

n

n

n

n

n

n

n

n

n

AU6462.indb 61 2/7/08 9:52:49 AM

62  n  Building and Maintaining a Data Warehouse

Attribute

An Attribute is a nonidentifying aspect of an entity. An Attribute describes, but
does not define, an individual instance of an entity. Rather, an attribute provides
information about an entity, which enhances its meaning and relevance. Common
attributes include:

Color
Size
Formula
Taxing Municipality

Primary Key/Foreign Key Relation

A Logical Data Model includes a representation of the method by which an instance
of an individual entity is associated with an instance of another individual entity.
The definition of a Logical Key for each instance of each entity is a prerequisite for
the definition of an associative relation because each instance of both entities must
be identified before they can be associated to each other.

A Primary Key/Foreign Key Relation exists between two and only two enti-
ties. A business scenario may require that multiple relations exist simultaneously
for that business scenario to be valid. For the purposes of Logical Data Modeling,
these multiple relations are seen as individual relations. Constraints, which exist in
a business scenario, are business rules that will be enforced by applications and not
by the Logical Data Model.

A Primary Key/Foreign Key Relation is achieved by embedding the Primary
Key of a subordinate entity as a nonidentifying attribute in a superior entity. For
example:

Real Estate (i.e., a building) has a Function. A Function describes a building.
A Function, therefore, is subordinate to Real Estate. The Primary Key of a
Function is embedded as a nonidentifying attribute of Real Estate.4

Capital Equipment (i.e., a car) has Features. A Feature describes a car. A Fea-
ture, therefore, is subordinate to Capital Equipment. The Primary Key of a
Feature is embedded as a nonidentifying attribute of Capital Equipment.

The relation between two entities may not be obvious when defined in terms of
a superior and subordinate entity. The superior/subordinate relation between two
entities may be more clearly defined in terms of Cardinality.

n

n

n

n

n

n

AU6462.indb 62 2/7/08 9:52:49 AM

Database Design  n  63

Cardinality

Cardinality refers to quantity, or the number of instances of something (i.e.,
marbles in a bag). In a Logical Data Model, Cardinality refers to the number of
entity instances involved in a relation. Obviously, in many relations, the number of
entity instances can change from one moment to the next. A Logical Data Model,
therefore, makes no attempt to capture moment-by-moment the number of entity
instances. Instead, a Logical Data Model categorizes the number of entity instances
into four groups, which are show in Figure 5.5.

A relation is notated as a line that connects two, and only two, entities. The line
represents the relation, and the entities at each end of the line are the only entities
included in the relation. The Cardinality of each entity is notated by placing a Car-
dinality symbol at the end of the relation line. A Cardinality symbol applies to the
entity it touches tangentially. Examples of relation lines with Cardinality symbols
are shown in Figure 5.6.

Cardinality may help define the superior/subordinate relation between entities.
The permutations of Cardinality and the inferences that can be drawn are shown
in Table 5.3.

Cardinality refers to the number of instances of an entity included in a relation
between two entities. Cardinality is categorized into the following four groups.

One
One or Zero
One or Many
One, Zero, or Many

If an entity has a higher Cardinality than its related entity, then that higher
Cardinality entity is the subordinate entity. The lower Cardinality entity is the

n
n
n
n

One

One or Zero

One or Many

One, Zero, or Many

Figure 5.5  Cardinality symbols.

AU6462.indb 63 2/7/08 9:52:50 AM

64  n  Building and Maintaining a Data Warehouse

One One to

One to One or Zero

One to One or Many

One to One, Zero or Many

One or Zero to One or Zero

One or Zero to One or Many

One or Zero to One, Zero, or Many

One or Many to One or Many

One or Many to One, Zero, or Many

One, Zero, or Many One, Zero, or Manyto

Figure 5.6  Cardinality permutations.

Table 5.3  Cardinality and Superior/Subordinate Relations
Entity A Entity B Superior Entity Subordinate Entity

One One n/a n/a

One One or Zero n/a n/a

One One or Many A B

One One, Zero, or Many A B

One or Zero One or Many A B

One or Zero One, Zero, or Many A B

One or Many One, Zero, or Many n/a n/a

One, Zero, or Many One, Zero, or Many n/a n/a

AU6462.indb 64 2/7/08 9:52:50 AM

Database Design  n  65

superior entity. Many-to-Many and One-to-One Cardinalities do not indicate a
superior/subordinate relation. Rather, Many-to-Many Cardinalities indicate the
need for an associative table (see Physical Data Model below). And, One-to-One
Cardinalities indicate a strong positive correlation, which may mean that the two
entities joined by a One-to-One relation may actually be a single entity. So, Car-
dinality cannot be the sole source of information regarding superior/subordinate
relations, but may cast the tie-breaking vote when you’re not quite sure which entity
is superior and which is subordinate.

Super Types and Subtypes

Entities that are extremely similar, but not identical, can be grouped into a Super
Type (Figure 5.7). An Entity with a distinct set of mutually exclusive variations can
cast those variations as Subtypes of itself, making itself the Super Type. Either path
toward a Super Type/Subtype set of entities resolves confusion about similar entities,
so they can be included in a Logical Data Model simultaneously as one collective
entity (Super Type) and individual entities (Subtypes).

Putting It All Together

Having identified the pieces (Primary Key, Primary Key/Foreign Key Relation,
Attribute, Cardinality, and Super Type/Subtype) of a Logical Data Model, we are
ready to put the pieces together. For the purpose of this discussion of Logical Data
Modeling, we will use the Shipping subject area from the Conceptual Data Model
in Figure 5.4. A Logical Data Model expands one subject area, exposing all it enti-
ties and relations, e.g., the list of entities shown in Table 5.4.

Notice that all attributes dealing with Date/Time and Price are listed as Event
Data. This is showing that these are values derived at the moment of an enterprise
event and not modeled as entities.5

Truck

Vehicle

Train
Plane

Figure 5.7  Vehicle Super Type.

AU6462.indb 65 2/7/08 9:52:51 AM

66  n  Building and Maintaining a Data Warehouse

This expansion of the Shipping subject area yielded a set of Business Entities,
which are listed in Table 5.5. If the entities yielded by expanding a subject area do
not have a natural home in the Conceptual Data Model, that probably means the
Conceptual Data Model is incomplete or incorrect; either way, the Conceptual
Data Model must be updated to provide a natural home for all entities. If the enti-
ties yielded by expanding a subject area do have a natural home in the Conceptual
Data Model, then probably the Conceptual Data Model is complete and correct.

Finally, the Business Processes (Warehousing and Transportation) and Business
Entities (Product, Warehouse, Vehicle, Destination, Storage Slot, and Storage Pal-
let) are placed into a Logical Data Model of the Shipping subject area using Logi-
cal Data Modeling techniques (Primary Key, Primary Key/Foreign Key Relation,

Table 5.4  Shipping
Shipping — Business Process

Transportation Business Process

Product Business Entity

Warehouse Business Entity

Vehicle Business Entity

Destination Business Entity

Departure Date/Time Event Data

Arrival Date/Time Event Data

Warehousing Business Process

Product Business Entity

Warehouse Business Entity

Storage Slot Business Entity

Storage Pallet Business Entity

Storage Date/Time Event Data

Table 5.5  Business Entities
Business Entities Subject Area

Product Product

Warehouse Shipping

Vehicle Shipping

Destination Shipping

Storage Slot Shipping

Storage Pallet Shipping

AU6462.indb 66 2/7/08 9:52:51 AM

Database Design  n  67

Attribute, Cardinality, and Super Type/Subtype). A possible combined Logical
Data Model of the Shipping subject area is shown in Figure 5.8.

A rule of thumb for Logical Data Models is that they don’t cross relation lines.
If a Logical Data Model does cross relation lines, it probably means one of two
things:

The Conceptual Data Model subject area on which the Logical Data Model
is based includes too many entities.
The entities within the Logical Data Model are defined incorrectly.

n

n

Transportation

Product
Warehouse
Vehicle
Destination
Departure Date/Time
Arrival Date/Time

Product

Barcode
Description
Manufacturer
Supplier
Price

Warehouse

Building Number
Address
Dimensions
Capacity

Vehicle

Vehicle Number
Vehicle Type

Destination

Destination Number
Address
Customer Number

Storage Slot

Warehouse
Slot Number
Slot Location
Slot Dimensions

Storage Pallet

Warehouse
Pallet Number
Pallet Dimensions

Warehousing

Product
Warehouse
Storage Slot
Storage Pallet
Storage Date/Time

Airplane

Vehicle Number
Vehicle Type
Vehicle Description
Airline Service
Airport

Train

Vehicle Number
Vehicle Type
Vehicle Description
Train Service
Train Station

Truck

Vehicle Number
Vehicle Type
Vehicle Description
CDL Certification Required

Figure 5.8  Shipping Logical Data Model.

AU6462.indb 67 2/7/08 9:52:52 AM

68  n  Building and Maintaining a Data Warehouse

While this rule of thumb may seem a bit constraining or arbitrary, Logical Data
Models without crossed lines coincidentally tend to avoid confusion about the data
and relations within a data warehouse.

The final installment of a Logical Data Model is a Logical Data Model Justifica-
tion, which is a text explanation by the data modeler of the entities and relations in
a Logical Data Model. This is the data modeler’s opportunity to document reasons
for including and excluding entities and relations as well as provide sample data.
A Logical Data Model should address every entity and relation in a Logical Data
Model. For example:

Destination (entity): This is the recipient of a Transportation. Typically, a
Destination is a customer. The address must be included, otherwise, we don’t
know the physical location to which product was transported.
Destination (one) to Transportation (many): A Destination may have never
received a Transportation (i.e., a Product). Alternatively, a Destination may
have received many Transportations (i.e., Products). A Transportation can be
addressed to one, and only one, Destination.

The source system analysis should be complete before beginning the Logical
Data Model. Information from the analysis feeds directly into the Logical Data
Model. Specifically, the business subject areas discovered in the analysis are can-
didates for subject areas in the Conceptual Data Model, which become subject
areas in the Logical Data Model. The Logical Data Model may reveal questions
and gaps in the information provided by the analysis. That is normal. Rarely does
a source system analysis provide all the required information. At that point, the
ability to know information is missing is valuable on its own. When the entire
Logical Data Model is finished, it should present in symbols and text the enterprise
as explained in the analysis. A Logical Data Model should be reviewed against the
analysis, which yielded the Conceptual Data Model on which the Logical Data
Model is based. Discrepancies between the analysis and Logical Data Model should
be resolved at this point.

Finally, Logical Data Modeling is an inexact science, or an art form, or both.
From a single source system analysis, multiple Logical Data Models may be cre-
ated and all of them equally correct. So, there is no single right answer. In Logical
Data Modeling, there are many right answers. The best approach to Logical Data
Modeling, therefore, is practice. Like other skills, don’t wait until you need the skill
to develop the skill. Develop the skill, and continue developing the skill, of Logical
Data Modeling. That way, when you need it you have it.

n

n

AU6462.indb 68 2/7/08 9:52:52 AM

Database Design  n  69

Physical Data Model
A Physical Data Model is a representation of the data structures that will hold the
data in a data warehouse, and is directly based on a Logical Data Model. The struc-
tures of a Physical Data Model are databases, tables, and views. A Physical Data
Model indicates the physical data types of all fields, and continues the display of
relations that originally appeared in the prerequisite Logical Data Model.

Unfortunately, the notations of a Physical Data Model are very similar to the
notations of a Logical Data Model. This similarity tends to cause confusion. The
databases, tables, and views of a Physical Data Model are distinctly different from
the entities and relations of a Logical Data Model. Whereas the entities and rela-
tions of a Logical Data Model represent an enterprise, the databases, tables, and
views of a Physical Data Model represent physical data structures. The difference
is similar to comparing the real estate listing for a house and the blueprint of the
same house. Both provide some similar information, but with different meanings.
Fortunately, no one confuses a real estate listing for a blueprint.

A major difference between Logical and Physical Data Models is the incorpo-
ration of the Data Warehouse Philosophy. Data elements that facilitate the Data
Warehouse Philosophy are included in a Physical Data Model. Subject Orientation
is the only part of the Data Warehouse Philosophy that is included in a Logical
Data Model, and that happens because a Logical Data Model is based directly on
a subject area of the Conceptual Data Model. A review of the elements of the Data
Warehouse Philosophy will help incorporate the remaining elements of the Data
Warehouse Philosophy into the physical data structures of a data warehouse.

Subject Orientation: The subject orientation was established by the Con-
ceptual Data Model and perpetuated by the Logical Data Model. The Physi-
cal Data Model continues the subject orientation of the data warehouse by
instantiating one page of the Logical Data Model at a time. The creation of
the Physical Data Model does not take three entities and relations from each
page of the Logical Data Model to form a single page of the Physical Data
Model. Rather, a page of the Physical Data Model addresses the entities and
relations in a page of the Logical Data Model.
Data Integration: Thus far, the Conceptual and Logical Data Models have
given no thought to the source of any data. The entire enterprise is considered
as a whole. The data from the enterprise as displayed in a data warehouse,
therefore, should be homogenous, as though the entire enterprise built its
data the same way.

Form: All the data elements of similar function will look the same, such
as,

Phone number
Employee IDs
Currency (i.e., money)

n

n

−

n
n
n

AU6462.indb 69 2/7/08 9:52:52 AM

70  n  Building and Maintaining a Data Warehouse

Dates
Times
Timestamps
Building IDs
Product IDs

		 And, will all look the same, regardless of their origin in the enterprise.
Function: Data elements with similar functions will function the same
way.

Binary data elements are a common source of disconnect. Applica-
tions in the enterprise may use the forms Y/N, Yes/No, 1/0, Y/null,
Yes/null. A data warehouse will resolve all such fields to one form,
possibly (but, not necessarily) Y/N.
Redundant data elements are another common source of disconnect.
Applications across the enterprise may communicate the same func-
tion different ways. The identifier for a product could be: Prod_ID
(Integer), Product_ID (Long Integer), UPC (Long Integer), etc. In
the Physical Data Model, all of these disparate data elements will
be resolved and consolidated into a single data element with a single
data type.

Grain: Enterprise data encounters granularity primarily in two ways:
measurement and hierarchy.

The measurement applied to similar data elements will be homog-
enous. For example, liquids will be measured by the liter, widgets
will be counted by units, and gases will be measured by pounds per
square inch (PSI).
The hierarchy applied to similar data elements will be homogenous.
In this sense, hierarchy includes corporate, personnel, product, and
calendar hierarchies. For example:

Throughput figures for a corporate region cannot be compared to
throughput figures for a corporate division.
Total hours worked for a single facility cannot be compared to
the total hours worked for the entire corporation.
The manufacturing figures for a Type A product cannot be com-
pared to the manufacturing figures for a Class 32B product.
Sales totals for a calendar week cannot be compared to sales totals
for a calendar quarter.

For the comparison of measurements within a data warehouse to
work correctly, they must be presented at the same hierarchical level
of detail.

Data Integration is most necessary, and most difficult, in merged (or, soon
to be merged) enterprises. The possible permutations of data form, function,
and grain expand geometrically when organizations merge. In that situa-
tion, a data warehouse adds significant value to the enterprise by resolving,

n
n
n
n
n

−

n

n

−

n

n

−

−

−

−

n

n

AU6462.indb 70 2/7/08 9:52:52 AM

Database Design  n  71

reconciling, and integrating multiple heterogeneous data elements into a
homogenous statement of the enterprise.
Nonvolatility: The Conceptual and Logical Data Models present the enter-
prise as a single slice or set of slices. The enterprise is not in motion and events
happen only once. The Physical Data Model must be prepared for the enter-
prise to be in motion. Events happen many times in a single second/minute/
hour/day. A Physical Data Model must be constructed so that each instance
of an Event can be distinctly identified from all the other Event instances,
without any randomness (i.e., the data warehouse can find the same distinct
Event instance every time it looks for that Event, never finding a different
Event instance). Whereas operational applications are volatile in the sense
that they retain only the instances of a data element needed to perform its
functions (discarding the rest), a data warehouse is nonvolatile in the sense
that it retains all instances of a data element.6

One Version of the Truth: A Physical Data Model has only one place for
every entity, relation, and measurement in the data warehouse. A Physical
Data Model does not allow a second opinion of the same data element. In
the case of modified data elements (e.g., Price, Discount Price, Actual Price,
etc.), each is considered a different data element. Logically, they answer dif-
ferent questions. The Logical Data Model should have allocated a one-to-one
relationship between each individual data question and each individual data
entity or relation. The Physical Data Model carries this forward to store the
answer to one question, and only one question, in each data element.
Time Variant: Another aspect of the enterprise in motion is Time. Data
Warehouse Philosophy intentionally and explicitly includes Time as a method
to express an enterprise in motion. The Conceptual and Logical Data Mod-
els, which focus on subject areas, entities, and relations do not focus on the
mechanics of Type 1, Type 2, and Type 3 time-variant Dimensions. Regard-
less, Time was always there, waiting to be included. The Physical Data Model
is the point at which Time must become visible in a data warehouse. Time is a
measurement and all the preceding elements of Data Warehouse Philosophy
must be applied to Time.

Form: Time must be expressed in the same form throughout the data
warehouse.
Function: Time must be applied to similar data elements the same way
(absolute, relative, etc.) throughout the data warehouse.
Grain: Time must be expressed to similar data elements at the same level
of precision throughout the data warehouse.
Nonvolatility: A Time measurement applied to a data element must be
retained despite the presence of a subsequent Time measurement applied
to the same data element.
One Version of the Truth: A Time measurement applied to a data element
is the only Time measurement applied to that data element. Nowhere in

n

n

n

−

−

−

−

−

AU6462.indb 71 2/7/08 9:52:53 AM

72  n  Building and Maintaining a Data Warehouse

the data warehouse can be found an alternative Time measurement for an
instance of a data element.

The purpose of Time Variance in a data warehouse is to allow a data ware-
house customer to identify an instance of an entity or an instance of an event
at a moment in time in the past. Time was the hidden attribute of every entity
and event. A data warehouse increases the granularity of its data by adding
the attribute Time and its hierarchy to every entity and event. The attribute
Time allows a data warehouse customer to identify the time-variant instance
of every entity and event in a data warehouse, which allows that data ware-
house customer to see the enterprise as of a moment in time in the past.
Time as an attribute can be added to entities and events through three pri-
mary methods: Point and Range, Range and Point, and Time Key (a sur-
rogate key).7

Point and Range: In this method, a point-in-time data element is included
in a row. Then that row can be found by searching on a specific point in
time. That row and others from the same period can be found by search-
ing on a Range (i.e., where point-in-time is between Range Begin and
Range End). A point-in-time data element works well with event data
because an event occurs at a point in time. A point-in-time data element
does not work well with an entity because an entity can exist over a long
period of time, which would require many points-in-time data elements
to represent that Range.
Range and Point: In this method, a Range data element (two inclusive
time elements: Begin Time and End Time) is included in a row. Then,
that row can be found by searching on any time within that Range (i.e.,
where Time Value is between Begin Time and End Time). A Range data
element works well with entity data because entities exist over a period of
time. A Range data element does not work well with Event data because
an Event occurs at a single moment, whereas a Range encompasses many
moments.
Time Key: In this method, the entity Time is recognized and captured
in its own table. Each row is assigned a sequential Time Key. That Time
Key is then used in the Point and Range and Range and Point methods
listed above. The advantage of this approach is that it promotes the use of
corporate, fiscal, government, and foreign calendars within a data ware-
house. The Time Key can be based on the number of seconds in a year
(31,536,000) or the number of minutes in a year (525,600), depending
on the required level of detail and precision in the Time dimension. Each
second of the year can have its own Time Key. The first second of the
year has the Time Key 1 and the last second of the year has the Time Key
31,536,000. By appending the year to the front of the Time Key, first
minute of the year 2007 (2,007,000,001) can be distinguished from the
first minute of the year 2006 (2,006,000,001).

n

n

−

−

−

AU6462.indb 72 2/7/08 9:52:53 AM

Database Design  n  73

Time is inexact and imprecise. No one can name the exact micro nano
second that something happened. So, a data warehouse must agree on a
lowest granularity of time. That lowest level of granularity should be the
level of granularity used in the methods listed above.

Long-Term Investment: A data warehouse is an enterprise asset. The pur-
pose of any enterprise asset is to generate a ROI. An asset has two methods by
which to increase its ROI. The first method is to increase its Return. A data
warehouse increases its Return by improving enterprise decisions, yielding
information as a competitive advantage. The second method is to reduce its
Investment, which includes the Cost of Ownership. A data warehouse can
increase its Cost of Ownership by inflexibility. If every time the enterprise
changes its landscape, a data warehouse must modify its representation of the
enterprise (at a cost of thousands of dollars each time), that data warehouse
reduces its own ROI and viability as an enterprise asset. A Physical Data
Model should yield a data warehouse flexible enough to express the enterprise
in all its permutations. The primary method by which a Physical Data Model
contributes to this flexibility is by normalizing hidden attributes out of an
entity. For example, an enterprise uses the entity Truck to deliver product.
Will the enterprise always use Truck to deliver product? In the future, the
enterprise could use Car to deliver product or Third-Party Delivery or Partner
Retail Store (allowing customers to pick up the product themselves). Product
can get to the customer by any number of means. The enterprise can use one,
none, or all of them. A data warehouse can be prepared for such changes
by normalizing out the Type, Purpose, and Role from the entity Truck.8
Normalized this way, the Truck entity becomes a Capital Equipment with
the attributes Type = Truck, Purpose = Transportation, and Role = Deliver.
Taken to the next level, the Capital Equipment (Type = Truck, Purpose =
Transportation, and Role = Deliver) can be further abstracted.

Type = Truck could be abstracted further to Type = Vehicle and Subtype
= Truck.
Role = Deliver should be removed from the Capital Equipment entity
altogether and moved over to the event which captures the delivery.9 The
reason for this move is that the Role of a Capital Equipment can be dif-
ferent in every event without changing the Capital Equipment. In one
event, it could Role = Deliver and in another it could Role = Paperweight,
with no modification to the Capital Equipment.
Purpose = Transportation should remain in the Capital Equipment entity.
Purpose expresses the intended use of a piece of equipment, whereas Role
expresses the actual use of that equipment. The intended purpose for a
piece of equipment is a logical attribute of that equipment, regardless of
what actually happens. The Purpose of Capital Equipment can change
from Transportation to Training. Such a change would reflect on the
Capital Equipment, but not on the event two weeks ago when that truck

−

n

−

−

−

AU6462.indb 73 2/7/08 9:52:53 AM

74  n  Building and Maintaining a Data Warehouse

was used to deliver boxes of product to a customer. Purpose, therefore, is
a logical attribute of the entity and not the event.
This abstraction of Truck is achieved by going up one hierarchical level
above Truck and then looking hierarchically down at Truck to find the
questions it answers. Based on this example, an entity can have a Type,
Subtype, and Purpose, which can be normalized in the Physical Data
Model, and that entity can have a Role that can be normalized into its
events.
The goal is flexibility. The process of normalizing out the hidden attributes
of entities increases the flexibility of a data warehouse, which reduces its
Cost of Ownership and increases its ROI and viability as an asset and
long-term investment.

Having considered the infusion of Data Warehouse Philosophy (Subject Orien-
tation, Data Integration, Nonvolatility, Time Variance, One Version of the Truth,
and Long-Term Investment) into the information provided by the Logical Data
Model, a data warehouse designer is ready to begin creating a Physical Data Model.
The question is which kind? Data warehousing has yielded three primary varieties
of data warehouse: Dimensional Data Model, Third Normal Form, and Recursive
Data Model.

Dimensional Data Model

A Dimensional Data Model casts data into two groups: Facts and Dimensions.
Facts are also known as Events or Transactions. A Fact is something that happened.
For example, a Fact can be a sales transaction, a manufacture event, or a published
written statement. Dimensions are data that qualify or describe enterprise entities
involved in a Fact.10 A dimension might include such attributes of an entity as Color,
Brand, Date Placed in Service, Department, etc. When a Fact row is joined with
such a Dimension row, we can answer such questions as: “What was the color of the
thing involved in the event?” or “To which Department do we apply this event?”
In that way, a Dimensional Data Model captures an event in a Fact table, and the
attributes of entities involved in an event are captured in Dimension tables.

A Fact table incorporates the entities that were identified in the Logical Data
Model. Typically, those entities include:

Time: An event happens at a moment in time
Place: An event happens in a place or space
Person: People are usually involved in events
Thing: Events are often focused on or around an object
Equipment: Participants in an event often use a tool or equipment
How: The action that was performed

−

−

n
n
n
n
n
n

AU6462.indb 74 2/7/08 9:52:53 AM

Database Design  n  75

Why: Sometimes, but not always, a reason for the action is provided

This arrangement of a Fact table surrounded by Dimension tables has become
known as a Star Schema because it looks like a star, which is shown in Figure 5.9.
At the center is a Fact table surrounded by Dimension tables.

A Fact table joins to the surrounding Dimension tables using Primary Key/For-
eign Key relations.11 The Primary Key of a single row from a Dimension Row is
embedded into a row in a Fact table. That way, a Fact row will join to one and only
one row within each Dimension table. The relational integrity between a Fact table
and its associated Dimension tables must be carefully guarded.

If a Fact row joins to multiple Dimension rows for a Primary Key/Foreign Key
relation, the Fact rows returned by a query will multiply by a factor equaling the
number of Dimension rows in the Primary Key/Foreign Key relation.

n

n

Transaction Event

Time
Thing
Place
Person
Equipment

Equipment Dimension
Equipment
Equipment Name
Equipment Description
Equipment Purpose

Place Dimension
Place
Place Name
Place Address
Place Purpose

�ing Dimension
Thing
Thing Name
Thing Weight
Thing Height

Person Dimension
Person
Person Name
Person Class
Person Type

Time Dimension
Date
Time
Week
Month
Year

Figure 5.9  Star schema.

AU6462.indb 75 2/7/08 9:52:54 AM

76  n  Building and Maintaining a Data Warehouse

If a Fact row joins to zero Dimension rows for a Primary Key/Foreign Key
relation, a query will return no rows, which include that Primary Key/For-
eign Key relation.

The Primary Key/Foreign Key joining between a Fact table and a Dimension
table must occur at the same hierarchical grain. For instance, if the Fact table has a
Product Key and the primary key of the Product Dimension is a Department Key,
they cannot join. They can only join if the foreign key in the Fact table matches
the hierarchical grain of the primary key of the Dimension table. If the Fact table
has a Product Key and the primary key of the Product Dimension is also a Product
Key, they can join.

The hierarchical grain at which a Dimension table joins to a Fact table is the
lowest relevant level of that Dimension’s hierarchy. No Structured Query Lan-
guage (SQL) can summarize lower than the hierarchical grain of a Fact table. For
instance, if the Fact table has a Product Key and the Dimension table has a Product
Key and a Subproduct Key, the Dimension’s Subproduct Key will never be used.
So, the lowest relevant hierarchical grain of a Dimension table is the hierarchical
level at which it joins to a Fact table.

Ideally, a Dimension table contains in each row the entire hierarchy for a given
Primary Key. For example, a Date Dimension row for the date August 27, 1993
should include every hierarchical level (e.g., Week, Month, Quarter, Year, etc.) for
that Date. A Facility Dimension row for Warehouse #253 should include every
hierarchical level (e.g., Warehouse, Warehouse Group, Warehouse Class, Ware-
house Type, Warehouse Region, Warehouse District, Warehouse Division, etc.)
for that warehouse. By including all hierarchical levels in a single row, a data ware-
house customer can summarize data at the Week and Warehouse Region, or Month
and Warehouse Type, or Quarter and Warehouse Group without adding any new
tables to the SQL. Once a Fact table can join to a Warehouse Dimension and a
Date Dimension table, all the hierarchical information necessary to summarize at
a higher level is already present.

Dimension tables are very flexible. Attributes, hierarchies, and hierarchical lev-
els can be added, removed, or changed by simply modifying the columns in a
Dimension table. Rather than update five normalized tables, a single update to
a single table can add a new hierarchy and the Dimension joins to that hierar-
chy. Immediately, the new hierarchy is available to any Fact table joined with that
Dimension table.

Join Strategies

The Primary Key/Foreign Key joining between a Fact table and a Dimension table
can occur by various permutations of Source Native Key, Surrogate Key, and Sur-
rogate Key Version. A Source Native Key is the identifier for an entity provided by

n

AU6462.indb 76 2/7/08 9:52:54 AM

Database Design  n  77

a source system (i.e., the enterprise). A Surrogate Key is a key generated by and for
a data warehouse, and a Surrogate Version Key is a second sequential key, which
distinguishes the individual instances of an entity. A Version Key is only applicable
when all instances of an entity share the same Surrogate Key.
Source Native Key—The simplest method by which a Fact table can join with a
Dimension table is by using the Source Native Key (Figure 5.10), in this example
labeled “Thing.” Apparently, the enterprise has two unique identifiers: Chair and
Table. As long as the Dimension table has only one row for the entity labeled Chair
and only one row for the entity labeled Table, this method will work. This achieves
only a Type 1 time-variant relation.12 The SQL WHERE clause joins only on the
Thing field:

		 Fact.Thing = Dimension.Thing

Source Native Key with Dates—Time Variance can be added to the relation
between the Fact and Dimension tables. In this example, each instance of Chair
and Table are captured with their Begin and End Dates. The join between the Fact
and Dimension tables must include the Source Native Key and Dates (Figure 5.11).
This achieves only a Type 2 time-variant relation. The relational integrity of this
approach includes the Date fields.

The Dimension table can have only one instance of Chair and Table on a single
Date. If the Dimension table has two or more instances of Chair or Table on a
single Date, the results from these Dimensional tables will be multiplied by a factor
of the number of Dimension rows on a single Date.

A query can select a set of Fact rows across a range of dates. The Fact rows relate
to Dimension rows on Source Native Key and dates. The SQL WHERE clause
joins on the Thing and Date fields:

EquipmentDateThingPlace
March 13, 2007
March 15, 2007

April 2, 2007
April 4, 2007

Chair
Chair
Table
Table

Seattle, WA
St Paul, MN
Tampa, FL
Reno, NV

Fred
Susan

Joe
Alice

End DateBegin DateDescriptionThing

Fact Table

Dimension Table

Person
None

Repair Kit
Finishing Kit

None

Chair
Table

Mahogany Chair
Victorian Table

May 1, 2002
August 27, 1993

December 31, 9999
May 1, 2007

Figure 5.10  Source Native Key.

AU6462.indb 77 2/7/08 9:52:55 AM

78  n  Building and Maintaining a Data Warehouse

		 Fact.Thing = Dimension.Thing
		 And Fact.Date between Dimension.Begin Date and Dimension.End Date

Data Warehouse Dates—A Dimension table can include multiple Date fields with
distinct meanings. The use of multiple Date fields in a data warehouse is different
from the multiple fields in an operational database. Typically, in an operational
database, one Date field identifies when the data in a row became effective and
another field identifies when the data in a row ceased being effective. These dates
are basically operational metadata. A data warehouse will typically include addi-
tional metadata about each row. The additional Date metadata may include:

The date or timestamp when the data in a row was extracted from a source
system
The date or timestamp when the data in a row was transformed and ready to
load
The date or timestamp when the data in a row was loaded into the data
warehouse
The date or timestamp on which the data warehouse considers the data in a
row to be relevant to the enterprise, i.e., Begin Date
The date or timestamp on which the data warehouse considers the data in a
row to no longer be relevant to the enterprise, i.e., End Date.

Notice that none of these Date fields are the Effective and Not Effective opera-
tional metadata Date fields. In the context of a data warehouse, the Effective and

n

n

n

n

n

Fact Table

Dimension Table

EquipmentDateThingPlace
March 13, 2007
March 15, 2007

April 2, 2007
April 4, 2007

Chair
Chair
Table
Table

Seattle, WA
St Paul, MN
Tampa, FL
Reno, NV

Fred
Susan

Joe
Alice

Person
None

Repair Kit
Finishing Kit

None

End DateBegin DateDescriptionThing
Chair
Chair
Chair

Table
Table
Table

Mahogany Chair
Pine Chair
Oak Chair

Victorian Table
Icelandic Table

Round Table

August 27, 1993
September 2, 2001

April 16, 2007

September 5, 2001
April 15, 2007
May 1, 2007

May 1, 2002
May 13, 2005

March 15, 2007

May 12, 2007
March 14, 2007

December 31, 9999

Figure 5.11  Source Native Key with Dates.

AU6462.indb 78 2/7/08 9:52:56 AM

Database Design  n  79

Not Effective operational metadata Date fields are attributes of a row of data; they
are not metadata of the data warehouse. In this discussion of Dates in a data ware-
house, the Begin Date and End Date fields are not the operational Effective and
Not Effective Date fields. Rather, the Begin Date and End Date fields are the dates
within which a row of data is/was relevant to the enterprise and, therefore, the data
warehouse.

The operational Effective and Not Effective Date fields are relevant to the enter-
prise. So, why are they not used as the Relevant and Not Relevant Date fields in
a data warehouse? The answer is that the operational Effective and Not Effective
Date fields are not time variant (that sounds like a contradiction—Date fields are
not time variant) and are volatile, whereas a data warehouse is time variant and
nonvolatile. For example:

Restating the Past: An operational system can adjust dates in the past to
document when something happened. These dates are retroactively relevant
to the enterprise; however, they are not a true representation of the data values
that were present within the enterprise when information was gathered and
decisions made in the past. If a data warehouse wanted to represent restated
data values from the past, they should include a date or timestamp showing
when the retroactive restated data value was available.

Operational System: Fred was the manager of store #1024 from January
1 through March 31.
Data Warehouse:

As of January, the data warehouse observed that Fred is the manager
of store #1024; the Begin Date is January 1.
As of March, the data warehouse observed that Fred is no longer the
manager of store #1024; the End Date is March 31.
As of April, the data warehouse observed that Alice is the manager of
store #1024; the Begin Date is April 1.

Operational System: On April 14, an operational application adjusted
the end of Fred’s term as manager of store #1024 to March 29 for payroll
adjustment reasons.
Data Warehouse: As of April 14, Alice is still the manager of store #1024,
and the Begin Date is still April 1.

Restating the Future: Operational applications plan for the future. The Fact
tables report events that happened, which implicitly indicates transactions
or events that have occurred in the past (not the future). Dimension tables,
which join with Fact tables, will, therefore, only join on Dimension data val-
ues that correspond to the time variance of the Fact tables that indicate events
that occurred in the past. Future events, therefore, are not relevant events to a
data warehouse. Future plans, however, can be relevant to a data warehouse.
At a moment in the past, a future event (e.g., fire extinguisher inspection,
light bulb replacement, employee performance review, etc.) may be planned.

n

−

−
n

n

n

−

−

n

AU6462.indb 79 2/7/08 9:52:56 AM

80  n  Building and Maintaining a Data Warehouse

In that scenario, the event in the past is the planning of a future event. That
planned future event may be updated multiple times between “now” and the
planned future event. Each of those plan updates is a past event.

Operational System: As of April 20, an operational application plans to
make George the manager of store #1024 beginning June 4.
Data Warehouse: As of April 20, Alice is still the manager of store #1024,
and the Begin Date is still April 1.

Dates as Attributes: Operational entities (e.g., software license agreements,
planned inspection dates, employee anniversary dates, etc.) are relevant to the
enterprise as entity attributes. Date attributes, however, do not describe when
something happened in the enterprise such that it will be recorded in a data
warehouse. Rather, the appearance or removal of an attribute date is an event,
which may be recorded in a data warehouse as either an event in a Fact table
or an update to an entity in a Dimension table.

Operational System: As of March 11, the lease agreement for store #1024
extends from January 1 through June 30.
Data Warehouse: As of March 11

The Lease Effective Date is January 1.
The Lease Not Effective Date is June 30.
The Begin Date is March 11.

Operational System: As of May 24, the lease agreement for store #1024
extends from July 1 through December 31.
Data Warehouse: As of May 24

The Lease Effective Date is July 1.
The Lease Not Effective Date is December 31.
The Begin Date is May 24.
The End Date of the previous Lease row is May 23.

Data warehouse Begin and End Timestamp or Date fields work best as inclusive
date fields. Inclusive dates mean the Begin Date is the first date on which a row is
relevant, and the End Date is the last date on which a row is relevant. This method
facilitates the use of a SQL BETWEEN statement when selecting relevant rows:

		 Where Event_Date between Begin_Date and End_Date

The ANSI standard for a BETWEEN statement stipulates the rows selected
are inclusive of the data values in the BETWEEN statement. Therefore, inclusive
Begin and End Date fields fit the ANSI standard.

The Source Native Key method works well when the uniqueness of the keys is
enforced by the source system, which implicitly means the data warehouse extracts
its dimension data from only one source system. If, however, a data warehouse
extracts its dimension data from multiple source systems, the Source Native Key
method fails because it cannot integrate the dimension data from multiple dispa-
rate source systems. When a data warehouse extracts dimension data from disparate

−

−

n

−

−
n
n
n

−

−
n
n
n
n

AU6462.indb 80 2/7/08 9:52:56 AM

Database Design  n  81

source systems, the disparate Source Native Keys must be integrated into a single
set of keys: Surrogate Keys.
Surrogate Key—In a data warehouse that must represent disparate source systems,
Surrogate Keys are used to combine and conform entity keys that are not coordi-
nated in the enterprise (Figure 5.12). If so, the Fact table can join the Dimension
table using the generated Surrogate Key. This achieves only a Type 1 time-variant
relation. This approach requires the Dimension table have only one row for each
Surrogate Key, otherwise, the results from these tables will be multiplied by a factor
of the number of rows the Dimension table has for a duplicated Surrogate Key. The
SQL WHERE clause joins on the Thing Key field:

		 Fact.Thing Key = Dimension.Thing Key

Surrogate Key with Source Native Key—When the Surrogate Key in the Dimen-
sion table identifies the entity, but not the instance of the entity, the Source Native
Key can be used to identify an individual instance of an entity (Figure 5.13). This
method achieves a Type 2 time-variant relation without actually manipulating the
Date fields. In this example:

The Surrogate Key 123 identifies the entity Chair, but the Source Native Key
(Thing ID) must be included to identify the individual instance of Chair.
The Surrogate Key 234 identifies the entity Table, but the Source Native Key
(Thing ID) must be included to identify the individual instance of Table.

The SQL WHERE clause joins on the Thing Key and Thing ID fields:

		 Fact.Thing Key = Dimension.Thing Key
		 And Fact.Thing ID = Dimension.Thing ID

Surrogate Key with Surrogate Key Version: Type 2 Join—When the Surrogate
Key identifies the entity, but not the individual instance of an entity, a Surrogate

n

n

Thing Key Date Equipment
March 13, 2007
March 15, 2007

April 2, 2007
April 4, 2007

Seattle, WA
St Paul, MN
Tampa, FL
Reno, NV

Fact Table

Dimension Table

Fred
Susan

Joe
Alice

123
123
234
234

123
234

Chair
Table

Mahogany Chair
Victorian Table

May 1, 2002
August 27, 1993

December 31, 9999
May 1, 2007

End DateBegin DateDescriptionThingThing Key

None
Repair Kit

Finishing Kit
None

Person Place

Figure 5.12  Surrogate Key.

AU6462.indb 81 2/7/08 9:52:57 AM

82  n  Building and Maintaining a Data Warehouse

Key Version can be added (Figure 5.14). The combination of a Surrogate Key and
a Surrogate Key Version creates a compound key relation (i.e., a Primary Key/For-
eign Key relation based on multiple fields) between the Fact and Dimension tables.
This achieves a Type 2 time-variant relation. The SQL WHERE clause joins on the
Thing Key and Thing Key Version fields:

		 Fact.Thing Key = Dimension.Thing Key
		 And Fact.Thing Key Version = Dimension.Thing Key Version

Surrogate Key with Surrogate Key Version: Type 1 Join—Taking the same Fact
and Dimension tables, a Type 1 time-variant relation can be achieved if the most

 Person Place Thing Key Thing Key Version Date Equipment
 Fred Seattle, WA 123 2 March 13, 2007 None
 Susan St Paul, MN 123 3 March 15, 2007 Repair Kit
 Joe Tampa, FL 234 2 April 2, 2007 Finishing Kit
 Alice Reno, NV 234 2 April 4, 2007 None

 Thing Key Thing Key Version Thing ID Description Begin Date End Date
 123 1 Chr_A23J Mahogany Chair May 1, 2002 May 12, 2005
 123 2 Chr_A23J Pine Chair May 13, 2005 March 14, 2007
 123 3 Chr_A23J Oak Chair March 15, 2007 December 31, 9999
 123 0 Chr_A23J Oak Chair

 234 1 Tbl_89RE Victorian Table August 27, 1993 September 5, 2001
 234 2 Tbl_89RE Icelandic Table September 2, 2001 April 15, 2007
 234 3 Tbl_89RE Round Table April 16, 2007 May 1, 2007
 234 0 Tbl_89RE Round Table

Fact Table

Dimension Table

Figure 5.14  Surrogate Key with Surrogate Key Version: Type 2 join.

 Person Place Thing Key Thing ID Date Equipment
 Fred Seattle, WA 123 Chr_B42Z March 13, 2007 None
 Susan St Paul, MN 123 Chr_B35X March 15, 2007 Repair Kit
 Joe Tampa, FL 234 Tbl_74CS April 2, 2007 Finishing Kit
 Alice Reno, NV 234 Tbl_74CS April 4, 2007 None

 Thing Key Thing ID Description Begin Date End Date
 123 Chr_A23J Mahogany Chair May 1, 2002 May 12, 2005
 123 Chr_B42Z Pine Chair May 13, 2005 March 14, 2007
 123 Chr_B35X Oak Chair March 15, 2007 December 31, 9999

 234 Tbl_89RE Victorian Table August 27, 1993 September 5, 2001
 234 Tbl_74CS Icelandic Table September 2, 2001 April 15, 2007
 234 Tbl_35XX Round Table April 16, 2007 May 1, 2007

Fact Table

Dimension Table

Figure 5.13  Surrogate Key with Source Native Key.

AU6462.indb 82 2/7/08 9:52:58 AM

Database Design  n  83

recent record in the Dimension table is also written with Thing Key Version = 0
(Figure 5.15). Notice the rows with Thing Key Version = 0 are identical to the rows
with Thing Key Version = 3, except for the Begin Date and End Date fields. That
is because the third version is the most recent. The Begin Date and End Date fields
are irrelevant in the Thing Key Version = 0 rows because those rows create a Type
1 Join, meaning all of history is cast as that Join. Having included the most recent
row for each entity with Thing Key Version = 0, the SQL WHERE clause joins on
the Thing Key and Thing ID fields:

		 Fact.Thing Key = Dimension.Thing Key
		 And 0 = Dimension.Thing Key Version

Surrogate Key with Surrogate Key Version: Type 3 Join—Taking the same Fact
and Dimension tables, a Type 3 time-variant relation (Figure 5.16) can be achieved
if the historical record that is superimposed over the enterprise is written with
Thing Key Version = X.13 Notice the rows with Thing Key Version = X are identi-
cal to the rows with Thing Key Version = 1. That is because the first version is the
version that the enterprise wishes to superimpose over other entity values. Having
included the superimposed row for each entity with Thing Key Version = X, the
SQL WHERE clause joins on the Thing Key and Thing ID fields:

		 Fact.Thing Key = Dimension.Thing Key
		 And X = Dimension.Thing Key Version

The advantage of using both a Surrogate Key and Surrogate Key version is that
without any table changes, they facilitate Type 1, Type 2, and Type 3 time-variant
relations.

 Person Place Thing Key Thing Key Version Date Equipment
 Fred Seattle, WA 123 2 March 13, 2007 None
 Susan St Paul, MN 123 3 March 15, 2007 Repair Kit
 Joe Tampa, FL 234 2 April 2, 2007 Finishing Kit
 Alice Reno, NV 234 2 April 4, 2007 None

 Thing Key Thing Key Version Thing ID Description Begin Date End Date
 123 1 Chr_A23J Mahogany Chair May 1, 2002 May 12, 2005
 123 2 Chr_A23J Pine Chair May 13, 2005 March 14, 2007
 123 3 Chr_A23J Oak Chair March 15, 2007 December 31, 9999
 123 0 Chr_A23J Oak Chair

 234 1 Tbl_89RE Victorian Table August 27, 1993 September 5, 2001
 234 2 Tbl_89RE Icelandic Table September 2, 2001 April 15, 2007
 234 3 Tbl_89RE Round Table April 16, 2007 May 1, 2007
 234 0 Tbl_89RE Round Table

Fact Table

Dimension Table

Figure 5.15  Surrogate Key with Surrogate Key Version: Type 1 join.

AU6462.indb 83 2/7/08 9:52:59 AM

84  n  Building and Maintaining a Data Warehouse

Conformed Dimensions

Dimensional Data Modeling focuses on the business activities of an enterprise.
Each Fact table captures instances of a specific business event. That business event
can be a retail sales transaction, consulting contract negotiation, or completion of a
manufacturing assembly. An enterprise has many such business events. Fact tables
alone are designed to capture all business events.

Ideally, all business events in an enterprise will be able to share the same dimen-
sion tables. Consider the example in Figure 5.17 of an enterprise that manufactures
and sells a product. This Dimensional Data Model has a Fact table for each of
these business events: Manufacture and Sales. In this example, both Fact tables can
share the Product, Place, and Date Dimension tables. These shared tables are called
Conformed Dimensions.14 The Manufacture Fact table is not able to share the Store
table because the manufacturing plant is not a store.

The hierarchy of Type = Store can be abstracted out of the Store Dimension
table, yielding a Facility Dimension table (wherein rows can have Type = Store and
Type = Manufacturing Plant). The new Facility Dimension table can now be Con-
formed (i.e., shared) between the two Sales and Manufacture Fact tables, which are
displayed in Figure 5.18.

This practice of conforming dimensions so multiple Fact tables can be shared
is relevant to the discussion above of a data warehouse as a long-term investment.
A data warehouse can leverage its Dimension tables for multiple Fact tables, which
reduces the cost of owning and operating a data warehouse.

 Person Place Thing Key Thing Key Version Date Equipment
 Fred Seattle, WA 123 2 March 13, 2007 None
 Susan St Paul, MN 123 3 March 15, 2007 Repair Kit
 Joe Tampa, FL 234 2 April 2, 2007 Finishing Kit
 Alice Reno, NV 234 2 April 4, 2007 None

 Thing Key Thing Key Version Thing ID Description Begin Date End Date
 123 1 Chr_A23J Mahogany Chair May 1, 2002 May 12, 2005
 123 2 Chr_A23J Pine Chair May 13, 2005 March 14, 2007
 123 3 Chr_A23J Oak Chair March 15, 2007 December 31, 9999
 123 0 Chr_A23J Oak Chair
 123 X Chr_A23J Mahogany Chair

 234 1 Tbl_89RE Victorian Table August 27, 1993 September 5, 2001
 234 2 Tbl_89RE Icelandic Table September 2, 2001 April 15, 2007
 234 3 Tbl_89RE Round Table April 16, 2007 May 1, 2007
 234 0 Tbl_89RE Round Table
 234 X Tbl_89RE Victorian Table

Fact Table

Dimension Table

Figure 5.16  Surrogate Key with Surrogate Key Version: Type 3 join.

AU6462.indb 84 2/7/08 9:53:00 AM

Database Design  n  85

Junk Dimensions

Every enterprise has its odds and ends data. These are the data that have no hier-
archy, specific meaning, and probably no look-up reference data to provide a
description or translation. Occasionally, this odds and ends data is needed in a data
warehouse. Ralph Kimball created the concept of a Junk Dimension specifically for
this circumstance.15

Product Dimension Table
Product ID
Product Description

Store Dimension Table
Store ID ?

Sales Fact Table Store Description Manufacture Fact Table
Product ID Product ID
Store ID Place Dimension Table Plant ID
Place ID Place ID Place ID
Date ID Place Description

Date Dimension Table
Date ID
Date
Week
Month
Year
Quarter

Time ID

Figure 5.17  Store Dimensions Not Conformed.

Product Dimension Table
Product ID
Product Description

Facility Dimension Table
Facility ID
Facility Type

Sales Fact Table Store Description Manufacture Fact Table
Product ID Product ID
Store ID Place Dimension Table Plant ID
Place ID Place ID Place ID

Time IDDate ID Place Description

Date Dimension Table
Date ID
Date
Week
Month
Year
Quarter

Figure 5.18  Conformed Dimensions.

AU6462.indb 85 2/7/08 9:53:01 AM

86  n  Building and Maintaining a Data Warehouse

A Junk Dimension captures the odds and ends data of an enterprise, while
making no attempt to apply a hierarchy or categorization scheme. The method to
create a Junk Dimension is simple. Collect all such odds and ends data into a single
Dimension table. Derive all permutations of the data values. To each row assign a
sequential unique Surrogate Key, as seen in Figure 5.19.

In a Fact table that uses the odds and ends data, apply the Surrogate Key value
from the Junk Dimension row that matches the permutation of junk data to each
Fact row.

Different Grains

The bane of Dimensional Data Modeling is differing grains. This occurs when
grain of a Fact table does not match the grain of an existing Dimension table.16 The
goal is to share Dimension tables as much as possible, which contributes to the con-
sistency and power of a data warehouse. When a Dimension cannot be shared by a
specific Fact table, rather than create a Dimension table only for that Fact table, a
Bridge or Helper Table can complete the join.

Using the example in Figure 5.20, a Fact table on the left is at the Facility level
of granularity, whereas the Fact table on the right is at the Warehouse Group level
of granularity. The Facility level Fact table cannot join to Warehouse Group level
the Fact table. So, a Warehouse Group Bridge table is constructed to allow the two
Fact tables (grained at the Facility and Warehouse Group levels) to relate to each
other. Bridge tables, such as the Warehouse Group Bridge table, allow Fact tables of
different grains to combine disparate data into a single statement of information.

Multiple Results

A business may generate multiple results for a single event.17 Such instances include:

Multiple Answers: When your mechanic diagnoses three problems with your
car.

n

Surrogate Key Beagle Code Buzzer Time Congo Rule Doggie Day Everlong
 SS 1 Left Monday Y
 ASFG 1 Left Tuesday N
 GFGF 2 Right Monday Y
 F 2 Left Tuesday Y
 RR 1 Left Wednesday N
 GRT 2 Right Wednesday N
 YJ 3 Right Thursday N
 JK 3 Right Monday Y
 DH 4 Left Monday Y
 F 3 Left Wednesday N
 RR 5 Right Friday N

1
2
3
4
5
6
7
8
9

10
11

Figure 5.19  Junk Dimension.

AU6462.indb 86 2/7/08 9:53:01 AM

Database Design  n  87

Multiple Events: When one cell phone customer calls another cell phone cus-
tomer and both are billed for the same call.

In these situations, a Fact table joins to a Fact Result Set table (Figure 5.21),
which is a one-to-many join. The Fact table has its one row. The Fact Result Set
table has multiple rows, one for each result of the business event. The Fact Result
Set table then joins to Dimension tables.

Factless Fact

A business event may not necessarily transact dollars, move units of product, or
return any sort of arithmetic measurement. Business events such as these are known
as Factless Facts.18 Factless Facts do not really lack a fact, rather, they lack a mea-
surement. Business events without a measurement include:

An airplane lands
A store opens (and closes) its doors
A truck arrives at a warehouse

For Facts such as these, a Fact table contains only the Foreign Keys of the
entities involved in the business event. No measurements are manufactured or
defaulted. Rather, the Factless Fact table is allowed to exist with only Dimension
foreign keys and no measurement.

n

n

n

n

Facility Dimension Fact Table
Fact Table Corporation ID Warehouse Group Bridge Product ID
Product ID Division ID Warehouse Group ID Warehouse Group ID
Facility ID District ID Facility ID Date ID
Date ID Region ID

Facility ID

Figure 5.20  Bridge Table.

Fact Table
Facility ID Product Table
Date ID Fact Result Set Table Product ID
Fact Result Set Id Fact Result Set Id Product Description

Product ID
Action ID Action Table

Action ID
Action Description

Figure 5.21  Result Set table.

AU6462.indb 87 2/7/08 9:53:02 AM

88  n  Building and Maintaining a Data Warehouse

Snowflake Schema

Sometimes a Dimension, or part of a Dimension, is too complex or volatile to
work well in a single Dimension row. In such situations, part of the Dimension is
normalized out of the Dimension yielding a Dimension of a Dimension, or a Sub-
dimension.19 Splitting a Dimension in a Star Schema yields a Snowflake Schema
(Figure 5.22). After enough Dimensions have been split, the schema begins to
resemble a snowflake.

A Snowflake Schema is created by normalizing Dimension tables. Figure 5.23
shows the progression from a completely denormalized Facility Dimension table to
a fully normalized Facility Hierarchy. In the fully normalized Facility Hierarchy,
the Facility Dimension table is no longer necessary and is removed.

Dimensional Data Model Summary

A Dimensional Data Model answers the questions of who, what, when, where, how,
and possibly why by combining in a single Fact table row measurements (e.g., units,
volume, money, etc.) of a business event and foreign keys to Dimension tables.

Transaction
Event

Time
�ing
Place
Person
Equipment

Equipment
Dimension

Equipment
Equipment Name
Equipment
Description
Equipment Purpose

Place Dimension
Place
Place Name
Place Address
Place Purpose

�ing Dimension
�ing
�ing Name
�ing Weight
�ing Height

Person
Dimension

Person
Person Name
Person Class
Person Type

Time Dimension
Date
Time
Week
Month
Year

Place Hierarchy
Place
Place Region
Place District
Place Area

Place Usage
Place
Place Industry Code
Place Personnel
Code
Place Municipal
Code

Figure 5.22  Snowflake Schema.

AU6462.indb 88 2/7/08 9:53:03 AM

Database Design  n  89

Fact Table Facility Dimension
Facility ID Facility ID
Product ID Facility Description
Date ID Region ID

Region Description
District ID
District Description
Corporate ID
Corporate Description

Fact Table Facility Dimension Facility Table
Facility ID Facility ID Facility ID
Product ID Region ID Facility Description
Date ID District ID

Corporate ID Region Table
Region ID
Region Description

District Table
District ID
District Description

Corporate Table
Corporate ID
Corporate Description

Fact Table Facility Table
Facility ID Facility ID
Product ID Facility Description
Date ID Region ID

Region Table
Region ID
Region Description
District ID

District Table
District ID
District Description
Corporate ID

Corporate Table
Corporate ID
Corporate Description

Figure 5.23  Normalized and Denormalized Dimensions.

AU6462.indb 89 2/7/08 9:53:03 AM

90  n  Building and Maintaining a Data Warehouse

Dimension tables include in each row enough information about its hierarchy to
allow the data warehouse customer to summarize data at a higher level of that
hierarchy. Dimension tables can be shared (i.e., Conformed) to multiple Fact tables
throughout a data warehouse.

These tools (primarily Fact and Dimension tables) allow a Dimensional Data
Model to incorporate the Data Warehouse Philosophy.

Subject Orientation: A Fact table defines the subject for each section of a data
warehouse.
Data Integration: Conformed Dimension tables express entity information in
the same form, function, and grain across the data warehouse.
Nonvolatility: New rows can be added to Fact and Dimension tables without
destroying existing rows.
Time Variant: Dimension tables allow Fact tables to join to historical Dimen-
sion rows in the past.
One Version of the Truth: A Fact table that captures a business event is the
only Fact table to capture that business event. A Dimension table that captures
a hierarchy is the only Dimension table to capture that hierarchy.
Long-Term Investment: The Type and Purpose of an entity can be explicitly
expressed in a Dimension. The Role of an entity can be explicitly expressed
in a Fact table. The resulting flexibility allows a data warehouse to pres-
ent enterprise activity over a significant period of time without significant
modifications.

Third Normal Form Data Model

In the early days of data warehousing, early developers of decision support systems
used the best methods they had available to them. The best, and arguably only,
method of modeling data in a RDBMS was the Third Normal Form.20 The devel-
opers’ knowledge and methods of Third Normal Form were based on their experi-
ence, which occurred in operational relational databases. Their toolset was limited
by the RDBMS optimizers that were available. They could only ask an optimizer to
perform SQL functions that it could interpret.

During the 1990s, advances in computer science and technology increased the
functions available in RDBMS optimizers. Data warehouse developers could ask a
RDBMS optimizer to perform logical, mathematical, and statistical functions far
more powerful than had been available in 1980. Another event occurred during the
1990s that changed data warehousing: Ralph Kimball introduced the Dimensional
Data Model. Kimball used the Dimensional Data Model to solve shortcomings of
Third Normal Form data warehouses. Primary among these shortcomings were:

n

n

n

n

n

n

AU6462.indb 90 2/7/08 9:53:03 AM

Database Design  n  91

Third Normal Form data warehouses do not model a business or subject area,
they model relationships between data elements instead.
Third Normal Form data warehouse structures are too erratic and scattered
to be easily understood or optimized.21

While these complaints were valid, their effect was probably not what Ralph
Kimball intended. While some data warehouses incorporated a Dimensional Data
Model, others incorporated the Fact and Dimension concepts from the Dimen-
sional Data Model into the Third Normal Form data model. By the end of the
1990s, these two changes (improvements in RDBMS optimizers and Dimensional
Data Modeling) made possible Third Normal Form data warehouses, which incor-
porated the Fact and Dimension concepts, running on optimizers that could per-
form the required SQL functions.

A Third Normal Form data warehouse uses data structures that are normalized
to the Third Normal Form. The result is many small tables rather than a few large
tables, and many table joins rather than a few table joins. This is a trade-off between
the number of tables and the number of joins. A Third Normal Form physical data
model looks like the data model in Figure 5.24. At the top is a Fact table: Transac-
tion Header. Below that table are a series of normalized Fact tables: Transaction
Time, Transaction Thing, Transaction Place, and Transaction Person. These tables
incorporate the entities that were identified in the Logical Data Model. Typically,
those entities include:

Time: An event happens at a moment in time.
Place: An event happens in a place or space.
Person: People are usually involved in an event.
Thing: An event is often focused on or around an object.
Equipment: Participants in an event often use a tool or equipment.
How: The action that was performed.
Why: Sometimes, but not always, a reason for the action is provided.

Third Normal Form Fact Tables

The rules of normalization remove redundant data elements. Typically, enterprise
events generate a fair amount of redundant data. For example, the insurance trans-
action in Figure 5.25 has four rows and nine columns.

Of these nine columns, the first six are completely redundant because all four
rows have the same values in the Facility, Date, Time, Agent, Type, and Transac-
tion # columns. These six columns can be normalized. They are reduced to one
column and placed in a Fact Header table.

The remaining fields are placed in a Fact Detail table (Figure 5.26). The Fact
Header and Fact Detail table join on the Transaction # and Policy Number fields.

n

n

n
n
n
n
n
n
n

AU6462.indb 91 2/7/08 9:53:04 AM

92  n  Building and Maintaining a Data Warehouse

Tr
an

sa
ct

io
n

H
ea

de
r

Tr
an

sa
ct

io
n_

ID

Tr
an

sa
ct

io
n

Ti
m

e
D

at
e

Ti
m

e

Tr
an

sa
ct

io
n

�
in

g
�

in
g

Tr
an

sa
ct

io
n

Pl
ac

e
Pl

ac
e

Tr
an

sa
ct

io
n

Pe
rs

on
Pe

rs
on

Tr
an

sa
ct

io
n

Eq
ui

pm
en

t
Eq

ui
pm

en
t

Ca
le

nd
ar

 Y
ea

r
Ye

ar
Ti

m
e O

f D
ay

Ti
m

e

Ca
le

nd
ar

 M
on

th
M

on
th

Ca
le

nd
ar

 W
ee

k
W

ee
k

Ca
le

nd
ar

 D
at

e
D

at
e

W
ei

gh
t

�
in

g
W

ei
gh

t

�
in

g
�

in
g

H
ei

gh
t

�
in

g
H

ei
gh

t

Pl
ac

e
Pl

ac
e

Pu
rp

os
e

Pl
ac

e P
ur

po
se

Eq
ui

pm
en

t P
ur

po
se

A
dd

re
ss

Pl
ac

e A
dd

re
ss

Eq
ui

pm
en

t
Eq

ui
pm

en
t

D
es

cr
ip

tio
n

Eq
ui

pm
en

t D
es

cr
ip

tio
n

N
am

e
�

in
g

N
am

e
Pl

ac
e N

am
e

Eq
ui

pm
en

t N
am

e
Pe

rs
on

 N
am

e

Pe
rs

on
Pe

rs
on

Cl
as

s
Pe

rs
on

 C
la

ss

Ty
pe

Pe
rs

on
 T

yp
e

Fi
gu

re
 5

.24 

Th
ir

d
N

or
m

al
 F

or
m

 d
at

a
m

od
el

.

AU6462.indb 92 2/7/08 9:53:04 AM

Database Design  n  93

With this change, each row in the Fact Header table represents an individual trans-
action and each row in the Fact Detail table represents each individual person
who is insured. These Fact Header and Fact Detail tables demonstrate the use of
normalization to remove redundancy and expose multiple grains of data within a
single enterprise event.

Third Normal Form Fact tables also introduce a level of flexibility. Figure 5.27
shows the addition of another enterprise event: the customer made a payment for
the insurance policy. The payment includes a new row in the Fact Header table and
a new row in the Fact Payment table. The relational joins from these transactions
include:

The Fact Header Payment joins to the Fact Header New on Policy Number.
The Fact Header Payment joins to the Fact Detail on Policy Number.
The Fact Header Payment joins to the Fact Payment on Policy Number and
Transaction #.
The Fact Payment Amt joins to the Fact Detail on Policy Number.

This example demonstrates the flexibility of Third Normal Form Fact tables to
present all the grains of an enterprise event by isolating each individual grain of an
enterprise event in its own normalized Fact table. In this example, the grains are:

Unique individual transactions
Unique individual persons insured
Unique individual payments

This example could also include:

Claims
Claims Details
Claims Payments
Renewals
Changes in persons insured

n

n

n

n

n

n

n

n

n

n

n

n

Facility Date Time Agent Type Transaction # Policy Number Insured Relation
1357 05/12/1997 13:35 Fred New 051297-132 AB-2324-01 Jane Doe Primary
1357 05/12/1997 13:35 Fred New 051297-132 AB-2324-02 John Doe Husband
1357 05/12/1997 13:35 Fred New 051297-132 AB-2324-03 Janice Doe Daughter
1357 05/12/1997 13:35 Fred New 051297-132 AB-2324-04 Mark Doe Son

Fact Table – Insurance Sales Event

Figure 5.25  Sales Event.

AU6462.indb 93 2/7/08 9:53:05 AM

94  n  Building and Maintaining a Data Warehouse

Fa
ci

lit
y

D
at

e
Ti

m
e

A
ge

nt

Ty
pe

Tr

an
sa

ct
io

n

Po
lic

y
N

um
be

r
Po

lic
y

N
um

be
r

Tr
an

sa
ct

io
n

In

su
re

d
Re

la
tio

n
13

57

05
/1

2/
19

97

13
:3

5
Fr

ed

N
ew

05

12
97

-1
32

A

B-
23

24
A

B-
23

24
-0

2
05

12
97

-1
32

Jo

hn
 D

oe

H
us

ba
nd

A
B-

23
24

-0
1

05
12

97
-1

32

Ja
ne

 D
oe

Pr

im
ar

y

A
B-

23
24

-0
3

05
12

97
-1

32

Ja
ni

ce
 D

oe

D
au

gh
te

r
A

B-
23

24
-0

4
05

12
97

-1
32

M

ar
k

D
oe

So

n

Fa
ct

 T
ab

le
 –

 S
al

es
 E

ve
nt

 H
ea

de
r

Fa
ct

 T
ab

le
 –

 S
al

es
 E

ve
nt

 D
et

ai
l

Fi
gu

re
 5

.26 

Sa
le

s
Ev

en
t

D
et

ai
l.

Fa
ci

lit
y

D
at

e
Ti

m
e

A
ge

nt

Ty
pe

Tr

an
sa

ct
io

n

Po
lic

y
N

um
be

r
Po

lic
y

N
um

be
r

Tr
an

sa
ct

io
n

In

su
re

d
Re

la
tio

n
13

57

05
/1

2/
19

97

13
:3

5
Fr

ed

N
ew

05

12
97

-1
32

A

B-
23

24
13

57

06
/0

1/
19

97

14
:2

1
Fr

ed

Pm
t

06
01

97
-1

14

A
B-

23
24

A
B-

23
24

-0
2

05
12

97
-1

32

Jo
hn

 D
oe

H

us
ba

nd
A

B-
23

24
-0

1
05

12
97

-1
32

Ja

ne
 D

oe

Pr
im

ar
y

A
B-

23
24

-0
3

05
12

97
-1

32

Ja
ni

ce
 D

oe

D
au

gh
te

r
A

B-
23

24
-0

4
05

12
97

-1
32

M

ar
k

D
oe

So

n

Po
lic

y
N

um
be

r
Tr

an
sa

ct
io

n

Pa
ym

en
t A

m
t

A
B-

23
24

06

01
97

-1
14

$7

4.
50

Fa
ct

 T
ab

le
 –

 S
al

es
 E

ve
nt

 H
ea

de
r

Fa
ct

 T
ab

le
 –

 S
al

es
 E

ve
nt

 D
et

ai
l

Fa
ct

 T
ab

le
 –

 S
al

es
 E

ve
nt

 P
ay

m
en

t

Fi
gu

re
 5

.27 

Sa
le

s
Ev

en
t

Pa
ym

en
t.

AU6462.indb 94 2/7/08 9:53:06 AM

Database Design  n  95

In a Dimensional Data Model, Fact tables can never be joined together. The
same is true of Third Normal Form Fact tables—individual facts cannot be joined
to each other. But, this example looks like we can join multiple Facts to each other.
The distinction is that all the rows in Figure 5.27 are one transaction; a transac-
tion that will take a year to complete. Compare an insurance sales transaction to a
convenience store sales transaction. In both cases:

A customer selects a product
An insurance policy
A soft drink

An agent of the enterprise records that selection
An insurance agent writes a policy
A cashier rings up the soft drink

The customer pays for the product
Twelve installment payments of $74.50 each
$0.89 (including tax)

The customer receives the product
A term life insurance policy for four people for one year
A soft drink

The sales transaction in the convenience store happens much faster than the insur-
ance sales transaction. Regardless, that convenience store sales transaction cannot be
joined to any other convenience store sales transaction and the insurance sales transac-
tion cannot be joined to any other insurance sales transaction.

Figure 5.27 demonstrates the ability of Third Normal Form Fact tables to func-
tion together as a logical unit. The data in the three tables could be denormalized
into Dimensional Data Model Fact tables or remain as normalized Third Normal
Form Fact tables. The data in both forms is the same. A cohesive set of Third Nor-
mal Form Fact tables function as a logical unit, even though they are individual
and separate. In the minds of a data warehouse designer and data warehouse cus-
tomers, they are a logical unit. They will be queried as a logical unit. They will be
joined to Third Normal Form Dimension tables as a logical unit.

Third Normal Form Dimension Tables

Third Normal Form Dimension tables demonstrate the purest form of normaliza-
tion. The Facility/Region/District/Corporate dimension tables in Figure 5.23 show
the normalization of a hierarchy. In the first frame, the entire hierarchy is denor-
malized into one row. In the last frame, the entire hierarchy is normalized into a
Facility table, Region table, District table, and Corporate table.

The individual dimension tables (Facility, Region, District, and Corporate) func-
tion together to express the geography of the enterprise. These four tables function

n
−
−

n
−
−

n
−
−

n
−
−

AU6462.indb 95 2/7/08 9:53:06 AM

96  n  Building and Maintaining a Data Warehouse

as a logical unit, combining to express the Geography dimension. Regardless of
whether the Facility, Region, District, and Corporate data elements are captured
in a single row or multiple tables, the data is still the same. A cohesive set of Third
Normal Form Dimension tables function as a logical unit, even though they are
individual and separate. In the minds of a data warehouse designer and data ware-
house customers, they are a logical unit. They will be queried as a logical unit.

A Fact table joining to this logical Geography dimension is subject to the same
hierarchical constraint that binds Dimensional Data Model dimensions—the low-
est relevant hierarchical level is the level at which it joins with the Fact table. If a
Fact table joins to the Region table but not the Facility table, then the Facility table
(which is hierarchically lowest) is not relevant to that Fact table. The arithmetic
data in a Fact table can be summed up (a hierarchy), but not summed down (a
hierarchy).

Third Normal Form Conformed Dimension Tables

A cohesive set of Third Normal Form Dimension tables that function as a logical
unit can be shared by Fact tables throughout the data warehouse. The concept of
Conformed Dimensions, which originated in Dimensional Data Modeling, applies
to Third Normal Form data modeling. The benefit is the same: reduced redun-
dancy, storage capacity, cost of ownership, and increased ROI. The limitation is
also the same: Fact tables must match the grain of Conformed Dimension tables
to leverage them.
Denormalized Third Normal Form Dimension Tables—Occasionally, a set of
Third Normal Form dimension tables can be denormalized into one row. This is
usually done for one of two reasons:

Performance: If a RDBMS optimizer has difficulty creating an optimal query
path, prejoining a logical set of dimension tables into a single table may give
the RDBMS optimizer the help it needs.
Confusion: If data warehouse customers have difficulty in successfully join-
ing all the tables in a logical set of dimension tables, a view can be created
which prejoins those tables.

Neither of these approaches constitutes an abandonment of Third Normal
Form. Nor does it mean a data warehouse has just been converted into a data mart.
The occasional denormalized dimension is a symptom of a healthy data warehouse.
If no one was using the data warehouse, the RDBMS optimizer would be able to
join the tables quickly and they would confuse no one.

n

n

AU6462.indb 96 2/7/08 9:53:06 AM

Database Design  n  97

Third Normal Form Joins Strategies

In a Third Normal Form data warehouse, joining a Fact table to a Dimension
includes an additional challenge: Join all the normalized dimension tables in a time-
variant data warehouse. A Fact row can join to the hierarchically lowest dimension
table. But, after that, the challenge is to join up through normalized dimension
tables. A Fact table joins to Table 6,

			 which has to join to Table 5,
				 which has to join to Table 4,
					 which has to join to Table 3,
						 which has to join to Table 2,
							 which has to join to Table 1

to allow the aggregation and summary of the Fact data by an attribute of Table 1,
without creating the multiplicative effect caused by incorrectly joining tables. Flex-
ibility has a cost. In a Third Normal Form data warehouse, the cost of the Third
Normal Form’s flexibility is the risk of creating the multiplicative effect caused by
incorrectly joining tables and the mitigation of that risk.
Source Native Key—This method, demonstrated in Figure 5.28, uses a key value
from the source system. In this example, a Fact table captures seven events. One
event references Thing Key VC12, three events reference Thing Key LC32, and
three events reference Thing Key AC23. Thing Key VC12 is associated with Comp
Key Wd and Type Key Chr. Thing Key LC32 is associated with Comp Key Wd
and Type Key Chr_H. Thing Key AC23 is associated with Comp Key FG and Type
Key Chr.

These associations are achieved via associative tables. In this example, the enti-
ties Thing, Composition, and Type are normalized into their own tables. The asso-
ciations between these tables are also normalized into their own tables. In some
Third Normal Form data models such associations can be embedded in a subor-
dinate table. The subordinate table in Figure 5.28 is the Thing table. The primary
keys of the Composition and Type tables can be embedded as foreign keys in the
Thing table. While this can be done, it would negate some of the flexibility of a
Third Normal Form data model. By normalizing Entities into Dimension tables,
Relations into Associative tables, and Attributes into Dimension Attribute tables, a
Third Normal Form allows a data warehouse designer to adjust the data warehouse
as the enterprise changes.

While this method is simplest and easiest to create, it yields only a Type 1
time-variant relation. If the description of Thing, Composition, or Type changes,
all the events in the Fact table will be associated with the updated value. This is
the behavior of Type 1 time variant data—all history is restated using data values
currently in effect.

The Source Native Key method works well when the uniqueness of the keys is
enforced by the source system, which implicitly means the data warehouse extracts

AU6462.indb 97 2/7/08 9:53:06 AM

98  n  Building and Maintaining a Data Warehouse

Co
m

p
K

ey

Co
m

p
D

es
cr

ip
tio

n
W

d
W

oo
d

FG

Fi
ne

 G
ra

in
 W

oo
d

�
in

g
K

ey

Co
m

p
K

ey
VC

12

W
d

LC
32

W

d
Ev

en
t D

at
e

Ev
en

t Q
ua

nt
ity

�

in
g

K
ey

�
in

g
K

ey

�
in

g
D

es
cr

ip
tio

n
A

C2
3

FG
05

/1
0/

20
07

3

VC
12

VC
12

Vi

ct
or

ia
n

Ch
ai

r
05

/1
1/

20
07

5

LC
32

LC
32

Lo

ui
s I

V
Ch

ai
r

05
/1

2/
20

07

6
LC

32
A

C2
3

A
rt

s &
 C

ra
fts

 C
ha

ir
�

in
g

K
ey

Ty

pe
 K

ey
05

/1
3/

20
07

3

LC
32

VC
12

Ch

r
05

/1
4/

20
07

5

A
C2

3
LC

32

Ch
r_

H
05

/1
5/

20
07

7

A
C2

3
A

C2
3

Ch
r

05
/1

6/
20

07

3
A

C2
3

Ty
pe

 K
ey

Ty

pe
 D

es
cr

ip
tio

n
Ch

r
Ch

ai
r

Ch
r_

H

H
ig

h-
ba

ck
 C

ha
ir

TY
PE

 A
SS

O
CI

A
TI

V
E

TA
BL

E

TY
PE

 T
A

BL
E

CO
M

PO
SI

TI
O

N
 T

A
BL

E

CO
M

PO
SI

TI
O

N
 A

SS
O

CI
A

TI
V

E
TA

BL
E

FA
C

T
TA

BL
E

TH
IN

G
 T

A
BL

E

Fi
gu

re
 5

.28 

So
ur

ce
 N

at
iv

e
K

ey
.

AU6462.indb 98 2/7/08 9:53:07 AM

Database Design  n  99

its dimension data from only one source system. If, however, a data warehouse
extracts its dimension data from multiple source systems, the Source Native Key
method fails because it does not integrate the dimension data from multiple dis-
parate source systems. When a data warehouse extracts dimension data from dis-
parate source systems, the disparate Source Native Keys must be integrated into a
single set of keys : Surrogate Keys.
 Surrogate Key—In a data warehouse that must represent disparate source sys-
tems, Surrogate Keys are used to combine and conform entity keys, which are not
coordinated in the enterprise. For example, the enterprise manufactures furniture.
The parent company manufactures Victorian Chairs (Thing Key = ASDSA-2328)
and Louis IV Chairs (Thing Key = AGGSD-82732). The newly acquired subsidiary
company manufactures Louis IV Chairs (Thing Key = Mom’s Favorite Chair) and
Arts and Crafts Chairs (Thing Key = Dad Made This Chair). These source native
keys simultaneously represent an overlapping entity (Louis IV Chair) and dissimi-
lar keys. Figure 5.29 shows how these overlapping entities and dissimilar keys can
be combined and conformed into a single uniform set of keys. The uniform set of
Surrogate Keys allows data warehouse customers to query across the data ware-
house without encountering the overlapping and dissimilar keys from the parent
and subsidiary companies.

Source Native Key with Dates

Having established the Fact (Fact Table), Dimension (Thing Table), Dimen-
sion Attribute (Composition Table and Type Table), and Associative (Composition
Associative Table and Type Associative Table) tables, the next step is to add Time.
Figure 5.30 shows the added Begin Date and End Date fields. Begin Date identifies
the first date for which the data in a row is active. End Date identifies the last date
for which the data in a row is active.

Figure 5.30 demonstrates the challenge of a time-variant Third Normal Form
data model. The Begin Date and End Date fields of associated Dimension and
Dimension Attribute tables never all coincide to the same dates. Instead, Begin and
End Dates from one table overlap, surround, and bisect the Begin and End Dates
from every other table. For example, the Event on May 10 in the Fact Table will join
to two rows in the Composition Associative Table, which will join to three rows in
the Composition Table. The Event on May 11 in the Fact table will join to one row
in the Type Associative Table, which will join to two rows in the Type Table. Left
to run amok in this way, this data model will multiply every row in the Fact Table
by a factor of at least three, probably four.

The solution to this conundrum is to qualify all tables on one single date. The
Fact table provides that one single date for each join. Even though a RDBMS
returns data in sets, it actually joins data in rows. Each Fact table row provides the
one single date (the Event Date), which will limit all the Dimension, Dimension

AU6462.indb 99 2/7/08 9:53:07 AM

100  n  Building and Maintaining a Data Warehouse

Co
m

p
K

ey

Co
m

p
D

es
cr

ip
tio

n
1

W
oo

d
2

Fi
ne

 G
ra

in
 W

oo
d

�
in

g
Su

rr
 K

ey

Co
m

p
K

ey
1

1
2

1
Ev

en
t D

at
e

Ev
en

t Q
ua

nt
ity

�

in
g

Su
rr

 K
ey

�
in

g
Su

rr
 K

ey

�
in

g
D

es
cr

ip
tio

n
3

2
05

/1
0/

20
07

3

1
1

Vi
ct

or
ia

n
Ch

ai
r

05
/1

1/
20

07

5
2

2
Lo

ui
s I

V
Ch

ai
r

05
/1

2/
20

07

6
2

3
A

rt
s &

 C
ra

fts
 C

ha
ir

�
in

g
K

ey

Ty
pe

 K
ey

05
/1

3/
20

07

3
2

1
1

05
/1

4/
20

07

5
3

2
2

05
/1

5/
20

07

7
3

3
2

05
/1

6/
20

07

3
3

Ty
pe

 K
ey

Ty

pe
 D

es
cr

ip
tio

n
1

Ch
ai

r
2

H
ig

h-
ba

ck
 C

ha
ir

A
SS

O
CI

A
TI

V
E

TA
BL

E

TY
PE

 T
A

BL
E

CO
M

PO
SI

TI
O

N
 T

A
BL

E

A
SS

O
CI

A
TI

V
E

TA
BL

E

FA
CT

 T
A

BL
E

TH
IN

G
 T

A
BL

E

Fi
gu

re
 5

.29 

Su
rr

og
at

e
K

ey
.

AU6462.indb 100 2/7/08 9:53:08 AM

Database Design  n  101

Co
m

p
K

ey

C
om

p
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

W
d

W
oo

d
04

/0
1/

20
07

05

/1
1/

20
07

W
d

W
oo

d
(s

of
t)

05
/1

2/
20

07

12
/3

1/
99

99
FG

Fi

ne
 G

ra
in

 W
oo

d
04

/1
4/

20
07

05

/1
5/

20
07

FG

Fi
ne

 G
ra

in
 W

oo
d

(n
or

th
er

n)

05
/1

6/
20

07

12
/3

1/
99

99

�
in

g
K

ey

C
om

p
K

ey

Be
gi

n
D

at
e

En
d

D
at

e
VC

12

W
d

04
/0

1/
20

07

05
/1

3/
20

07
VC

12

FG

05
/1

4/
20

07

12
/3

1/
99

99
Ev

en
t D

at
e

Ev
en

t Q
ua

nt
ity

�

in
g

K
ey

�
in

g
K

ey

�
in

g
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

LC
32

W

d
04

/0
1/

20
07

12

/3
1/

99
99

A
C2

3
FG

04

/0
1/

20
07

12

/3
1/

99
99

05
/1

0/
20

07

3
VC

12
VC

12

Vi
ct

or
ia

n
Ch

ai
r

01
/1

5/
20

07

12
/3

1/
99

99
05

/1
1/

20
07

5

LC
32

LC
32

Lo

ui
s I

V
Ch

ai
r

02
/1

7/
20

07

12
/3

1/
99

99
05

/1
2/

20
07

6

LC
32

A
C2

3
A

rt
s &

 C
ra

fts
 C

ha
ir

02
/1

9/
20

07

05
/1

5/
20

07
05

/1
3/

20
07

3

LC
32

A
C2

3
N

ew
 A

rt
s &

 C
ra

fts
 C

h
05

/1
6/

20
07

12

/3
1/

99
99

�
in

g
K

ey

Ty
pe

 K
ey

Be

gi
n

D
at

e
En

d
D

at
e

05
/1

4/
20

07

5
A

C2
3

VC
12

Ch

r
03

/1
5/

20
07

05

/1
2/

20
07

05
/1

5/
20

07

7
A

C2
3

VC
12

Ch

r_
H

05

/1
3/

20
07

12

/3
1/

99
99

05
/1

6/
20

07

3
A

C2
3

LC
32

Ch

r_
H

03

/0
1/

20
07

12

/3
1/

99
99

A
C2

3
Ch

r
03

/1
2/

20
07

05

/1
4/

20
07

A
C2

3
Ch

r_
H

05

/1
5/

20
07

12

/3
1/

99
99

Ty
pe

 K
ey

Ty

pe
 D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

Ch
r

Ch
ai

r
04

/0
1/

20
07

05

/1
4/

20
07

Ch
r

Ch
ai

r w
/a

rm
s

05
/1

5/
20

07

12
/3

1/
99

99
Ch

r_
H

H

ig
h-

ba
ck

 C
ha

ir
03

/1
6/

20
07

05

/1
1/

20
07

Ch
r_

H

H
ig

h-
ba

ck
 C

ha
ir

w
/a

rm
s

05
/1

2/
20

07

12
/3

1/
99

99

TY
PE

 A
SS

O
C

IA
TI

V
E

TA
BL

E

C
O

M
PO

SI
TI

O
N

 T
A

BL
E

C
O

M
PO

SI
TI

O
N

 A
SS

O
C

IA
TI

V
E

TA
BL

E

FA
CT

 T
A

BL
E

TH
IN

G
 T

A
BL

E

TY
PE

 T
A

BL
E

Fi
gu

re
 5

.3
0 

So
ur

ce
 N

at
iv

e
K

ey
 w

it
h

D
at

es
.

AU6462.indb 101 2/7/08 9:53:08 AM

102  n  Building and Maintaining a Data Warehouse

Attribute, and Associative rows that will join to that Fact row. The following SQL
illustrates this method:

	 SELECT
	 FACT TABLE.EVENT DATE
	 , FACT TABLE.EVENT QUANTITY
	 , FACT TABLE.THING KEY
	 , THING TABLE.THING DESCRIPTION
	 , COMPOSITION TABLE.COMP KEY
	 , COMPOSITION TABLE.COMP DESCRIPTION
	 , TYPE TABLE.TYPE KEY
	 , TYPE TABLE.TYPE DESCRIPTION
	 FROM
	 FACT TABLE A
	 INNER JOIN THING TABLE B
	 ON A.THING KEY = B.THING KEY
	 AND A.EVENT DATE BETWEEN B.BEGIN DATE AND B.END DATE
	 INNER JOIN COMPOSITION ASSOCIATIVE TABLE C
	 ON B.THING KEY = C.THING KEY
	 AND A.EVENT DATE BETWEEN C.BEGIN DATE AND C.END DATE
	 INNER JOIN COMPOSITION TABLE D
	 ON C.COMP KEY = D.COMP KEY
	 AND A.EVENT DATE BETWEEN D.BEGIN DATE AND D.END DATE
	 INNER JOIN TYPE ASSOCIATIVE TABLE E
	 ON B.THING KEY = E.THING KEY
	 AND A.EVENT DATE BETWEEN E.BEGIN DATE AND E.END DATE
	 INNER JOIN TYPE TABLE F
	 ON E.TYPE KEY = F.TYPE KEY
	 AND A.EVENT DATE BETWEEN F.BEGIN DATE AND F.END DATE

A Fact table can also be a Summary or Snapshot table. Summary and Snapshot
tables represent a multiperiod range of time. For example, a Weekly Summary is a
cumulative representation of all Events within a week or a Daily Snapshot is the net
effect of all Events within a day. Summary and Snapshot tables remove some of the
granular detail, usually Time, from their underlying Event data. By design, there-
fore, Summary and Snapshot tables usually represent Time with reduced granular
detail. To make this time-variant method succeed with Summary and Snapshot
tables, a point in time must be chosen when joining with time-variant Dimension,
Dimension Attribute, and Associative tables. That point in time may be the initial
moment of the time range or the final moment of the time range included in a
Summary or Snapshot table. Either way, the choice must be consistent throughout
all Summary and Snapshot tables in a data warehouse.

Figure 5.31 demonstrates the time-variant effect of joining with the WHERE
clause “Where Event Date between Begin Date and End Date” in the first Event
row.

AU6462.indb 102 2/7/08 9:53:09 AM

Database Design  n  103

Co
m

p
K

ey

C
om

p
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

W
d

W
oo

d
04

/0
1/

20
07

05

/1
1/

20
07

W
d

W
oo

d
(s

of
t)

05
/1

2/
20

07

12
/3

1/
99

99
FG

Fi

ne
 G

ra
in

 W
oo

d
04

/1
4/

20
07

05

/1
5/

20
07

FG

Fi
ne

 G
ra

in
 W

oo
d

(n
or

th
er

n)

05
/1

6/
20

07

12
/3

1/
99

99

�
in

g
K

ey

C
om

p
K

ey

Be
gi

n
D

at
e

En
d

D
at

e
VC

12

W
d

04
/0

1/
20

07

05
/1

3/
20

07
VC

12

FG

05
/1

4/
20

07

12
/3

1/
99

99
Ev

en
t D

at
e

Ev
en

t Q
ua

nt
ity

�

in
g

K
ey

�
in

g
K

ey

�
in

g
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

LC
32

W

d
04

/0
1/

20
07

12

/3
1/

99
99

05
/1

0/
20

07

3
VC

12
VC

12

Vi
ct

or
ia

n
Ch

ai
r

01
/1

5/
20

07

12
/3

1/
99

99
A

C2
3

FG

04
/0

1/
20

07

12
/3

1/
99

99
05

/1
1/

20
07

5

LC
32

LC
32

Lo

ui
s I

V
Ch

ai
r

02
/1

7/
20

07

12
/3

1/
99

99
05

/1
2/

20
07

6

LC
32

A
C2

3
A

rt
s &

 C
ra

fts
 C

ha
ir

02
/1

9/
20

07

05
/1

5/
20

07
05

/1
3/

20
07

3

LC
32

A
C2

3
N

ew
 A

rt
s &

 C
ra

fts
 C

h
05

/1
6/

20
07

12

/3
1/

99
99

�
in

g
K

ey

Ty
pe

 K
ey

Be

gi
n

D
at

e
En

d
D

at
e

05
/1

4/
20

07

5
A

C2
3

VC
12

Ch

r
03

/1
5/

20
07

05

/1
2/

20
07

05
/1

5/
20

07

7
A

C2
3

VC
12

Ch

r_
H

05

/1
3/

20
07

12

/3
1/

99
99

05
/1

6/
20

07

3
A

C2
3

LC
32

Ch

r_
H

03

/0
1/

20
07

12

/3
1/

99
99

A
C2

3
Ch

r
03

/1
2/

20
07

05

/1
4/

20
07

A
C2

3
Ch

r_
H

05

/1
5/

20
07

12

/3
1/

99
99

Ty
pe

 K
ey

Ty

pe
 D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

Ch
r

Ch
ai

r
04

/0
1/

20
07

05

/1
4/

20
07

Ch
r

Ch
ai

r w
/a

rm
s

05
/1

5/
20

07

12
/3

1/
99

99
Ch

r_
H

H

ig
h-

ba
ck

 C
ha

ir
03

/1
6/

20
07

05

/1
1/

20
07

Ch
r_

H

H
ig

h-
ba

ck
 C

ha
ir

w
/a

rm
s

05
/1

2/
20

07

12
/3

1/
99

99

TY
PE

 A
SS

O
C

IA
TI

V
E

TA
BL

E

C
O

M
PO

SI
TI

O
N

 T
A

BL
E

C
O

M
PO

SI
TI

O
N

 A
SS

O
C

IA
TI

V
E

TA
BL

E

FA
CT

 T
A

BL
E

TH
IN

G
 T

A
BL

E

TY
PE

 T
A

BL
E

Fi
gu

re
 5

.31 

Tr
an

sa
ct

io
n

O
ne

.

AU6462.indb 103 2/7/08 9:53:09 AM

104  n  Building and Maintaining a Data Warehouse

The Fact Table joins to only one row in the Thing Table (Thing Key = VC12,
Begin Date = 1/15/2007, and End Date = 12/31/9999).
The Thing Table joins to only one row in the Composition Associative Table
(Thing Key = VC12, Comp Key = Wd, Begin Date = 4/1/2007, and End Date
= 5/13/2007).
The Composition Associative Table joins to only one row in the Composition
Table (Comp Key = Wd, Begin Date = 4/1/2007, and End Date = 5/11/2007).
The Thing Table joins to only one row in the Type Associative Table (Thing
Key = VC12, Type Key = Chr, Begin Date = 3/15/2007, and End Date =
5/12/2007).
The Type Associative Table joins to only one row in the Type Table (Type Key
= Chr, Begin Date = 4/1/2007, and End Date = 5/14/2007).

Note that all of these dates surround inclusively the Event Date 5/10/2007. That
Event Date provides the time-variant orientation for all of these joins to a single
day.

Figure 5.32 demonstrates the time-variant effect of joining with the WHERE
clause “Where Event Date between Begin Date and End Date” in the second Event
row.

The Fact Table joins to only one row in the Thing Table (Thing Key = LC32,
Begin Date = 2/17/2007 and End Date = 12/31/9999).
The Thing Table joins to only one row in the Composition Associative Table
(Thing Key = LC32, Comp Key = Wd, Begin Date = 4/1/2007m and End
Date = 12/31/9999).
The Composition Associative Table joins to only one row in the Composition
Table (Comp Key = Wd, Begin Date = 4/1/2007, and End Date = 5/11/2007).
The Thing Table joins to only one row in the Type Associative Table (Thing
Key = LC32, Type Key = Chr_H, Begin Date = 3/1/2007, and End Date =
12/31/9999).
The Type Associative Table joins to only one row in the Type Table (Type Key
= Chr_H, Begin Date = 3/16/2007, and End Date = 5/11/2007).

Note that all of these dates surround inclusively the Event Date 5/11/2007. That
Event Date provides the time-variant orientation for all of these joins to a single
day.

Figure 5.33 demonstrates the time-variant effect of joining with the WHERE
clause “Where Event Date between Begin Date and End Date” in the third Event
row.

The Fact Table joins to only one row in the Thing Table (Thing Key = LC32,
Begin Date = 2/17/2007, and End Date = 12/31/9999).

n

n

n

n

n

n

n

n

n

n

n

AU6462.indb 104 2/7/08 9:53:09 AM

Database Design  n  105

Co
m

p
K

ey

C
om

p
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

W
d

W
oo

d
04

/0
1/

20
07

05

/1
1/

20
07

W
d

W
oo

d
(s

of
t)

05
/1

2/
20

07

12
/3

1/
99

99
FG

Fi

ne
 G

ra
in

 W
oo

d
04

/1
4/

20
07

05

/1
5/

20
07

FG

Fi
ne

 G
ra

in
 W

oo
d

(n
or

th
er

n)

05
/1

6/
20

07

12
/3

1/
99

99

�
in

g
K

ey

C
om

p
K

ey

Be
gi

n
D

at
e

En
d

D
at

e
VC

12

W
d

04
/0

1/
20

07

05
/1

3/
20

07
VC

12

FG

05
/1

4/
20

07

12
/3

1/
99

99
Ev

en
t D

at
e

Ev
en

t Q
ua

nt
ity

�

in
g

K
ey

�
in

g
K

ey

�
in

g
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

LC
32

W

d
04

/0
1/

20
07

12

/3
1/

99
99

05
/1

0/
20

07

3
VC

12
VC

12

Vi
ct

or
ia

n
Ch

ai
r

01
/1

5/
20

07

12
/3

1/
99

99
A

C2
3

FG

04
/0

1/
20

07

12
/3

1/
99

99
05

/1
1/

20
07

5

LC
32

LC
32

Lo

ui
s I

V
Ch

ai
r

02
/1

7/
20

07

12
/3

1/
99

99
05

/1
2/

20
07

6

LC
32

A
C2

3
A

rt
s &

 C
ra

fts
 C

ha
ir

02
/1

9/
20

07

05
/1

5/
20

07
05

/1
3/

20
07

3

LC
32

A
C2

3
N

ew
 A

rt
s &

 C
ra

fts
 C

h
05

/1
6/

20
07

12

/3
1/

99
99

�
in

g
K

ey

Ty
pe

 K
ey

Be

gi
n

D
at

e
En

d
D

at
e

05
/1

4/
20

07

5
A

C2
3

VC
12

Ch

r
03

/1
5/

20
07

05

/1
2/

20
07

05
/1

5/
20

07

7
A

C2
3

VC
12

Ch

r_
H

05

/1
3/

20
07

12

/3
1/

99
99

05
/1

6/
20

07

3
A

C2
3

LC
32

Ch

r_
H

03

/0
1/

20
07

12

/3
1/

99
99

A
C2

3
Ch

r
03

/1
2/

20
07

05

/1
4/

20
07

A
C2

3
Ch

r_
H

05

/1
5/

20
07

12

/3
1/

99
99

Ty
pe

 K
ey

Ty

pe
 D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

Ch
r

Ch
ai

r
04

/0
1/

20
07

05

/1
4/

20
07

Ch
r

Ch
ai

r w
/a

rm
s

05
/1

5/
20

07

12
/3

1/
99

99
Ch

r_
H

H

ig
h-

ba
ck

 C
ha

ir
03

/1
6/

20
07

05

/1
1/

20
07

Ch
r_

H

H
ig

h-
ba

ck
 C

ha
ir

w
/a

rm
s

05
/1

2/
20

07

12
/3

1/
99

99

TY
PE

 A
SS

O
C

IA
TI

V
E

TA
BL

E

TY
PE

 T
A

BL
E

C
O

M
PO

SI
TI

O
N

 T
A

BL
E

C
O

M
PO

SI
TI

O
N

 A
SS

O
C

IA
TI

V
E

TA
BL

E

FA
CT

 T
A

BL
E

TH
IN

G
 T

A
BL

E

Fi
gu

re
 5

.32 

Tr
an

sa
ct

io
n

Tw
o.

AU6462.indb 105 2/7/08 9:53:10 AM

106  n  Building and Maintaining a Data Warehouse

Co
m

p
K

ey

C
om

p
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

W
d

W
oo

d
04

/0
1/

20
07

05

/1
1/

20
07

W
d

W
oo

d
(s

of
t)

05
/1

2/
20

07

12
/3

1/
99

99
FG

Fi

ne
 G

ra
in

 W
oo

d
04

/1
4/

20
07

05

/1
5/

20
07

FG

Fi
ne

 G
ra

in
 W

oo
d

(n
or

th
er

n)

05
/1

6/
20

07

12
/3

1/
99

99

�
in

g
K

ey

C
om

p
K

ey

Be
gi

n
D

at
e

En
d

D
at

e
VC

12

W
d

04
/0

1/
20

07

05
/1

3/
20

07
VC

12

FG

05
/1

4/
20

07

12
/3

1/
99

99
Ev

en
t D

at
e

Ev
en

t Q
ua

nt
ity

�

in
g

K
ey

�
in

g
K

ey

�
in

g
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

LC
32

W

d
04

/0
1/

20
07

12

/3
1/

99
99

05
/1

0/
20

07

3
VC

12
VC

12

Vi
ct

or
ia

n
Ch

ai
r

01
/1

5/
20

07

12
/3

1/
99

99
A

C2
3

FG

04
/0

1/
20

07

12
/3

1/
99

99
05

/1
1/

20
07

5

LC
32

LC
32

Lo

ui
s I

V
Ch

ai
r

02
/1

7/
20

07

12
/3

1/
99

99
05

/1
2/

20
07

6

LC
32

A
C2

3
A

rt
s &

 C
ra

fts
 C

ha
ir

02
/1

9/
20

07

05
/1

5/
20

07
05

/1
3/

20
07

3

LC
32

A
C2

3
N

ew
 A

rt
s &

 C
ra

fts
 C

h
05

/1
6/

20
07

12

/3
1/

99
99

�
in

g
K

ey

Ty
pe

 K
ey

Be

gi
n

D
at

e
En

d
D

at
e

05
/1

4/
20

07

5
A

C2
3

VC
12

Ch

r
03

/1
5/

20
07

05

/1
2/

20
07

05
/1

5/
20

07

7
A

C2
3

VC
12

Ch

r_
H

05

/1
3/

20
07

12

/3
1/

99
99

05
/1

6/
20

07

3
A

C2
3

LC
32

Ch

r_
H

03

/0
1/

20
07

12

/3
1/

99
99

A
C2

3
Ch

r
03

/1
2/

20
07

05

/1
4/

20
07

A
C2

3
Ch

r_
H

05

/1
5/

20
07

12

/3
1/

99
99

Ty
pe

 K
ey

Ty

pe
 D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

Ch
r

Ch
ai

r
04

/0
1/

20
07

05

/1
4/

20
07

Ch
r

Ch
ai

r w
/a

rm
s

05
/1

5/
20

07

12
/3

1/
99

99
Ch

r_
H

H

ig
h-

ba
ck

 C
ha

ir
03

/1
6/

20
07

05

/1
1/

20
07

Ch
r_

H

H
ig

h-
ba

ck
 C

ha
ir

w
/a

rm
s

05
/1

2/
20

07

12
/3

1/
99

99

TY
PE

 A
SS

O
C

IA
TI

V
E

TA
BL

E

C
O

M
PO

SI
TI

O
N

 T
A

BL
E

C
O

M
PO

SI
TI

O
N

 A
SS

O
C

IA
TI

V
E

TA
BL

E

FA
CT

 T
A

BL
E

TH
IN

G
 T

A
BL

E

TY
PE

 T
A

BL
E

Fi
gu

re
 5

.33 

Tr
an

sa
ct

io
n

Th
re

e.

AU6462.indb 106 2/7/08 9:53:11 AM

Database Design  n  107

The Thing Table joins to only one row in the Composition Associative Table
(Thing Key = LC32, Comp Key = Wd, Begin Date = 4/1/2007, and End Date
= 12/31/9999).
The Composition Associative Table joins to only one row in the Composi-
tion Table (Comp Key = Wd, Begin Date = 5/12/2007, and End Date =
12/31/9999).
The Thing Table joins to only one row in the Type Associative Table (Thing
Key = LC32, Type Key = Chr_H, Begin Date = 3/1/2007, and End Date =
12/31/9999).
The Type Associative Table joins to only one row in the Type Table (Type Key
= Chr_H, Begin Date = 5/12/2007, and End Date = 12/31/9999).

Note that all of these dates surround inclusively the Event Date 5/12/2007. That
Event Date provides the time-variant orientation for all of these joins to a single
day.

Figure 5.34 demonstrates the time-variant effect of joining with the WHERE
clause “Where Event Date between Begin Date and End Date” in the fourth Event
row.

The Fact Table joins to only one row in the Thing Table (Thing Key = LC32,
Begin Date = 2/17/2007, and End Date = 12/31/9999).
The Thing Table joins to only one row in the Composition Associative Table
(Thing Key = LC32, Comp Key = Wd, Begin Date = 4/1/2007, and End Date
= 12/31/9999).
The Composition Associative Table joins to only one row in the Composi-
tion Table (Comp Key = Wd, Begin Date = 5/12/2007, and End Date =
12/31/9999).
The Thing Table joins to only one row in the Type Associative Table (Thing
Key = LC32, Type Key = Chr_H, Begin Date = 3/1/2007, and End Date =
12/31/9999).
The Type Associative Table joins to only one row in the Type Table (Type Key
= Chr_H, Begin Date = 5/12/2007, and End Date = 12/31/9999).

Note that all of these dates surround inclusively the Event Date 5/13/2007. That
Event Date provides the time-variant orientation for all of these joins to a single
day.

Figure 5.35 demonstrates the time-variant effect of joining with the WHERE
clause “Where Event Date between Begin Date and End Date” in the fifth Event
row.

The Fact Table joins to only one row in the Thing Table (Thing Key = AC23,
Begin Date = 2/19/2007, and End Date = 5/15/2007).

n

n

n

n

n

n

n

n

n

n

AU6462.indb 107 2/7/08 9:53:11 AM

108  n  Building and Maintaining a Data Warehouse

Co
m

p
K

ey

C
om

p
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

W
d

W
oo

d
04

/0
1/

20
07

05

/1
1/

20
07

W
d

W
oo

d
(s

of
t)

05
/1

2/
20

07

12
/3

1/
99

99
FG

Fi

ne
 G

ra
in

 W
oo

d
04

/1
4/

20
07

05

/1
5/

20
07

FG

Fi
ne

 G
ra

in
 W

oo
d

(n
or

th
er

n)

05
/1

6/
20

07

12
/3

1/
99

99

�
in

g
K

ey

C
om

p
K

ey

Be
gi

n
D

at
e

En
d

D
at

e
VC

12

W
d

04
/0

1/
20

07

05
/1

3/
20

07
VC

12

FG

05
/1

4/
20

07

12
/3

1/
99

99
Ev

en
t D

at
e

Ev
en

t Q
ua

nt
ity

�

in
g

K
ey

�
in

g
K

ey

�
in

g
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

LC
32

W

d
04

/0
1/

20
07

12

/3
1/

99
99

05
/1

0/
20

07

3
VC

12
VC

12

Vi
ct

or
ia

n
Ch

ai
r

01
/1

5/
20

07

12
/3

1/
99

99
A

C2
3

FG

04
/0

1/
20

07

12
/3

1/
99

99
05

/1
1/

20
07

5

LC
32

LC
32

Lo

ui
s I

V
Ch

ai
r

02
/1

7/
20

07

12
/3

1/
99

99
05

/1
2/

20
07

6

LC
32

A
C2

3
A

rt
s &

 C
ra

fts
 C

ha
ir

02
/1

9/
20

07

05
/1

5/
20

07
05

/1
3/

20
07

3

LC
32

A
C2

3
N

ew
 A

rt
s &

 C
ra

fts
 C

h
05

/1
6/

20
07

12

/3
1/

99
99

�
in

g
K

ey

Ty
pe

 K
ey

Be

gi
n

D
at

e
En

d
D

at
e

05
/1

4/
20

07

5
A

C2
3

VC
12

Ch

r
03

/1
5/

20
07

05

/1
2/

20
07

05
/1

5/
20

07

7
A

C2
3

VC
12

Ch

r_
H

05

/1
3/

20
07

12

/3
1/

99
99

05
/1

6/
20

07

3
A

C2
3

LC
32

Ch

r_
H

03

/0
1/

20
07

12

/3
1/

99
99

A
C2

3
Ch

r
03

/1
2/

20
07

05

/1
4/

20
07

A
C2

3
Ch

r_
H

05

/1
5/

20
07

12

/3
1/

99
99

Ty
pe

 K
ey

Ty

pe
 D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

Ch
r

Ch
ai

r
04

/0
1/

20
07

05

/1
4/

20
07

Ch
r

Ch
ai

r w
/a

rm
s

05
/1

5/
20

07

12
/3

1/
99

99
Ch

r_
H

H

ig
h-

ba
ck

 C
ha

ir
03

/1
6/

20
07

05

/1
1/

20
07

Ch
r_

H

H
ig

h-
ba

ck
 C

ha
ir

w
/a

rm
s

05
/1

2/
20

07

12
/3

1/
99

99

TY
PE

 A
SS

O
C

IA
TI

V
E

TA
BL

E

C
O

M
PO

SI
TI

O
N

 T
A

BL
E

C
O

M
PO

SI
TI

O
N

 A
SS

O
C

IA
TI

V
E

TA
BL

E

FA
CT

 T
A

BL
E

TH
IN

G
 T

A
BL

E

TY
PE

 T
A

BL
E

Fi
gu

re
 5

.34 

Tr
an

sa
ct

io
n

Fo
ur

.

AU6462.indb 108 2/7/08 9:53:12 AM

Database Design  n  109

Co
m

p
K

ey

C
om

p
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

W
d

W
oo

d
04

/0
1/

20
07

05

/1
1/

20
07

W
d

W
oo

d
(s

of
t)

05
/1

2/
20

07

12
/3

1/
99

99
FG

Fi

ne
 G

ra
in

 W
oo

d
04

/1
4/

20
07

05

/1
5/

20
07

FG

Fi
ne

 G
ra

in
 W

oo
d

(n
or

th
er

n)

05
/1

6/
20

07

12
/3

1/
99

99

�
in

g
K

ey

C
om

p
K

ey

Be
gi

n
D

at
e

En
d

D
at

e
VC

12

W
d

04
/0

1/
20

07

05
/1

3/
20

07
VC

12

FG

05
/1

4/
20

07

12
/3

1/
99

99
Ev

en
t D

at
e

Ev
en

t Q
ua

nt
ity

�

in
g

K
ey

�
in

g
K

ey

�
in

g
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

LC
32

W

d
04

/0
1/

20
07

12

/3
1/

99
99

05
/1

0/
20

07

3
VC

12
VC

12

Vi
ct

or
ia

n
Ch

ai
r

01
/1

5/
20

07

12
/3

1/
99

99
A

C2
3

FG

04
/0

1/
20

07

12
/3

1/
99

99
05

/1
1/

20
07

5

LC
32

LC
32

Lo

ui
s I

V
Ch

ai
r

02
/1

7/
20

07

12
/3

1/
99

99
05

/1
2/

20
07

6

LC
32

A
C2

3
A

rt
s &

 C
ra

fts
 C

ha
ir

02
/1

9/
20

07

05
/1

5/
20

07
05

/1
3/

20
07

3

LC
32

A
C2

3
N

ew
 A

rt
s &

 C
ra

fts
 C

h
05

/1
6/

20
07

12

/3
1/

99
99

�
in

g
K

ey

Ty
pe

 K
ey

Be

gi
n

D
at

e
En

d
D

at
e

05
/1

4/
20

07

5
A

C2
3

VC
12

Ch

r
03

/1
5/

20
07

05

/1
2/

20
07

05
/1

5/
20

07

7
A

C2
3

VC
12

Ch

r_
H

05

/1
3/

20
07

12

/3
1/

99
99

05
/1

6/
20

07

3
A

C2
3

LC
32

Ch

r_
H

03

/0
1/

20
07

12

/3
1/

99
99

A
C2

3
Ch

r
03

/1
2/

20
07

05

/1
4/

20
07

A
C2

3
Ch

r_
H

05

/1
5/

20
07

12

/3
1/

99
99

Ty
pe

 K
ey

Ty

pe
 D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

Ch
r

Ch
ai

r
04

/0
1/

20
07

05

/1
4/

20
07

Ch
r

Ch
ai

r w
/a

rm
s

05
/1

5/
20

07

12
/3

1/
99

99
Ch

r_
H

H

ig
h-

ba
ck

 C
ha

ir
03

/1
6/

20
07

05

/1
1/

20
07

Ch
r_

H

H
ig

h-
ba

ck
 C

ha
ir

w
/a

rm
s

05
/1

2/
20

07

12
/3

1/
99

99

TY
PE

 A
SS

O
C

IA
TI

V
E

TA
BL

E

C
O

M
PO

SI
TI

O
N

 T
A

BL
E

C
O

M
PO

SI
TI

O
N

 A
SS

O
C

IA
TI

V
E

TA
BL

E

FA
CT

 T
A

BL
E

TH
IN

G
 T

A
BL

E

TY
PE

 T
A

BL
E

Fi
gu

re
 5

.35 

Tr
an

sa
ct

io
n

Fi
ve

.

AU6462.indb 109 2/7/08 9:53:12 AM

110  n  Building and Maintaining a Data Warehouse

The Thing Table joins to only one row in the Composition Associative Table
(Thing Key = AC23, Comp Key = FG, Begin Date = 4/1/2007, and End Date
= 12/31/9999).
The Composition Associative Table joins to only one row in the Composition
Table (Comp Key = FG, Begin Date = 4/14/2007, and End Date = 5/15/2007).
The Thing Table joins to only one row in the Type Associative Table (Thing
Key = AC23, Type Key = Chr, Begin Date = 3/12/2007, and End Date =
5/14/2007).
The Type Associative Table joins to only one row in the Type Table (Type Key
= Chr, Begin Date = 4/1/2007, and End Date = 5/14/2007).

Note that all of these dates surround inclusively the Event Date 5/14/2007. That
Event Date provides the time-variant orientation for all of these joins to a single
day.

Figure 5.36 demonstrates the time-variant effect of joining with the WHERE
clause “Where Event Date between Begin Date and End Date” in the sixth Event
row.

The Fact Table joins to only one row in the Thing Table (Thing Key = AC23,
Begin Date = 2/19/2007, and End Date = 5/15/2007).
The Thing Table joins to only one row in the Composition Associative Table
(Thing Key = AC23, Comp Key = FG, Begin Date = 4/1/2007, and End Date
= 12/31/9999).
The Composition Associative Table joins to only one row in the Composition
Table (Comp Key = FG, Begin Date = 4/14/2007, and End Date = 5/15/2007).
The Thing Table joins to only one row in the Type Associative Table (Thing
Key = AC23, Type Key = Chr_H, Begin Date = 5/15/2007, and End Date =
12/31/9999).
The Type Associative Table joins to only one row in the Type Table (Type Key
= Chr_H, Begin Date = 5/12/2007, and End Date = 12/31/9999).

Note that all of these dates surround inclusively the Event Date 5/15/2007. That
Event Date provides the time-variant orientation for all of these joins to a single
day.

Figure 5.37 demonstrates the time-variant effect of joining with the WHERE
clause “Where Event Date between Begin Date and End Date” in the seventh Event
row.

The Fact Table joins to only one row in the Thing Table (Thing Key = AC23,
Begin Date = 5/16/2007, and End Date = 12/31/9999).
The Thing Table joins to only one row in the Composition Associative Table
(Thing Key = AC23, Comp Key = FG, Begin Date = 4/1/2007, and End Date
= 12/31/9999).

n

n

n

n

n

n

n

n

n

n

n

AU6462.indb 110 2/7/08 9:53:12 AM

Database Design  n  111

Co
m

p
K

ey

C
om

p
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

W
d

W
oo

d
04

/0
1/

20
07

05

/1
1/

20
07

W
d

W
oo

d
(s

of
t)

05
/1

2/
20

07

12
/3

1/
99

99
FG

Fi

ne
 G

ra
in

 W
oo

d
04

/1
4/

20
07

05

/1
5/

20
07

FG

Fi
ne

 G
ra

in
 W

oo
d

(n
or

th
er

n)

05
/1

6/
20

07

12
/3

1/
99

99

�
in

g
K

ey

C
om

p
K

ey

Be
gi

n
D

at
e

En
d

D
at

e
VC

12

W
d

04
/0

1/
20

07

05
/1

3/
20

07
VC

12

FG

05
/1

4/
20

07

12
/3

1/
99

99
Ev

en
t D

at
e

Ev
en

t Q
ua

nt
ity

�

in
g

K
ey

�
in

g
K

ey

�
in

g
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

LC
32

W

d
04

/0
1/

20
07

12

/3
1/

99
99

05
/1

0/
20

07

3
VC

12
VC

12

Vi
ct

or
ia

n
Ch

ai
r

01
/1

5/
20

07

12
/3

1/
99

99
A

C2
3

FG

04
/0

1/
20

07

12
/3

1/
99

99
05

/1
1/

20
07

5

LC
32

LC
32

Lo

ui
s I

V
Ch

ai
r

02
/1

7/
20

07

12
/3

1/
99

99
05

/1
2/

20
07

6

LC
32

A
C2

3
A

rt
s &

 C
ra

fts
 C

ha
ir

02
/1

9/
20

07

05
/1

5/
20

07
05

/1
3/

20
07

3

LC
32

A
C2

3
N

ew
 A

rt
s &

 C
ra

fts
 C

h
05

/1
6/

20
07

12

/3
1/

99
99

�
in

g
K

ey

Ty
pe

 K
ey

Be

gi
n

D
at

e
En

d
D

at
e

05
/1

4/
20

07

5
A

C2
3

VC
12

Ch

r
03

/1
5/

20
07

05

/1
2/

20
07

05
/1

5/
20

07

7
A

C2
3

VC
12

Ch

r_
H

05

/1
3/

20
07

12

/3
1/

99
99

05
/1

6/
20

07

3
A

C2
3

LC
32

Ch

r_
H

03

/0
1/

20
07

12

/3
1/

99
99

A
C2

3
Ch

r
03

/1
2/

20
07

05

/1
4/

20
07

A
C2

3
Ch

r_
H

05

/1
5/

20
07

12

/3
1/

99
99

Ty
pe

 K
ey

Ty

pe
 D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

Ch
r

Ch
ai

r
04

/0
1/

20
07

05

/1
4/

20
07

Ch
r

Ch
ai

r w
/a

rm
s

05
/1

5/
20

07

12
/3

1/
99

99
Ch

r_
H

H

ig
h-

ba
ck

 C
ha

ir
03

/1
6/

20
07

05

/1
1/

20
07

Ch
r_

H

H
ig

h-
ba

ck
 C

ha
ir

w
/a

rm
s

05
/1

2/
20

07

12
/3

1/
99

99

TY
PE

 A
SS

O
C

IA
TI

V
E

TA
BL

E

C
O

M
PO

SI
TI

O
N

 T
A

BL
E

C
O

M
PO

SI
TI

O
N

 A
SS

O
C

IA
TI

V
E

TA
BL

E

FA
CT

 T
A

BL
E

TH
IN

G
 T

A
BL

E

TY
PE

 T
A

BL
E

Fi
gu

re
 5

.36 

Tr
an

sa
ct

io
n

Si
x.

AU6462.indb 111 2/7/08 9:53:13 AM

112  n  Building and Maintaining a Data Warehouse

Co
m

p
K

ey

C
om

p
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

W
d

W
oo

d
04

/0
1/

20
07

05

/1
1/

20
07

W
d

W
oo

d
(s

of
t)

05
/1

2/
20

07

12
/3

1/
99

99
FG

Fi

ne
 G

ra
in

 W
oo

d
04

/1
4/

20
07

05

/1
5/

20
07

FG

Fi
ne

 G
ra

in
 W

oo
d

(n
or

th
er

n)

05
/1

6/
20

07

12
/3

1/
99

99

�
in

g
K

ey

C
om

p
K

ey

Be
gi

n
D

at
e

En
d

D
at

e
VC

12

W
d

04
/0

1/
20

07

05
/1

3/
20

07
VC

12

FG

05
/1

4/
20

07

12
/3

1/
99

99
Ev

en
t D

at
e

Ev
en

t Q
ua

nt
ity

�

in
g

K
ey

�
in

g
K

ey

�
in

g
D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

LC
32

W

d
04

/0
1/

20
07

12

/3
1/

99
99

05
/1

0/
20

07

3
VC

12
VC

12

Vi
ct

or
ia

n
Ch

ai
r

01
/1

5/
20

07

12
/3

1/
99

99
A

C2
3

FG

04
/0

1/
20

07

12
/3

1/
99

99
05

/1
1/

20
07

5

LC
32

LC
32

Lo

ui
s I

V
Ch

ai
r

02
/1

7/
20

07

12
/3

1/
99

99
05

/1
2/

20
07

6

LC
32

A
C2

3
A

rt
s &

 C
ra

fts
 C

ha
ir

02
/1

9/
20

07

05
/1

5/
20

07
05

/1
3/

20
07

3

LC
32

A
C2

3
N

ew
 A

rt
s &

 C
ra

fts
 C

h
05

/1
6/

20
07

12

/3
1/

99
99

�
in

g
K

ey

Ty
pe

 K
ey

Be

gi
n

D
at

e
En

d
D

at
e

05
/1

4/
20

07

5
A

C2
3

VC
12

Ch

r
03

/1
5/

20
07

05

/1
2/

20
07

05
/1

5/
20

07

7
A

C2
3

VC
12

Ch

r_
H

05

/1
3/

20
07

12

/3
1/

99
99

05
/1

6/
20

07

3
A

C2
3

LC
32

Ch

r_
H

03

/0
1/

20
07

12

/3
1/

99
99

A
C2

3
Ch

r
03

/1
2/

20
07

05

/1
4/

20
07

A
C2

3
Ch

r_
H

05

/1
5/

20
07

12

/3
1/

99
99

Ty
pe

 K
ey

Ty

pe
 D

es
cr

ip
tio

n
Be

gi
n

D
at

e
En

d
D

at
e

Ch
r

Ch
ai

r
04

/0
1/

20
07

05

/1
4/

20
07

Ch
r

Ch
ai

r w
/a

rm
s

05
/1

5/
20

07

12
/3

1/
99

99
Ch

r_
H

H

ig
h-

ba
ck

 C
ha

ir
03

/1
6/

20
07

05

/1
1/

20
07

Ch
r_

H

H
ig

h-
ba

ck
 C

ha
ir

w
/a

rm
s

05
/1

2/
20

07

12
/3

1/
99

99

TY
PE

 A
SS

O
C

IA
TI

V
E

TA
BL

E

C
O

M
PO

SI
TI

O
N

 T
A

BL
E

C
O

M
PO

SI
TI

O
N

 A
SS

O
C

IA
TI

V
E

TA
BL

E

FA
CT

 T
A

BL
E

TH
IN

G
 T

A
BL

E

TY
PE

 T
A

BL
E

Fi
gu

re
 5

.37 

Tr
an

sa
ct

io
n

Se
ve

n.

AU6462.indb 112 2/7/08 9:53:14 AM

Database Design  n  113

The Composition Associative Table joins to only one row in the Composition
Table (Comp Key = FG, Begin Date = 5/16/2007, and End Date = 12/31/9999).
The Thing Table joins to only one row in the Type Associative Table (Thing
Key = AC23, Type Key = Chr_H, Begin Date = 5/15/2007, and End Date =
12/31/9999).
The Type Associative Table joins to only one row in the Type Table (Type Key
= Chr_H, Begin Date = 5/12/2007, and End Date = 12/31/9999).

Note that all of these dates surround inclusively the Event Date 5/16/2007. That
Event Date provides the time-variant orientation for all of these joins to a single day.
The cumulative effect of these seven Fact table rows, each joined with Dimension,
Dimension Attribute, and Associative tables based on the Event Date is a result set
wherein all Fact rows are expressed in their historical context—a Type 2 time-vari-
ant result set. Multiple normalized Fact tables can also use this Type 2 time-variant
method. The Fact tables in Figure 5.27 can join to Type 2 Dimension, Dimension
Attribute, and Associative tables by orienting all joins around a single Fact Event
Date field. A single SQL statement can only orient on one Date. The question that
is answered by the SQL will probably indicate which Event Date to use as a point
of orientation. For example:

When was the Payment made? The Payment Date provides the single point
of orientation.
When did Underwriting approve the insurance policy? The Underwrite Date
provides the single point of orientation.

When considered that way, the use of a single point of orientation seems to be
mere common sense. The confusion occurs when confronted with multiple normal-
ized Fact tables, each with their own Event Dates. The answer to the question is the
question to the answer—The question being asked identifies the Event Date that
will drive the Join with all the Dimension tables.

The same SQL that generated a Type 2 time-variant result set can also achieve a
Type 1 time-variant result set by using the RDBMS Current Date function in place
of the Fact Table’s Event Date. The following SQL illustrates this method:

	 SELECT
	 FACT TABLE.EVENT DATE
	 , FACT TABLE.EVENT QUANTITY
	 , FACT TABLE.THING KEY
	 , THING TABLE.THING DESCRIPTION
	 , COMPOSITION TABLE.COMP KEY
	 , COMPOSITION TABLE.COMP DESCRIPTION
	 , TYPE TABLE.TYPE KEY
	 , TYPE TABLE.TYPE DESCRIPTION
	 FROM

n

n

n

n

n

AU6462.indb 113 2/7/08 9:53:14 AM

114  n  Building and Maintaining a Data Warehouse

	 FACT TABLE A
	 INNER JOIN THING TABLE B
	 ON A.THING KEY = B.THING KEY
	 AND CURRENT DATE BETWEEN B.BEGIN DATE AND B.END DATE
	 INNER JOIN COMPOSITION ASSOCIATIVE TABLE C
	 ON B.THING KEY = C.THING KEY
	 AND CURRENT DATE BETWEEN C.BEGIN DATE AND C.END DATE
	 INNER JOIN COMPOSITION TABLE D
	 ON C.COMP KEY = D.COMP KEY
	 AND CURRENT DATE BETWEEN D.BEGIN DATE AND D.END DATE
	 INNER JOIN TYPE ASSOCIATIVE TABLE E
	 ON B.THING KEY = E.THING KEY
	 AND CURRENT DATE BETWEEN E.BEGIN DATE AND E.END DATE
	 INNER JOIN TYPE TABLE F
	 ON E.TYPE KEY = F.TYPE KEY

This SQL will return a result set that includes only those rows that are in effect
as of the moment the query is submitted. That is the purpose of a Type 1 time-
variant query—to cast all of history in the current context. Remember, the Begin
Date and End Date fields identify when a row is relevant to the data warehouse,
not the operational application from which the data was extracted. So, a row in the
data warehouse for a given Key may reference an entity that no longer exists in the
enterprise. In that scenario, that operational nonexistence is the data in the data
warehouse that is relevant to the data warehouse.

A Type 3 time-variant result set is best achieved by creating an alternate set of
Dimension, Dimension Attribute, and Associative tables. An alternate set of tables
is a safer option than embedding the alternate data values in a table with the real
data values, demarcated by a flag or indicator field.

A time-variant Third Normal Form data warehouse must have one, and only one,
row for every entity at a moment in time. If any Dimension, Dimension Attribute,
or Associative table has multiple rows for a Key and Time, then the data warehouse
could multiply its result sets for the affected Fact rows by the number of multiple rows.
A data warehouse, therefore, must guard the time-variant integrity of its Dimension,
Dimension Attribute, and Associative tables. The time-variant integrity is crucial to
the success of a time-variant data warehouse.
Surrogate Key with Dates—Type 2 and Type 3 time-variant join strategies work
the same regardless of the Key architecture: Source Native Key or Surrogate Key.
In both architectures, a point in time date from a Fact table identifies the moment
an event occurred. That single point in time is used in the SQL WHERE clause to
select the Dimension rows relevant to the moment in time in the Fact table.

In both Key architectures, the foreign key in a Fact table joins to the primary
key of a Dimension table. That first join between a Fact table and a Dimension table
establishes the lowest hierarchical granularity possible for the joins associated with

AU6462.indb 114 2/7/08 9:53:14 AM

Database Design  n  115

that Fact table. Thereafter, all other joins can only join hierarchically upward from
the joined Dimension table.
Data Warehouse Dates Redux—As discussed previously in Data Warehouse
Dates, a Dimension table can include multiple Date fields with distinct meanings.
The use of multiple Date fields in a data warehouse is different from the multiple
fields in an operational database. Typically, in an operational database, one Date
field identifies when the data in a row became effective and another field identifies
when the data in a row ceased being effective. These dates are basically operational
metadata. A data warehouse will typically include additional metadata about each
row. The additional Date metadata may include:

The date or timestamp when the data in a row was extracted from a source
system.
The date or timestamp when the data in a row was transformed and ready to
load.
The date or timestamp when the data in a row was loaded into the data
warehouse.
The date or timestamp on which the data warehouse considers the data in a
row to be relevant to the enterprise, i.e., Begin Date.
The date or timestamp on which the data warehouse considers the data in a
row to no longer be relevant to the enterprise. i.e., End Date.

Notice that none of these Date fields are the Effective and Not Effective opera-
tional metadata Date fields. In the context of a data warehouse, the Effective and
Not Effective operational metadata Date fields are attributes of a row of data; they
are not metadata of the data warehouse. The Begin Date and End Date fields in
a data warehouse are not the operational Effective and Not Effective Date fields
in operational data. Rather, the Begin Date and End Date fields are the dates
within which a row of data is/was relevant to the enterprise and, therefore, the data
warehouse.

Third Normal Form Data Model Summary

A Third Normal Form Data Model answers the questions of who, what, when,
where, how, and possibly why by creating a normalized set of tables that join
together as a cohesive logical unit to express a business event. These separate indi-
vidual tables also create the possibility to capture the various grains of data within
a single business event. Business entities are also captured in a set of normalized
tables, which join together as a cohesive logical unit to express the hierarchy sur-
rounding a business entity involved in a business event. Each set of entity hierarchy
tables can be shared throughout the data warehouse to multiple sets of business
event tables.

n

n

n

n

n

AU6462.indb 115 2/7/08 9:53:14 AM

116  n  Building and Maintaining a Data Warehouse

These tools (normalized tables that express business events and entities) allow a
Third Normal Form Data Model to incorporate the Data Warehouse Philosophy.

Subject Orientation: A set of tables that function as a logical cohesive unit
to express a business event defines the subject for each section of a data
warehouse.
Data Integration: Conformed business entity tables express entity informa-
tion in the same form, function, and grain across the data warehouse.
Nonvolatility: New rows can be added to business event and business entity
tables without destroying existing rows.
Time Variant: Begin Date and End Date attributes allow business entity
tables to join to historical entity rows in the past.
One Version of the Truth: A table that captures a business event is the only
table to capture that business event. A set of tables that capture a hierarchy is
the only set of tables to capture that hierarchy.
Long-Term Investment: Flexibility is a key feature of a Third Normal Form
data model. This same flexibility also contributes to a long lifespan for a data
warehouse.

Recursive Data Model

A Recursive Data Model is a Join method. Basically, a Recursive Data Model takes
a set of Dimension tables and sets them on end. A basic Recursive Data Model is
shown in Figure 5.38. On the left is an entity table and on the right is a recursion
table. The two relation lines between these tables show that a single row in the
entity can be a parent entity in multiple hierarchies (e.g., geographic, management,
and team membership). Also, a single row in the entity can be a child entity in
multiple hierarchies.22

The example in Figure 5.39 shows a simple management hierarchy, which
includes a typical one-to-many relation.

In this example, Fred is the CEO and Sue’s boss. Sue is a Director and boss of
both Bill and Angela. Bill and Angela are staff members and boss of no one. The
flexibility of a recursive table begins to pay off when additional hierarchies and

n

n

n

n

n

n

Entity

Entity_Key
Attribute_1
Attribute_2

Parent

Entity_Key
Of Parent

Child
Function

Role

Child

Entity_Key
Of Child

Relationship

Type

Parent
Function

Role
Parent Key
Child Key

Figure 5.38  Recursive Data Model.

AU6462.indb 116 2/7/08 9:53:15 AM

Database Design  n  117

Em
pl

oy
ee

_I
D

Em

pl
oy

ee
_N

am
e

Pa
re

nt
_K

ey

C
hi

ld
_K

ey

Re
la

tio
ns

hi
p

Pa
re

nt
_F

un
ct

io
n

C
hi

ld
_F

un
ct

io
n

13
24

Fr

ed
 n

ul
l

13
24

M

gm
t H

ie
ra

rc
hy

nu

ll
C

EO
24

35

Su
e

 13
24

24

35

M
gm

t H
ie

ra
rc

hy

C
EO

D

ire
ct

or
35

46

Bi
ll

 24
35

35

46

M
gm

t H
ie

ra
rc

hy

D
ire

ct
or

St

aff
46

57

A
ng

el
a

 24
35

46

57

M
gm

t H
ie

ra
rc

hy

D
ire

ct
or

St

aff
 35

46

nu
ll

M
gm

t H
ie

ra
rc

hy

St
aff

nu

ll
 46

57

nu
ll

M
gm

t H
ie

ra
rc

hy

St
aff

nu

ll

Pe
rs

on
ne

l
Pe

rs
on

ne
l R

ec
ur

sio
n

Fi
gu

re
 5

.39 

Pe
rs

on
ne

l R
ec

ur
si

on
 w

it
h

on
e

di
m

en
si

on
.

AU6462.indb 117 2/7/08 9:53:15 AM

118  n  Building and Maintaining a Data Warehouse

relationships are added to the data warehouse. No new physical data structures
are added. Instead, only rows are added to the existing recursive table. The recur-
sive table in Figure 5.40 shows that Fred, the CEO, has begun to mentor Bill and
Angela. Interestingly, the recursive table allows multiple hierarchies to exist simul-
taneously, distinguished from each other by the Relationship field.

If a data warehouse can guarantee that each entity instance has a unique key
throughout the entire data warehouse (or, at least a section or subject area), then a
recursive table can also join entities from multiple tables. If a data warehouse can-
not guarantee that each entity instance has a unique key throughout the entire data
warehouse, then uniqueness can still be achieved by using a compound key: Entity
and Entity Instance.

The addition of Insurance Provider demonstrates the ability of a recursive table
to capture relations within entity tables and across entity tables (Figure 5.41).

In this example, the Personnel_Recursion table holds three dimension tables:
Mgmt Hierarchy, Major Med Insur, and Dental Insur. The Personnel_Recursion.
Relationship field functions as the name of each of these dimensions. The SQL for
the Mgmt Hierarchy dimension looks like the following:

	 Select
	 Personnel_Recursion.Relationship
	 ,Personnel_Parent.Employee_Id As Parent_Id
	 ,Personnel_Parent.Employee_Name As Parent_Name
	 ,Personnel_Recursion.Parent_Function
	 ,Personnel_Child.Employee_Id As Child_Id
	 ,Personnel_Child.Employee_Name As Child_Name
	 ,Personnel_Recursion.Child_Function
	 From
	 Personnel_Recursion
	 Left Outer Join Personnel As Personnel_Parent
	 On Personnel_Recursion.Parent_Key = Personnel_Parent.	 	
	 Employee_Id
	 Left Outer Join Personnel As Personnel_Child
	 On Personnel_Recursion.Child_Key = Personnel_Child.	 	
	 Employee_Id
	 Where Personnel_Recursion.Relationship = ‘Mgmt 	 	
	 Hierarchy’

The result set, which is the Mgmt Hierarchy dimension, is in Figure 5.42.
The SQL for the Major Med Insur dimension looks like the following:

	 Select
	 Personnel_Recursion.Relationship
	 ,Insurance_Provider.Provider_Id As Provider_Id
	 ,Insurance_Provider.Provider_Name As Provider_Name
	 ,Personnel_Recursion.Parent_Function
	 ,Personnel_Subscriber.Employee_Id As Subscriber_Id

AU6462.indb 118 2/7/08 9:53:16 AM

Database Design  n  119

Em
pl

oy
ee

_I
D

Em

pl
oy

ee
_N

am
e

Pa
re

nt
_K

ey

C
hi

ld
_K

ey

Re
la

tio
ns

hi
p

Pa
re

nt
_F

un
ct

io
n

C
hi

ld
_F

un
ct

io
n

13
24

Fr

ed
 n

ul
l

13
24

M

gm
t H

ie
ra

rc
hy

nu

ll
C

EO
24

35

Su
e

 13
24

24

35

M
gm

t H
ie

ra
rc

hy

C
EO

D

ire
ct

or
35

46

Bi
ll

 24
35

35

46

M
gm

t H
ie

ra
rc

hy

D
ire

ct
or

St

aff
46

57

A
ng

el
a

 24
35

46

57

M
gm

t H
ie

ra
rc

hy

D
ire

ct
or

St

aff
 35

46

nu
ll

M
gm

t H
ie

ra
rc

hy

St
aff

nu

ll
 46

57

nu
ll

M
gm

t H
ie

ra
rc

hy

St
aff

nu

ll
 13

24

35
46

M

en
to

rs
hi

p
M

en
to

r
A

pp
re

nt
ic

e
 13

24

46
57

M

en
to

rs
hi

p
M

en
to

r
A

pp
re

nt
ic

e

Pe
rs

on
ne

l
Pe

rs
on

ne
l R

ec
ur

sio
n

Fi
gu

re
 5

.4
0 

Pe
rs

on
ne

l R
ec

ur
si

on
 w

it
h

tw
o

di
m

en
si

on
s.

AU6462.indb 119 2/7/08 9:53:16 AM

120  n  Building and Maintaining a Data Warehouse

Em
pl

oy
ee

_I
D

Em

pl
oy

ee
_N

am
e

Pa
re

nt
_K

ey

C
hi

ld
_K

ey

Re
la

tio
ns

hi
p

Pa
re

nt
_F

un
ct

io
n

C
hi

ld
_F

un
ct

io
n

13
24

Fr

ed

nu
ll

13
24

M

gm
t H

ie
ra

rc
hy

nu

ll
C

EO
24

35

Su
e

13

24

24
35

M

gm
t H

ie
ra

rc
hy

C

EO

D
ire

ct
or

35
46

Bi

ll

24
35

35

46

M
gm

t H
ie

ra
rc

hy

D
ire

ct
or

St

aff
46

57

A
ng

el
a

24

35

46
57

M

gm
t H

ie
ra

rc
hy

D

ire
ct

or

St
aff

35

46

nu
ll

M
gm

t H
ie

ra
rc

hy

St
aff

nu

ll

46
57

nu

ll
M

gm
t H

ie
ra

rc
hy

St

aff

nu
ll

13

24

35
46

M

en
to

rs
hi

p
M

en
to

r
A

pp
re

nt
ic

e

13
24

46

57

M
en

to
rs

hi
p

M
en

to
r

A
pp

re
nt

ic
e

 1
35

79

13
24

M

aj
or

 M
ed

 In
su

r
Pr

ov
id

er

Su
bs

cr
ib

er
 1

35
79

24

35

M
aj

or
 M

ed
 In

su
r

Pr
ov

id
er

Su

bs
cr

ib
er

 2
46

80

35
46

M

aj
or

 M
ed

 In
su

r
Pr

ov
id

er

Su
bs

cr
ib

er
 2

46
80

46

57

M
aj

or
 M

ed
 In

su
r

Pr
ov

id
er

Su

bs
cr

ib
er

 1
32

43
5

13
24

D

en
ta

l I
ns

ur

Pr
ov

id
er

Su

bs
cr

ib
er

 1
32

43
5

35
46

D

en
ta

l I
ns

ur

Pr
ov

id
er

Su

bs
cr

ib
er

 1
32

43
5

46
57

D

en
ta

l I
ns

ur

Pr
ov

id
er

Su

bs
cr

ib
er

 1
32

43
5

57
68

D

en
ta

l I
ns

ur

Pr
ov

id
er

Su

bs
cr

ib
er

Pe
rs

on
ne

l
Pe

rs
on

ne
l R

ec
ur

sio
n

Pr
ov

id
er

_I
D

Pr

ov
id

er
_N

am
e

13
57

9
W

or
ld

 M
ed

ic
al

24
68

0
St

at
e

M
ed

ic
al

13
24

35

W
or

ld
 D

en
ta

l

In
su

ra
nc

e
Pr

ov
id

er

Fi
gu

re
 5

.41 

Pe
rs

on
ne

l R
ec

ur
si

on
 w

it
h

tw
o

di
m

en
si

on
 t

ab
le

s.

AU6462.indb 120 2/7/08 9:53:17 AM

Database Design  n  121

RE
LA

TI
O

N
SH

IP

PA
RE

N
T_

ID

PA
RE

N
T_

N
A

M
E

PA
RE

N
T_

FU
N

CT
IO

N

CH
IL

D
_I

D

CH
IL

D
_N

A
M

E
CH

IL
D

_F
U

N
CT

IO
N

M
G

M
T

H
IE

RA
RC

H
Y

nu
ll

nu
ll

nu
ll

57
68

M

A
RY

CH

A
IR

M
G

M
T

H
IE

RA
RC

H
Y

13
24

FR

ED

CE
O

24

35

SU
E

D
IR

EC
TO

R
M

G
M

T
H

IE
RA

RC
H

Y
24

35

SU
E

D
IR

EC
TO

R
46

57

A
N

G
EL

A

ST
A

FF
M

G
M

T
H

IE
RA

RC
H

Y
24

35

SU
E

D
IR

EC
TO

R
35

46

BI
LL

ST

A
FF

M
G

M
T

H
IE

RA
RC

H
Y

57
68

M

A
RY

CH

A
IR

13

24

FR
ED

CE

O
M

G
M

T
H

IE
RA

RC
H

Y
35

46

BI
LL

ST

A
FF

nu

ll
nu

ll
nu

ll
M

G
M

T
H

IE
RA

RC
H

Y
46

57

A
N

G
EL

A

ST
A

FF

nu
ll

nu
ll

nu
ll

Fi
gu

re
 5

.42 

M
an

ag
em

en
t

hi
er

ar
ch

y
di

m
en

si
on

.

AU6462.indb 121 2/7/08 9:53:17 AM

122  n  Building and Maintaining a Data Warehouse

	 ,Personnel_Subscriber.Employee_Name As Subscriber_Name
	 ,Personnel_Recursion.Child_Function
	 From
	 Personnel_Recursion
	 Left Outer Join Insurance_Provider As 	 	 	 	
	 Insurance_Provider
	 On Personnel_Recursion.Parent_Key = Insurance_Provider.	
	 Provider_Id
	 Left Outer Join Personnel As Personnel_Subscriber
	 On Personnel_Recursion.Child_Key = Personnel_	 	 	
	 Subscriber.Employee_Id
	 Where Personnel_Recursion.Relationship = ‘Major Med 	 	
	 Insur’

The result set, which is the Major Med Insur dimension, is in Figure 5.43.
The SQL for the Dental Insur dimension looks like the following:

	 Select
	 Personnel_Recursion.Relationship
	 ,Insurance_Provider.Provider_Id As Provider_Id
	 ,Insurance_Provider.Provider_Name As Provider_Name
	 ,Personnel_Recursion.Parent_Function
	 ,Personnel_Subscriber.Employee_Id As Subscriber_Id
	 ,Personnel_Subscriber.Employee_Name As Subscriber_Name
	 ,Personnel_Recursion.Child_Function
	 From
	 Personnel_Recursion
	 Left Outer Join Insurance_Provider As 	 	 	 	
	 Insurance_Provider
	 On Personnel_Recursion.Parent_Key = Insurance_Provider.	
	 Provider_Id
	 Left Outer Join Personnel As Personnel_Subscriber
	 On Personnel_Recursion.Child_Key = Personnel_	 	 	
	 Subscriber.Employee_Id
	 Where Personnel_Recursion.Relationship = ‘Dental Insur’

The result set, which is the Dental Insur dimension, is in Figure 5.44.
Figure 5.45 shows that, by adding Begin and End Dates, a recursive table can

achieve a Type 2 time-variant relation. The SQL Where clause would look like the
following:
Where Fact.Date between Recursion.Begin_Date and Recursion.
End_Date.

A Type 1 time-variant join can be achieved by using Current Date, where Cur-
rent Date is between the Begin Date and End Date of each row in a Recursive table.
The SQL Where clause would look like the following:
Where Current Date between Begin Date and End Date

AU6462.indb 122 2/7/08 9:53:17 AM

Database Design  n  123

RE
LA

TI
O

N
SH

IP

PR
O

VI
D

ER
_I

D

PR
O

VI
D

ER
_N

A
M

E
PA

RE
N

T_
FU

N
CT

IO
N

SU

BS
CR

IB
ER

_I
D

SU

BS
CR

IB
ER

_N
A

M
E

CH
IL

D
_F

U
N

CT
IO

N
D

EN
TA

L
IN

SU
R

13
24

35

W
O

RL
D

 D
EN

TA
L

PR
O

VI
D

ER

57
68

M

A
RY

SU

BS
CR

IB
ER

D
EN

TA
L

IN
SU

R
13

24
35

W

O
RL

D
 D

EN
TA

L
PR

O
VI

D
ER

46

57

A
N

G
EL

A

SU
BS

CR
IB

ER
D

EN
TA

L
IN

SU
R

13
24

35

W
O

RL
D

 D
EN

TA
L

PR
O

VI
D

ER

35
46

BI

LL

SU
BS

CR
IB

ER
D

EN
TA

L
IN

SU
R

13
24

35

W
O

RL
D

 D
EN

TA
L

PR
O

VI
D

ER

13
24

FR

ED

SU
BS

CR
IB

ER

Fi
gu

re
 5

.44 

D
en

ta
l I

ns
ur

 d
im

en
si

on
.

RE
LA

TI
O

N
SH

IP

PR
O

VI
D

ER
_I

D

PR
O

VI
D

ER
_N

A
M

E
PA

RE
N

T_
FU

N
CT

IO
N

SU

BS
CR

IB
ER

_I
D

SU

BS
CR

IB
ER

_N
A

M
E

CH
IL

D
_F

U
N

CT
IO

N
M

A
JO

R
M

ED
 IN

SU
R

13
57

9
W

O
RL

D
 M

ED
IC

A
L

PR
O

VI
D

ER

24
35

SU

E
SU

BS
CR

IB
ER

M
A

JO
R

M
ED

 IN
SU

R
24

68
0

ST
A

TE
 M

ED
IC

A
L

PR
O

VI
D

ER

46
57

A

N
G

EL
A

SU

BS
CR

IB
ER

M
A

JO
R

M
ED

 IN
SU

R
24

68
0

ST
A

TE
 M

ED
IC

A
L

PR
O

VI
D

ER

35
46

BI

LL

SU
BS

CR
IB

ER
M

A
JO

R
M

ED
 IN

SU
R

13
57

9
W

O
RL

D
 M

ED
IC

A
L

PR
O

VI
D

ER

13
24

FR

ED

SU
BS

CR
IB

ER

Fi
gu

re
 5

.43 

M
aj

or
 M

ed
 I

ns
ur

 d
im

en
si

on
.

AU6462.indb 123 2/7/08 9:53:18 AM

124  n  Building and Maintaining a Data Warehouse

Em
pl

oy
ee

_I
D

Em

pl
oy

ee
_N

am
e

Pa
re

nt
_K

ey

C
hi

ld
_K

ey

Re
la

tio
ns

hi
p

Pa
re

nt
_F

un
ct

io
n

C
hi

ld
_F

un
ct

io
n

Be
gi

n
D

at
e

En
d

D
at

e
 1

32
4

Fr
ed

nu

ll
57

68

M
gm

t H
ie

ra
rc

hy

nu
ll

C
ha

ir
05

/1
1/

20
05

12

/3
1/

99
99

 2
43

5
Su

e

nu
ll

13
24

M

gm
t H

ie
ra

rc
hy

nu

ll
C

EO

01
/2

0/
19

98

05
/1

0/
20

05
 3

54
6

Bi
ll

57

68

13
24

M

gm
t H

ie
ra

rc
hy

C

ha
ir

C
EO

05

/1
1/

20
05

12

/3
1/

99
99

 4
65

7
A

ng
el

a

13
24

24

35

M
gm

t H
ie

ra
rc

hy

C
EO

D

ire
ct

or

09
/2

7/
20

01

12
/3

1/
99

99
 5

76
8

M
ar

y

24
35

35

46

M
gm

t H
ie

ra
rc

hy

D
ire

ct
or

St

aff

03
/1

5/
20

06

12
/3

1/
99

99

24
35

46

57

M
gm

t H
ie

ra
rc

hy

D
ire

ct
or

St

aff

05
/1

8/
20

06

12
/3

1/
99

99

35
46

nu

ll
M

gm
t H

ie
ra

rc
hy

St

aff

nu
ll

03
/1

5/
20

06

12
/3

1/
99

99

46
57

nu

ll
M

gm
t H

ie
ra

rc
hy

St

aff

nu
ll

05
/1

8/
20

06

12
/3

1/
99

99

13
24

35

46

M
en

to
rs

hi
p

M
en

to
r

A
pp

re
nt

ic
e

01
/1

5/
20

07

04
/1

5/
20

07

13
24

46

57

M
en

to
rs

hi
p

M
en

to
r

A
pp

re
nt

ic
e

01
/1

5/
20

07

04
/1

5/
20

07

13
57

9
13

24

M
aj

or
 M

ed
 In

su
r

Pr
ov

id
er

Su

bs
cr

ib
er

01

/0
1/

20
07

12

/3
1/

99
99

Pr
ov

id
er

_I
D

Pr

ov
id

er
_N

am
e

13

57
9

24
35

M

aj
or

 M
ed

 In
su

r
Pr

ov
id

er

Su
bs

cr
ib

er

01
/0

1/
20

07

12
/3

1/
99

99
13

57
9

W
or

ld
 M

ed
ic

al

24
68

0
35

46

M
aj

or
 M

ed
 In

su
r

Pr
ov

id
er

Su

bs
cr

ib
er

01

/0
1/

20
07

12

/3
1/

99
99

24
68

0
St

at
e

M
ed

ic
al

24

68
0

46
57

M

aj
or

 M
ed

 In
su

r
Pr

ov
id

er

Su
bs

cr
ib

er

01
/0

1/
20

07

12
/3

1/
99

99
13

24
35

W
or

ld
 D

en
ta

l

13
24

35

13
24

D

en
ta

l I
ns

ur

Pr
ov

id
er

Su

bs
cr

ib
er

01

/0
1/

20
07

12

/3
1/

99
99

13

24
35

35

46

D
en

ta
l I

ns
ur

Pr

ov
id

er

Su
bs

cr
ib

er

01
/0

1/
20

07

12
/3

1/
99

99

13
24

35

46
57

D

en
ta

l I
ns

ur

Pr
ov

id
er

Su

bs
cr

ib
er

01

/0
1/

20
07

12

/3
1/

99
99

13

24
35

57

68

D
en

ta
l I

ns
ur

Pr

ov
id

er

Su
bs

cr
ib

er

01
/0

1/
20

07

12
/3

1/
99

99

Pe
rs

on
ne

l
Pe

rs
on

ne
l R

ec
ur

sio
n

In
su

ra
nc

e
Pr

ov
id

er

Fi
gu

re
 5

.45 

Pe
rs

on
ne

l R
ec

ur
si

on
 w

it
h

D
at

es
.

AU6462.indb 124 2/7/08 9:53:19 AM

Database Design  n  125

A Type 3 time-variant join is best achieved by creating a separate Recursive join
table, which reflects the Type 3 restatement of the past. Recursive tables are difficult
enough on their own. The myriad joins possible with a Recursive table can be dif-
ficult to maneuver. The multiple Dimensions and Dimension Associations possible
with a Recursive table can add to the confusion. Adding an alternate set of Dimen-
sions for the same time frame is usually too much opportunity for erroneous joins.
Rather, data warehouse customers are best served by representing an alternate set of
Type 3 Dimension rows in an alternate Type 3 Recursive table.

Recursive Data Model Summary

A Recursive Data Model is actually a join table, a flexible and powerful join table.
It creates the ability to add, remove, and modify hierarchies and relations with no
changes to physical table structures. Typically, data warehouse customers need a
view to correctly navigate the joins in a recursive table. Once correctly navigated, a
recursive table presents two additional advantages.

A recursive table is a very narrow table, which maximizes the number of rows
that can be retrieved for every input/output (I/O).
A recursive table localizes numerous joins in one table space and index space,
which also reduces the number of I/Os necessary to retrieve the join data.

These two advantages typically yield impressive performance on most RDBMS
platforms.

Physical Data Model Summary

The three Physical Data Models used in data warehousing are the Dimensional Data
Model, Third Normal Form Data Model, and Recursive Data Model. Variations
of these data models present a myriad of potential benefits and limitations. Each of
these methods has proven itself in the data warehousing community.

So, for your data warehouse, which one is right? All of them. Which one is
wrong? None of them. The decision to use a form of data model or a variation of
that form must be based on the individual circumstance of each data warehouse,
which can include:

Existing infrastructure
Data warehouse budget
Available hardware
Available software
RDBMS platform
Data warehouse developer skills

n

n

n
n
n
n
n
n

AU6462.indb 125 2/7/08 9:53:19 AM

126  n  Building and Maintaining a Data Warehouse

Data warehouse customer needs
Enterprise policy

At the end of the day, if a data warehouse is able to answer the customers’ ques-
tions and add value to the enterprise, you chose the right data model.

Data Architecture
A Data Model (Dimensional, Third Normal Form or Recursive) is only half of a
Database Design. Data Architecture is the other half. A data warehouse can con-
sist of multiple databases, RDBMS platforms, and data models. Data Architecture
completes the Database Design by defining the permutations of:

RDBMS Platform: What kind of machine?
RDBMS: What kind of relational software?
Data Model: What kind of data structure and organization?

This comprises the entire data warehouse. For most enterprises, the available
options are quite numerous. No option is innately right or wrong. Every data
warehouse designer must choose among the available options based on the goals,
resources, and long-range plans of the enterprise.

The following sections outline the major and most common Data Architectures.
These Architectures provide a framework within which data models exist. Data
Architecture can span multiple RDBMS platforms, RDBMS applications, and data
models. A data warehouse designer considers all the available options and environ-
ments to choose the Data Architecture that is best for the enterprise. From one
enterprise to another, the available options and environments will be different. So, a
Data Architecture that is optimal for one enterprise may not be optimal for another.
The only best method is to be aware of all the options, do the homework, and pick
the best set of options for the situation.

Enterprise Data Warehouse

An Enterprise Data Warehouse (EDW) is a single centralized database or set of
databases on one platform. Typically, an EDW is the core of a data warehouse. The
data in an EDW is owned, operated, and maintained by the data warehouse team.
Other teams and applications may use the data in an EDW. They, however, do not
manage or maintain the EDW. Rather, they are customers of the EDW.

Figure 5.46 shows an EDW containing six subject areas. EDW Data Architec-
ture locates all the subject areas of a data warehouse inside the EDW. By locating
all the subject areas in one RDBMS, a data warehouse facilitates cross-subject que-
ries by its customers. Therefore, the subject orientation of a data warehouse does

n
n

n
n
n

AU6462.indb 126 2/7/08 9:53:19 AM

Database Design  n  127

not prevent customers from querying across a data warehouse, rather, the subject
orientation of a data warehouse facilitates data integration across a data warehouse.
Data warehouse customers, therefore, can simultaneously query tables from mul-
tiple subject areas because they are integrated and co-located on one RDBMS.

An EDW can use any of the data models (Dimensional, Third Normal Form,
and Recursive). The decision to centralize the data warehouse into a single RDBMS
does not predetermine the data model. That and all other options (e.g., Business
Intelligence Reporting, RDBMS Platform, RDBMS) are still available. EDW Data
Architecture means that a decision has been made to centralize the data of a data
warehouse into one RDBMS on one RDBSM platform.

A centralized EDW concentrates all the data volume and throughput into one
RDBMS and RDBMS platform. The data volumes and throughput, therefore, are
a major consideration in the design of an EDW. Data model interaction with a
RDBMS and RDBMS platform are part of that consideration. Knowing that the
hardware will be pushed to its maximum capacity and throughput, a data ware-
house designer must do the homework necessary to optimize the databases, tables,
and views on a specific RDBMS on a platform.

When all the data in a data warehouse is first integrated into an EDW, the data
warehouse team is able to apply the rigor and discipline of Data Quality measure-
ments and communication of metadata to that data. Otherwise, data orbits the
EDW without actually integrating into the EDW. In the best-case scenario, data
is extracted directly from a source system or operational data store (ODS) (which
gets its data directly from a source system) and integrated into an EDW. Handled
that way, the rigor and discipline of the ETL applications can be applied to the
data, which will increase the value of that data. Once in an EDW, the data can be

Sales Manufactur-
ing

LogisticsPersonnel

EDW

Marketing

Purchasing

Figure 5.46  Enterprise Data Warehouse.

AU6462.indb 127 2/7/08 9:53:20 AM

128  n  Building and Maintaining a Data Warehouse

queried, reported, and disseminated throughout the enterprise from the context of
all the data in the data warehouse.

Data Mart

A Data Mart is a separate database or set of databases, each with a specific focus.
That focus can be either a subject area, which is shown in Figure 5.47, or that focus
can be a decision support need (e.g., auditing, loss prevention, or profitability).23 A
Data Mart is created when an EDW cannot provide data in the manner required
by data customers, and the business need for data in that form justifies the expense
and overhead of a Data Mart. A common justification for a Data Mart is the need
to allow input data from the business area. Frequently, such input data allows a
“what if” analysis: What if the tax rate changed? What if productivity throughput
changed? Obviously, input data is not enterprise data (i.e., the first Data Warehouse
Principle). Another common justification for a Data Mart is data segregation. A
business area needs to include sensitive data (e.g., proprietary, financial, medical,
etc.), which cannot be available to anyone outside the business area. A business area
needs to interact with an external business or government agency without allowing
them access to all the other data. While RDBMS security functions can secure a
database, table, or row of data, a Data Mart, which is physically or logically sepa-
rate, provides a strong demarcation between the data in an EDW and the data in
a Data Mart.

A Data Mart is physically or logically separate from the EDW from which
it receives data. A Data Mart is a subset of an EDW and receives at least some
of its data from an EDW. The load cycle of a Data Mart, therefore, is no faster
than the load cycle of the EDW that feeds it. A Data Mart may receive data from
other sources, including the customers who use it or organizations external to the
enterprise. Sometimes that is a significant reason for a Data Mart. A Data Mart
can simultaneously provide decision support functions required by data warehouse
customers and shield the EDW from questionable data sources.

A Data Mart must be managed and maintained by someone, such as the data
warehouse team who may provide the management and maintenance. The busi-
ness area that uses a Data Mart may provide the management and maintenance
of a Data Mart. This decision has more to do with intraenterprise politics than
Data Architecture or Database Design. Customers who are savvy enough to use a
Data Mart are also able to understand the implications of data as a business tool,
regulated entity, and potential for power. For reasons such as these, a business area
may want to exert authority over a Data Mart, or a data warehouse team may give a
business area authority over a Data Mart. Regardless, the environmental and politi-
cal context of an enterprise is very real, and must be included in the consideration
of a Data Mart. The Data Mart customer may not be able to tolerate interaction
with the data warehouse team for multiple reasons (e.g., HIPAA (Health Insurance

AU6462.indb 128 2/7/08 9:53:20 AM

Database Design  n  129

ED
W

Sa
le

s
M

an
uf

ac
tu

r-
in

g

Lo
gi

st
ic

s
Pe

rs
on

ne
l

M
ar

ke
tin

g

Pu
rc

ha
sin

g

D
at

aM
ar

t

Pu
rc

ha
sin

g

D
at

aM
ar

t

Lo
gi

st
ic

s

D
at

aM
ar

t

M
ar

ke
tin

g

Fi
gu

re
 5

.47 

D
at

a
M

ar
t.

AU6462.indb 129 2/7/08 9:53:21 AM

130  n  Building and Maintaining a Data Warehouse

Portability and Accountability Act) requirements, business cycles, logistics, etc.).
In such circumstances a data warehouse team can divest itself of the ownership of a
Data Mart. By providing the data that will go into a Data Mart, the data warehouse
team can satisfy the requirements of such a Data Mart customer. These actions and
reasons may seem on the surface to be contentious; however, they are cooperative in
nature. A Data Mart is a tool by which a data warehouse team can give a customer
what he wants when he wants too much, and they have the justification to get it.

A Data Mart can be achieved by two basic methods. The first method, men-
tioned above, is to create a physical set of databases and tables, which are located on
a platform separate and removed from the data warehouse platform. This method
provides the maximum possible isolation of the Data Mart. The data must be physi-
cally transported from the data warehouse platform to the Data Mart platform.
The transportation of data to the Data Mart platform provides the opportunity to
modify the data enroute to the Data Mart as required by the Data Mart customer.
The resource consumption incurred by customers using the ODS have no impact
on data warehouse customers. These advantages have a price. This method is also
the most expensive, including the cost of a separate platform, data transport appli-
cations, and the maintenance of the separate platform and transport applications.

The second method is to define a set of views that draw their data from the
data warehouse: a View Data Mart. A Data Mart based on views must, of course,
be located on the data warehouse platform. While this method does not incur
the overhead and cost of a separate platform, a View Data Mart does not have the
independence of a separate Data Mart. A View Data Mart shares resources with
the data warehouses. A View Data Mart still has the opportunity to introduce data
not already in the data warehouse and the opportunity to isolate data via RDBMS
security permissions. A table of sensitive or proprietary data can be located in the
database, which otherwise holds views that point to the data warehouse. A View
Data Mart can also reformat data from the data warehouse using SQL, displaying
data in a format specifically needed by one business unit, but not the entire enter-
prise. These are the two basic methods of defining a Data Mart:

A platform separate from the data warehouse
Co-located with the data warehouse on the data warehouse platform

Operational Data Store

An Operational Data Store (ODS) reflects the data of a single subject area as it
exists in the operational environment. This piece of data warehousing history is
lost, but, looking at an ODS, someone must have said, “Well, that huge EDW
is really impressive with all its data integration. I’ve got three subsidiary business
units underneath my parent business unit. Can you tell me what’s happening in
just my business unit (which is really four business units, one parent and three

n
n

AU6462.indb 130 2/7/08 9:53:21 AM

Database Design  n  131

subsidiary), without all that history? You know, what’s going on right now?” The
value of an ODS is that it leverages the strategic technologies of a data warehouse to
answer tactical questions. ODS customers can see the data from their business unit
without interrupting or interfering with their operational business applications, or
incurring the performance degradation caused by five years of history and Type 2
dimensions.

Subject Orientation

An ODS focuses on a single subject area, which is typically a cohesive segment of
the enterprise.24 The example in Figure 5.48 shows an ODS that is focused on the
Marketing department. This allows the department to have a decision support sys-
tem, which reflects their department in its present state. Unlike a Data Mart, which
can select data from an EDW to juxtapose data elements from different subject
areas, an ODS receives its data directly from the business unit. An ODS, therefore,
does not juxtapose data from multiple business areas. Rather, it is only a reflection
of a single business area.

Data Integration

An ODS incorporates the data integration methods of the Data Warehouse Philos-
ophy. The form, Function, and Grain of data in an ODS are consistent throughout
that ODS.25 Ideally, the Form, Function, and Grain of data in an ODS will also be
consistent with the data warehouse, which helps avoid confusion among ODS and
data warehouse customers.

Sequence

When an ODS is present, data acquisition and integration applications load the
ODS from the operational environment. Then, a second layer of data acquisition
and integration applications extract data from the ODS and load that data into the
data warehouse.26 An ODS receives its data from operational applications before
the data warehouse receives its data from the ODS.

System of Record

The sequence of data from the operational environment to an ODS to a data ware-
house necessarily and explicitly means the ODS is the System of Record of its subject
for the data warehouse.27 The data acquisition and integration applications gather data
from the ODS for that subject area rather than the enterprise.

AU6462.indb 131 2/7/08 9:53:21 AM

132  n  Building and Maintaining a Data Warehouse

ED
W

Sa
le

s
M

an
uf

ac
tu

r-
in

g

Lo
gi

st
ic

s
Pe

rs
on

ne
l

M
ar

ke
tin

g

Pu
rc

ha
sin

g

O
D

S

M
ar

ke
tin

g

O
pe

ra
tio

na
l

A
pp

lic
at

io
n

Bu
si

ne
ss

U
ni

t

Fi
gu

re
 5

.48 

O
pe

ra
ti

on
al

 D
at

a
St

or
e.

AU6462.indb 132 2/7/08 9:53:21 AM

Database Design  n  133

Volatile

A data warehouse is nonvolatile. That means that once data is written into a data
warehouse, it remains in the data warehouse regardless of what happens in the
enterprise. An ODS is volatile. When a data element is updated, inserted, or deleted
in the operational environment, that same update, insert, or delete also occurs in
the ODS.28

Short History

A data warehouse typically retains years of data. Large histories of data are neces-
sary to observe trends and patterns in data. An ODS, however, retains only a short
duration of history.29 An ODS does not need five years of history to reflect a busi-
ness unit in its current state. Rather, the data volume necessary to store five years
of history would interfere with the rapid response expected of an ODS. An ODS,
therefore, holds only enough history to be considered current and up to date.

Detailed Data

An ODS stores operational data at its lowest grain. This allows the ODS to present
a detailed reflection of the business unit.30 An ODS does not aggregate or sum-
marize data. The quick response time expected of an ODS removes the need to
improve performance by preaggregating or presummarizing its data. The level of
detail is limited by the granularity and detail available in the operational environ-
ment. So, an ODS will ideally reflect the grain and detail of the data already pres-
ent in the operational environment.

Cycles

The applications that gather operational data and load it into an ODS occur on a
scheduled frequency. That frequency can be determined by the needs of the busi-
ness and the capacity of the applications.31 If the applications can refresh an ODS
every hour, and the business needs hourly updates, then the applications will refresh
the ODS every hour.

The data warehouse will extract its data from the ODS. The data warehouse,
therefore, cannot extract its data from the ODS more frequently than the data in
the ODS is refreshed. If a data warehouse did extract its data from the ODS more
frequently than the data in the ODS is refreshed, the data warehouse would extract
identical sets of data, which would yield no updates to the data warehouse. The
ODS refresh cycle, therefore, must be equal to or more frequent than the frequency
of the data warehouse cycle.

AU6462.indb 133 2/7/08 9:53:22 AM

134  n  Building and Maintaining a Data Warehouse

Summaries and Aggregates

Data warehouse customers always have a common complaint—performance. Data
warehouses always have a common problem—performance. Database tuning, SQL
tuning, indexing, and optimizer improvements increase the performance of a data
warehouse. Two methods, though, are applied in almost every data warehouse –
Summaries and Aggregates.32

A Summary is a table that stores the results of a SQL arithmetic SUM state-
ment that has been applied to a Fact table. The arithmetic portion of a Fact table is
summed, while simultaneously one or more hierarchical levels of detail are removed
from the data in a Fact table. For example:

Intraday Fact data is summed at the Day level. The resulting data is stored in
a Daily Summary table. For that data, the lowest grain is the Day.
Store Fact data is summed at the Region level. The resulting data is stored in a
Region Summary table. For that data, the lowest grain is the Region.

The intention of a Summary table is to perform the summation of arithmetic
Fact data only once, rather than many times. By incurring the resource consump-
tion necessary to summarize a Fact table, data warehouse customers will receive the
previously summarized data they want quickly.

An Aggregate is a table that stores the results of SQL JOIN statements, which
have been applied to a set of Dimension tables. The hierarchies and attributes above
an entity are prejoined and stored in a table. For example:

The Product entity, its levels of hierarchy and management area prejoined
into a single table that stores the result set. The grain of this result set is the
Product.
The Facility entity, its levels of geographic and management hierarchy are
prejoined into a single table that store the result set. The grain of this result
set is the Facility.

The intention of an Aggregate table is to perform the joins of large sets of
Dimension data only once. By incurring the resource consumption necessary to
join a series of Dimension tables, data warehouse customers will receive data that
uses those levels of hierarchy quickly.

An Aggregate is not a pure Dimension table as it would appear in a Dimen-
sional Data Model. An Aggregate is a physical table that holds the result set of join
statements, which are commonly used by data warehouse customers and are high
system resource consumers. The point of an Aggregate is to incur the high system
resource consumption once during off-peak hours to avoid multiple consumptions
of system resources during peak hours. That being the case, an Aggregate table
can denormalize along multiple hierarchies. The intersection of those multiple

n

n

n

n

AU6462.indb 134 2/7/08 9:53:22 AM

Database Design  n  135

hierarchies is the grain of an Aggregate table. The hierarchical intersection and
lowest level of granular detail must be the same because they are the grain of an
Aggregate table.

Closing Remarks
Database Design achieves two major goals:

Organize data structures within a database.
Organize databases within a data warehouse.

The three forms of data model (Dimensional, Third Normal Form, and Recur-
sive), and the permutations and variations within each, provide a set of strategies
by which a Database Design can organize data structures within each database.
The three forms of Data Architecture (EDW, Data Mart, and ODS) provide a
set of strategies by which a Database Design can organize databases within a data
warehouse.

RDBMS technology and data warehousing skills have advanced such that all
permutations of data model and data architecture are viable options. Which set of
options is the right set for a specific data warehouse? The answers (yes, a data ware-
house can have multiple right answers) can only be found within the context of a
specific enterprise and environment.

What hardware is available?
What software is available?
What is the available budget to purchase hardware and software?
What skills exist inhouse?
What is the available budget to purchase additional skills?
What is the long-term architecture plan of the enterprise?
Who are the customers?
How will they use the data warehouse?

These questions only scratch the surface, but they will guide a data warehouse
designer to the right solutions. After that, a data warehouse designer has the task of
choosing the best solution from among the right solutions. The only decision that has
already been made is: A data warehouse resides on a RDBMS.

References
	 1.	 Claudia Imhoff, Nicholas Galemmo, and Jonathan G. Geiger, Mastering Data Ware-

house Design: Relational and Dimensional Techniques (Indianapolis, IN: John Wiley &
Sons, 2003).

n
n

n
n
n
n
n
n
n
n

AU6462.indb 135 2/7/08 9:53:22 AM

136  n  Building and Maintaining a Data Warehouse

	 2.	 Ibid.
	 3.	 Cindy Thousand (ed.), Logical Data Modeling Concepts, Information Resource

Management Unit of WisDOT (http://enterprise.state.wi.us, 2002).
	 4.	 This is a good example of mixing physical and logical entities. Both entities (Real

Estate and Function) are associated with no constraint from the fact that Real Estate
is physical and Function is logical.

	 5.	 Actually, Date/Time should be modeled in a Calendar subject area. Inclusion of a
Calendar subject area would distract, rather than enhance, this discussion. A Calen-
dar subject area will be included during the discussion of Time Variance in a Physical
Data Model.

	 6.	 A data warehouse would eventually run out of room, or hardware budget, if it forever
retained all its data. For that reason, data retention periods must be used to free up
space for new data to come into the data warehouse. This topic, data retention peri-
ods, while relevant to the maintenance of any database, is not relevant to a discussion
of Physical Data Modeling.

	 7.	 Len Silverston, The Data Model Resource Book, Volume 1, Rev. ed., vol. 1 (New York:
John Wiley & Sons, 2001).

	 8.	 David C. Hay, Data Model Patterns: A Metadata Map, Morgan Kaufmann Series
in Data Management Systems (Amsterdam, Boston: Elsevier–Morgan Kaufmann,
2006).

	 9.	 Silverston, The Data Model Resource Book.
	 10.	 Ralph Kimball, The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Devel-

oping, and Deploying Data Warehouses (New York: John Wiley & Sons, 1998).
	 11.	 Ralph Kimball and Joe Caserta, The Data Warehouse Etl Toolkit: Practical Techniques

for Extracting, Cleaning, Conforming, and Delivering Data (Indianapolis, IN: John
Wiley & Sons, 2004).

	 12.	 Type 1, Type 2, and Type 3 time-variant relations were discussed in the Time Variant
section of Chapter 2 (Data Warehouse Philosophy).

	 13.	 The Surrogate Key and Surrogate Key Version fields can be defined as alphanumeric
data types. The sequential numbers in these fields have no real arithmetic properties.
You cannot add Key 123 to Key 234 to invent a new product with Key 357. So, an X
in a Surrogate Key Version field that typically holds numbers is acceptable.

	 14.	 Kimball, The Data Warehouse Lifecycle Toolkit.
	 15.	 Ibid.
	 16.	 Laura Reeves, Dimensional Modeling Beyond the Basics: Intermediate and Advanced

Techniques, TDWI World Conference (The Data Warehousing Institute, Renton,
WA, 2002).

	 17.	 Ibid.
	 18.	 Ibid.
	 19.	 Kimball, The Data Warehouse Lifecycle Toolkit.
	 20.	 They had forms of normalization beyond the Third Normal Form. For general usage

across the board, however, Third Normal Form provided the best balance of normal-
ization and usage.

	 21.	 Ralph Kimball, A dimensional modeling manifesto — Drawing the line between
dimensional modeling and ER modeling techniques, DBMS Online, August 1997,
Vol. 10, Number 9.

AU6462.indb 136 2/7/08 9:53:22 AM

Database Design  n  137

	 22.	 Hay, Data Model Patterns.
	 23.	 William H. Inmon, Claudia Imhoff, and Ryan Sousa, Corporate Information Factory

(New York: John Wiley & Sons, 1998).
	 24.	 William H. Inmon, Building the Operational Data Store, 2nd ed. (New York: John

Wiley & Sons, 1999).
	 25.	 Ibid.
	 26.	 William H. Inmon and Richard D. Hackathorn, Using the Data Warehouse (New

York: John Wiley & Sons, 1994).
	 27.	 Ibid.
	 28.	 Inmon, Imhoff, and Sousa, Corporate Information Factory.
	 29.	 Ibid.
	 30.	 Ibid.
	 31.	 Inmon, Building the Operational Data Store.
	 32.	 I include the word “almost” because there’s probably one data warehouse that doesn’t

use these methods.

AU6462.indb 137 2/7/08 9:53:23 AM

AU6462.indb 138 2/7/08 9:53:23 AM

139

Chapter 6

Data Acquisition
and Integration

Introduction
Data Acquisition and Integration is a name given to the set of applications that pop-
ulate a data warehouse (Figure 6.1). This process consists of three main functions.

Extract: Otherwise known as Data Acquisition, this function reaches into a
source system to retrieve data. The data yielded by this function is known as
Source Data.
Transform: The first half of Data Integration, this function inspects, cleanses,
and conforms Source Data to the needs of a data warehouse. The data yielded
by this function is known as Load Data.
Load: The second half of Data Integration, this function updates a data ware-
house using the data provided in the Load Data.

These three functions (Extract, Transform, and Load) are more commonly
known as ETL. An ETL application is the most comprehensive line between two
points. These two points are the enterprise and all its source systems on one end and
a data warehouse on the other.

The first concern of an ETL analyst, therefore, is these two points. The first
point is the Source System. The enterprise and all its source systems are collectively
referred to as the Source System, which may actually consist of multiple information

n

n

n

AU6462.indb 139 2/7/08 9:53:23 AM

140  n  Building and Maintaining a Data Warehouse

So
ur

ce
 D

at
a

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts

M
et

ad
at

a
Ap

pl
ic

at
io

n(
s)

D
at

a Q
ua

lit
y

D
at

ab
as

e
M

et
ad

at
a

D
at

ab
as

e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

RD
BM

S

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

O
LA

P

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

M

et
ad

at
a

Re
po

si
to

ry

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

D
at

ab
as

e
D

es
ig

n

So
ur

ce
 D

at
a

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts

M
et

ad
at

a
Ap

pl
ic

at
io

n(
s)

D
at

a Q
ua

lit
y

D
at

ab
as

e
M

et
ad

at
a

D
at

ab
as

e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

RD
BM

S

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

O
LA

P

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

M

et
ad

at
a

Re
po

si
to

ry

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

D
at

ab
as

e
D

es
ig

n

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

Fi
gu

re
 6

.1 

D
at

a
A

cq
ui

si
ti

on
 a

nd
 I

nt
eg

ra
ti

on
.

AU6462.indb 140 2/7/08 9:53:24 AM

Data Acquisition and Integration  n  141

systems, platforms, and geographies. For the purpose of discussion, however, they
are referred to collectively as the Source System. The second point is the Target
System. For an ETL application, the Target System is always a data warehouse or
a section of a data warehouse architecture (e.g., Operational Data Store [ODS] or
Data Mart). Prior to contemplating any ETL application design or architecture, an
ETL analyst must first focus on and define the two points.

Source System Analysis
Chapter 3 focused solely on Source System Analysis. The principles of this analysis
include:

System of Record: The single authoritative statement of an entity or event
Entity Data: The physical and logical members and agents of the enterprise
Arithmetic Data: Measurements of enterprise activity
Numeric Data That Isn’t Arithmetic: Data with mismatched form and
function
Alphanumeric Data: Text and descriptive data
Granularity: Hierarchical level of detail
Latency: Delay in the arrival and availability of data
Transaction Data: Conjunction of entity and arithmetic data to measure an
event
Snapshot Data: Conjunction of entity and arithmetic data to measure the net
effect of multiple events over a period of time

The methods of Source System Analysis discussed in Chapter 3 include:

Data Profile: A static view of the enterprise through its data
Data Flow Diagram: A dynamic view of the enterprise through its data in
motion
Data State Diagram: A dynamic view of the enterprise through its data in
motion and business relevance and meaning
System of Record: A discernment of the authoritative data within an
enterprise

If during the previous analysis activities, the Source System Analysis was omit-
ted or abbreviated, an ETL analyst should return to the Source System Analysis.
The potential of an ETL application failing to fulfill its requirements is greatly
increased, if not completely assured, when the Source System Analysis is incom-
plete. The Source System Analysis provides an ETL analyst the information neces-
sary to gather data from the source system. Even if the data warehouse has been
designed without the advantage of the information provided by the Source System

n
n
n
n

n
n
n
n

n

n
n

n

n

AU6462.indb 141 2/7/08 9:53:24 AM

142  n  Building and Maintaining a Data Warehouse

Analysis, an ETL analyst should return to, and finish to completion, the Source
System Analysis.

Target System Analysis
The Target System is a data warehouse, or a component of a data warehouse archi-
tecture. The data architecture, data model, and data warehouse design of that
data warehouse are prerequisites for the design and creation of an ETL applica-
tion. Usually, the design of a data warehouse stops at the data model. The data
warehouse designer will usually choose a Relational Database Management System
(RDBMS), Business Intelligence Reporting architecture, and data model. Data
warehouse design should also indicate how the data warehouse will reflect the enti-
ties of the source system (e.g., purchase orders, machines, people, etc.) as those
entities cycle through their states (e.g., reviewed, approved, commissioned, hired,
etc.). For example:

When the source system creates an instance of a data entity, how will the data
warehouse reflect that instance?
When the source system modifies the state of a data entity, how will the data
warehouse reflect that modified state?
When the source system removes an instance of a data entity, how will the
data warehouse reflect the removal of that instance?
When a business event occurs, how will the data warehouse reflect that
event?
When a business event cycles through its states (initiation, transaction, clo-
sure), how will the data warehouse reflect those states?

An ETL analyst asks such questions because the answers provide requirements
that will be used to design and develop the ETL applications, which will load data
into a data warehouse. The process of gathering these answers is the Target System
Analysis.

The purpose of Target System Analysis is to identify and document expectations
of the data in a data warehouse. These expectations come from multiple constituents.
The data warehouse designer has expectations of the data in a data warehouse. Some
of the data warehouse designer’s expectations will be explicitly stated in the data
architecture, data model, and data warehouse design deliverables. Target System
Analysis will reveal and clarify the data warehouse designer’s implicit expectations of
a data warehouse. Data warehouse customers also have explicit and implicit expecta-
tions of the data in a data warehouse. The Target System Analysis will also reveal and
clarify the expectations of data warehouse customers. Finally, when the expectations
of the data warehouse designer contradict the expectations of the data warehouse
customers, the Target System Analysis provides an opportunity to recognize and

n

n

n

n

n

AU6462.indb 142 2/7/08 9:53:25 AM

Data Acquisition and Integration  n  143

resolve such discrepancies. The goal of Target System Analysis is to create a set of
expectations (i.e., requirements) so explicit that these expectations can be compared
directly to the data in the data warehouse. The customers will compare the data in
the data warehouse to their expectations. Therefore, an ETL analyst would be wise
to perform that comparison during development and testing.

Data warehouse customers have explicit and implicit expectations of the data
in a data warehouse. Looking at a data element named SALES, data warehouse
customers explicitly expect to see sales data in a SALES table. Explicit expectations
are easy to gather. Implicit expectations, however, can be more difficult. An ETL
analyst, therefore, must pursue implicit expectations (i.e., assumptions) about the
data in the SALES table. For instance, implicit expectations can be found with the
following questions:

Do you expect to see all sales data (i.e., complete)?
When sales data is incomplete, would you like to know what data is missing
(metadata)?
Do you expect to never see the sales data duplicated (data quality)?
Would you like to know when the next batch of sales data becomes available
(metadata)?

For questions such as these, data warehouse customers typically answer, “Well,
yes.” Requirements such as these are not addressed in the creation of a data model
because they do not contribute to an understanding of entities, attributes, and
relationships. Requirements questions such as these are discussed in the following
sections:

Direct Requirements
Indirect Requirements

Direct Requirements

Direct Requirements can best be understood as the explicit expectations of data
warehouse customers. The meaning of each data element and how to achieve that
meaning are the focus of Direct Requirements. An ETL analyst must investigate
completely the meaning of each and every data element in a data warehouse as
perceived by data warehouse customers.

Sometimes multiple populations of data warehouse customers have different
and irreconcilable expectations for a data element. For example, a derived data
element (Gross Profit) can have multiple meanings. The process of gathering ETL
Direct Requirements typically discovers a few instances of multiple meanings. This
is no reason to panic. Two meanings for Gross Profit indicate that there are mul-
tiple Gross Profit data elements. The ETL analyst should pass such anomalies back

n
n

n
n

n
n

AU6462.indb 143 2/7/08 9:53:25 AM

144  n  Building and Maintaining a Data Warehouse

to the data warehouse designer for resolution. Once the anomaly is resolved, the
ETL analyst can continue gathering the business meaning (i.e., customer expecta-
tion) of all data elements.

Direct Requirements are captured during Target System Analysis. That is when
the meaning and behavior of a data warehouse and, therefore, all its data elements,
are gathered. Figure 6.2 illustrates the progression of customer expectations to
Direct Requirements.

An ETL analyst cannot assume without question that the Target System Anal-
ysis defines all Direct Requirements. If a Target System Analysis is expected to
serve the purpose of documenting all Direct Requirements, then the Target System
Analysis document should be audited to determine whether or not it meets that
expectation. More realistically, an ETL analyst can use the Target System Analysis
as a foundation for an ETL Direct Requirements document, which can provide
definitions and customer expectations that are missing from the Target System
Analysis document. Regardless of the requirements documents, an ETL analyst
must understand data warehouse customer expectations of the data they will see in
a data warehouse. That is the goal and focus of Direct Requirements.

Indirect Requirements

Indirect Requirements can best be understood as the information customers need
for them to use a data warehouse to do their job. Indirect Requirements address
the implicit expectations of data warehouse customers. Unless told otherwise, data
warehouse customers assume the data in a data warehouse matches their expecta-
tions. An ETL application, therefore, has a responsibility to stipulate when a data
warehouse does not match their expectations.

Indirect Requirements come directly from the Data Quality Service Level
Agreement (SLA) and Metadata SLA (Figure 6.3). The Data Quality SLA and

Data
Warehouse

Target System
Analysis

ETL Direct
Requirements

Customer
Expectations

Figure 6.2  Direct Requirements.

AU6462.indb 144 2/7/08 9:53:26 AM

Data Acquisition and Integration  n  145

Metadata SLA gather requirements from data warehouse customers specifically for
the purpose of helping them use a data warehouse.

Frequently, implicit expectations are not known until after a data warehouse
has had the opportunity to violate these assumptions. As data warehouse custom-
ers come to understand their own implicit expectations, the Data Quality SLA
and Metadata SLA documents can be updated to include these implicit expecta-
tions. This progression is normal and should not be viewed as a problem. A data
warehouse team, in conjunction with data warehouse customers, will continue to
identify and add new Data Quality and Metadata requirements throughout the life
of a data warehouse.

Throughout the life of a data warehouse, the focus and goal of Indirect Require-
ments is the information customers need to use a data warehouse to do their job.
The people, jobs, and skill levels may change. As these changes occur, the Data
Quality and Metadata Programs must maintain their focus on deriving the maxi-
mum value possible from a data warehouse.

Direct and Indirect Requirements

The Direct and Indirect Requirements together (Figure 6.4) capture all expecta-
tions of data warehouse customers. At the conclusion of the requirements-gathering
effort, all customer expectations, explicit and implicit, should be in one of these two
documents.

During the subsequent design and development phases in the creation of an ETL
application, no new customer expectations can be added to the design or develop-
ment deliverables. Instead, any new customer expectations must be added to either
the Direct or Indirect Requirements and then brought forward.

Data
Warehouse

Data Quality
SLA

ETL Indirect
Requirements

Customer
Expectations

Metadata
SLA

Figure 6.3  Indirect Requirements.

AU6462.indb 145 2/7/08 9:53:26 AM

146  n  Building and Maintaining a Data Warehouse

Language

The language of a Target System Analysis must be painstakingly precise. As with
all requirements documents, a Target System Analysis is an agreement between an
ETL analyst and data warehouse customers. By accepting a Target System Analysis
deliverable, both the ETL analyst and data warehouse customers agree on its con-
tents and meaning.

If the data warehouse does not match the expectations of the data warehouse
customers, they will refer to the Target System Analysis and declare, “The data
in the data warehouse does not match the data as described in the Target System
Analysis.” In such a circumstance, if the verbiage in the Target System Analysis
allows any room for interpretation, the data warehouse customers will interpret it
in their own way and by their own understanding, which will probably not match
the data warehouse. For example:

The ETL will respond appropriately.
The row will change its state.
When the data is ready.

These phrases are so vague that they can only be interpreted. A Target System
Analysis that uses such language will communicate more confusion then informa-
tion. A Target System Analysis written with explicit and precise language will com-
municate clearly, allowing no room for interpretation. Such language should:

Name the exact database, table, and field.
Name the exact data values and their locations, which constitute a prerequi-
site for any action.

n

n

n

n

n

Data
Warehouse

Target System
Analysis

ETL Direct
Requirements

Customer
Expectations Data Quality

SLA
ETL Indirect

Requirements

Metadata
SLA

Figure 6.4  Direct and Indirect Requirements.

AU6462.indb 146 2/7/08 9:53:27 AM

Data Acquisition and Integration  n  147

Name the exact sequence of processes, including predecessors and
successors.
Name the exact data values, which constitute each state and their meanings.

After all the work necessary to gather a complete set of requirements, the lan-
guage with which these requirements are communicated can limit or enhance their
success.

Data Profile

All ETL applications share the risk of loading wrong data into a data warehouse.
A data profile of the Target System allows an ETL analyst to define or describe the
data that will be loaded into a data warehouse before actually loading the data. The
Data Profile includes three sections similar to the data profile from the Source Sys-
tem Analysis. Each section is intended to provide a cross-section description of data
warehouse data elements in terms of the intended nature of the data (Inventory of
Data Elements) and how the data warehouse data elements will relate to each other
(Data Model).

Inventory of Data Elements
Name
Format
Domain of values
Range of values
Frequency of distinct values

Inventory of Data Entities
Combined data elements that define logical data
Core data element
Descriptive data elements
Associative data elements

Data Model of the Target System
Logical
Physical
ETL keys
Foreign key relationships
Data Entity relationships

The purpose of a Data Profile is to define or describe the data elements in a data
warehouse. The inventory of data elements is based on the intentions of the data
warehouse designer and the expectations of the data warehouse customers. The
logical and physical data models are provided by the data warehouse designer. The
definition of the ETL keys enables an ETL application to uniquely identify every

n

n

n
−
−
−
−
−

n
−
−
−
−

n
−
−
−
−
−

AU6462.indb 147 2/7/08 9:53:27 AM

148  n  Building and Maintaining a Data Warehouse

business instance within a data entity, which is different from a primary key that
identifies every row.

An ETL analyst must be able to explain the data that was loaded into a data ware-
house. The Data Profile captures cross-section descriptions of the data in the data
warehouse. Knowledge of the Target System allows an ETL analyst to demonstrate
how well the data in a data warehouse conforms to expectations.

Data State
Data State Analysis is used to capture the various business meanings of data ele-
ments as they flow through a data warehouse. A data warehouse may not include
all the data states present in the operational source system. Therefore, the presence
of data states in a source system does not imply the presence of these data states in
the data warehouse. Also, data states in the source system may be different from the
data states in the data warehouse. The Data State Analysis identifies these data states
that are intended to be captured in the data warehouse (Table 6.1). For example:

An ETL analyst must be able to explain the data that was loaded into a data
warehouse. The Data Profile captures cross-section descriptions of the data in the
data warehouse, excluding time and data state. Knowledge of the Target System
allows an ETL analyst to demonstrate how well the data in a data warehouse
conforms to expectations. Data State Analysis further enables an ETL analyst to
identify expectations of a data warehouse by identifying the path within a data
warehouse through which a data entity travels as it changes business meanings and
relevance.

Data Mapping
Data Mapping is the process by which an ETL analyst identifies the source data,
specific to location, state, and timing, which will be used to satisfy the data require-
ments of a data warehouse. Transformations necessary to create the data elements,
as they will be stored in a data warehouse, are also included in a Data Mapping.
Data Mapping documents can be in the form of a spreadsheet, a diagram, or text
document. The form is not important. The important aspects of a Data Mapping
document are:

Table 6.1  Data States
Data Element Source System Data State Data Warehouse Data State

Product Proposed Excluded: n/a

Manufacturing Design Finalized Included as Finalized

Invoice Paid in Full Included as Complete

AU6462.indb 148 2/7/08 9:53:27 AM

Data Acquisition and Integration  n  149

The participants in the Data Quality SLA must easily understand the Data
Mapping document. The Data Mapping document will be an input into the
Data Quality SLA and the Metadata SLA. If the participants in the Data
Quality SLA cannot understand the Data Mapping document, they will be
less effective addressing data quality problems.
The Data Mapping document must clearly and precisely identify the source
data element that will be used, such that there is no ambiguity about the loca-
tion, state, or timing of the extract of a data element.
The Data Mapping document must clearly and precisely identify the target data
element that will be populated, such that there is no ambiguity about the loca-
tion and state of the data element as stored in the data warehouse.
The Data Mapping document must clearly and precisely define the transfor-
mations necessary to create the data element as it will be stored in the data
warehouse.

Figure 6.5 illustrates, at a conceptual level, these four elements.
Simple data mappings may require no transformation at all, such as the map-

ping in Table 6.2.
Derived data mappings may require simple transformations, such as the map-

ping in Table 6.3.
Derived data mappings may cause recursive data mappings, such as the map-

ping in Table 6.4.
The entire lineage from specific source data elements to specific target data ele-

ments is captured in a Data Mapping. That lineage includes all transformations,
modifications, and recursive mappings. Any new source or target data elements
introduced to an ETL application must begin in the Data Mapping.

The Data Mapping must satisfy all Direct Requirements. Any Direct Require-
ment not satisfied in a Data Mapping will not be satisfied in a data warehouse either.
Tracing Direct Requirements to the Data Mapping, therefore, can help verify that
no Direct Requirements were missed.

The Data Mapping is the basis for the Physical Design. The purpose of the
Physical Design is to achieve the lineage shown in the Data Mapping, which satis-
fies all Direct Requirements. Physical Design, therefore, must wait for completion
of the Data Mapping.

Business Rules

Finally, the Target System Analysis is the opportunity to document the business
rules that will govern data in the data warehouse. The Data Profile, Data State
Diagram, and Data Mapping provide the best opportunity to identify the business
rules of the data warehouse. These business rules come in three basic varieties.

n

n

n

n

AU6462.indb 149 2/7/08 9:53:27 AM

150  n  Building and Maintaining a Data Warehouse

Intrarow Business Rules: Column A + Column B = Column C. The business
rule exists entirely within each individual row. All the data and information
necessary to validate the business rule is present in a single row. An Intrarow
business rule can only be validated one row at a time because that business
rule applies to only one row at a time.

n

Table 6.2  Simple Data Mapping
Source Data Element Transformation Target Data Element

Length in kilometers n/a Length in kilometers

Table 6.3  Derived Data Mapping
Source Data Element Transformation Target Data Element

Length in kilometers Multiply by 1,000 Length in meters

State: Proposed
Timing: Beginning of life
cycle

State: Reviewed
Timing: Phase 2 of life
cycle

State: Approved
Timing: Production
phase of life cycle

State: Obsolete
Timing: End of life cycle

Source System
Data = PRODUCT

State: Active

State: Inactive

Target System
Data = PRODUCT

Transformation

Transformation

DATA MAPPING FROM SOURCE TO TARGET

Figure 6.5  Data Mapping.

AU6462.indb 150 2/7/08 9:53:28 AM

Data Acquisition and Integration  n  151

Intratable Business Rules: Row 1.Column A + Row 2.Column A = Row
3.Column B. This business rule spans across rows within a data warehouse
table, but still remains within the table. All the data and information neces-
sary to validate the business rule is present in a single data warehouse table.
An Intratable business rule can only be validated one table at a time because
that business rule applies to only one table at a time.
Cross-Table Business Rules: Table 1.Column A = Table 2.Column B. The
business rule spans across sets of data warehouse tables. The data and infor-
mation, therefore, may not be available in the data warehouse. The data may
be late arriving. Cross-Table business rules, therefore, require more effort to
define.

Business rules will be used to create the Data Quality validations of data as it
flows through the ETL application on its way to the data warehouse. Therefore, any
data elements in the data warehouse that should maintain a consistent behavior,
and can affect the perceived quality of the data warehouse, should be included in
the list of Business Rules.

n

n

Source Data Element Transformation Target Data Element

Source Data Element Transformation Target Data Element

Source Data Element Transformation Target Data Element

Length in kilometers

Price per meter

Price per meter

Price per meter

Price per kilometer

Total Price Length in kilometers

Price per kilometer

Multiply

 n/a

 n/a

Multiply by 1,000

Length in kilometers

Table 6.4  Recursive Data Mappng

AU6462.indb 151 2/7/08 9:53:29 AM

152  n  Building and Maintaining a Data Warehouse

Architecture
Early ETL applications were physically designed on the assumption that three plat-
forms were involved:

Source system platform
ETL platform
Data Warehouse platform

These three platforms equated to three physically separate and individually
whole computers (Figure 6.6).

Since then, ETL analysts realized they could leverage the computing power
of a target RDBMS (i.e., a data warehouse). ETL analysts moved the Transform
application over to the data warehouse RDBMS (Figure 6.7). This physical design
is called ELT because the Load application had been moved in front of the Trans-
form application.

Within a Load application, the final Update function will always be the last
function because the final purpose and destination is a data warehouse. All physical
designs, therefore, culminate at the update of a data warehouse.

So, all physical designs begin with an Extract application and end with an
Update function. First, all ETL/ELT physical designs must extract data from a
source system, otherwise, there is no data to transform, load, or update. Second, all
ETL/ELT physical designs must update a data warehouse, otherwise, they do not
fulfill their final purpose. Everything that happens between the Extract and Update
is up to the discretion of the ETL analyst (Figure 6.8). Any operation can happen
on any platform most capable of that operation, and the operations performed on
various platforms are typically Transform operations.

A physical design that crosses multiple Transform platforms must observe two
caveats:

Load: Any function that pushes data from a sending platform to a receiving
platform has the responsibility to verify that all transported data was received
exactly as intended.

n

n

n

n

Data
Warehouse

Source System Transform

Extract Load

Figure 6.6  Extract, Transform, and Load (ETL) platform.

AU6462.indb 152 2/7/08 9:53:29 AM

Data Acquisition and Integration  n  153

Extract: Any function that pulls data from a source platform has the respon-
sibility to verify that all transported data was received exactly as intended.

Extract, Transform, and Load (ETL)
In an ETL application (Figure 6.9), data is extracted (i.e., acquired) from an opera-
tional system. The extracted data is captured on a platform that is controlled by the
ETL application. This process of capturing data on a controlled platform is called
Staging, and the platform is called a Staging Platform or Staging Environment.
At this point, the staged data is in its raw form, which is identical to its form and
state when it was in an operational application. In this raw, pretransform state, the
staged data is called Source Data.

A Transform application performs all data modifications to the Source Data
necessary to conform it to the rules, layout, and format of a data warehouse. The
transformed data is also captured on a platform that is controlled by the ETL appli-
cation. The posttransform data is also captured on a Staging Platform or Staging
Environment. In this posttransform state, however, the staged data is called Load
Data.

A Load application bridges the gap between the ETL and Staging Platforms
and the data warehouse platform. A Load application reads the Load Data and

n

Data
WarehouseSource System

Extract Load
Transform

Figure 6.7  Data Warehouse Relational Database Management System (RDBMS).

Platform 02
Source System

Extract Load
Data

Warehouse
Update

Data
Warehouse

Platform 01

Figure 6.8  Multiple Extract, Transform, and Load (ETL) platforms.

AU6462.indb 153 2/7/08 9:53:30 AM

154  n  Building and Maintaining a Data Warehouse

H
ie

ra
rc

hy
A

pp
lic

at
io

n

So
ur

ce
 D

at
a

D
at

a
W

ar
eh

ou
se

ET
L

Tr
an

sa
ct

io
n

A
pp

lic
at

io
n

Ex
tr

ac
t

H
ie

ra
rc

hy
So

ur
ce

 D
at

a

Tr
an

sfo
rm

H
ie

ra
rc

hy
Lo

ad
 D

at
a

H
ie

ra
rc

hy
Ta

bl
e

H
ie

ra
rc

hy
O

D
S

Lo
ad

Ex
tr

ac
t

Tr
an

sa
ct

io
n

So
ur

ce
 D

at
a

Tr
an

sfo
rm

Tr
an

sa
ct

io
n

Lo
ad

 D
at

a
Lo

ad
Tr

an
sa

ct
io

n
Ta

bl
e

Fi
gu

re
 6

.9 

Ex
tr

ac
t,

 T
ra

ns
fo

rm
, a

nd
 L

oa
d

(E
TL

).

AU6462.indb 154 2/7/08 9:53:31 AM

Data Acquisition and Integration  n  155

performs the necessary inserts, updates, and deletes to a data warehouse. When the
Load application has finished, the ETL application has completed.

Extract, Load, and Transform (ELT)

An ELT application (Figure 6.10) performs all the functions and purposes of an
ETL application. The difference between an ETL application and an ELT applica-
tion is the platform on which the application performs it functions.

An ELT application uses the ELT platform as a momentary hub enroute to the
data warehouse RDBMS platform. The ELT platform extracts operational data,
and loads it directly to staging tables on the data warehouse RDBMS platform. All
the transform functions are performed on the data warehouse RDBMS platform.
Finally, the data warehouse is loaded from within the data warehouse RDBMS
platform.

ELT has two advantages.

A data warehouse RDBMS platform is a powerful platform. All the resources
(CPU seconds, throughput, etc.) of a data warehouse RDBMS platform are
available to an ELT application.
A copy of look-up data need not be kept and maintained on the ELT platform
because the data warehouse RDBMS has access to all the data in the data
warehouse.

ELT has one disadvantage.

A portion of the data warehouse’s resources (CPU seconds, throughput, etc.)
are consumed by someone other than a data warehouse customer. Given suffi-
cient data volumes and transformation complexity, this could adversely affect
data warehouse customers

For discussion purposes, ETL and ELT applications will be referred to collec-
tively as ETL. The principles and methods discussed in the following sections apply
to ETL and ELT equally.

ETL Design Principles

The following ETL Design Principles are a set of lessons learned. ETL applications
are subject to unexpected circumstances and, therefore, should expect the unex-
pected to occur. An ETL analyst must work hard to assure an ETL application is
bulletproof, knowing each ETL application will behave as intended, even if the
source system does not.

n

n

n

AU6462.indb 155 2/7/08 9:53:31 AM

156  n  Building and Maintaining a Data Warehouse

H
ie

ra
rc

hy
A

pp
lic

at
io

n

So
ur

ce
 D

at
a

D
at

a
W

ar
eh

ou
se

EL
T

Tr
an

sa
ct

io
n

A
pp

lic
at

io
n

Ex
tr

ac
t

H
ie

ra
rc

hy

H
ie

ra
rc

hy
Ta

bl
e

Lo
ad

Ex
tr

ac
t

Tr
an

sa
ct

io
n

So
ur

ce
D

at
a

Lo
ad

Tr
an

sa
ct

io
n

Ta
bl

e

Tr
an

sfo
rm

A
ct

iv
e &

 C
ur

re
nt

 R
ec

or
ds

Tr
an

sfo
rm

A
ct

iv
e &

 C
ur

re
nt

 D
at

a

Lo
ad

Lo
ad

H
ie

ra
rc

hy
So

ur
ce

D
at

a

H
ie

ra
rc

hy
Lo

ad
 D

at
a

Tr
an

sa
ct

io
n

So
ur

ce
D

at
a

Tr
an

sa
ct

io
n

Lo
ad

 D
at

a

So
ur

ce
D

at
a

Fi
gu

re
 6

.1
0 

Ex
tr

ac
t,

 L
oa

d,
 a

nd
 T

ra
ns

fo
rm

 (
EL

T)
.

AU6462.indb 156 2/7/08 9:53:31 AM

Data Acquisition and Integration  n  157

ETL Process Principles

ETL Process Principles 1 through 6 address specifically the executable part of
an ETL application, i.e., the code that moves, copies, and transforms data. The
executable part of an ETL application is similar to a manufacturing plant. Raw
materials come in one door and finished products go out another. Inside the manu-
facturing plant, an assembly line is the path by which raw materials are converted
to finished products by means of many independent and interdependent manufac-
turing functions (stamping, dyeing, casting, trimming, etc.).

The same concepts that apply to manufacturing also apply to ETL. Data anom-
alies can enter an ETL application as raw data or transformed data. Some anoma-
lies only manifest themselves deep into the manufacturing process. Therefore, the
ETL manufacturing processes that convert and transform raw data (i.e., materials)
into a data warehouse (i.e., finished product) must manage and control the data
within each manufacturing function. The strength and robustness of that control
are a function of a Data Quality SLA, Metadata SLA, and discretion of the ETL
analyst designing the application.

ETL Process Principles provide six design principles by which an ETL ana-
lyst can manage and control data as it passes through an ETL application. An
ETL application can avoid data anomalies by incorporating ETL Process Principles
throughout the entire manufacturing process. The following topics describe each of
the ETL Process Principles on a conceptual level.

Principle 01: One Thing at a Time

Multitasking, the ability to perform two or more tasks simultaneously, is perceived
as a positive characteristic both in people and computer applications. Multitasking
conserves time and resources and is contrary to all things ETL. Applications that
multitask are built with the assumption that all will go as planned, that all input
values will be reasonable and valid. An ETL application, however, assumes that
nothing will go as planned, and that some input values will be unreasonable and
invalid.

Efficiency through multitasking is a basic principle of application design. In
operational applications, the benefits of efficiency have been always been obvious,
and the risks have been few. For these reasons, efficiency through multitasking
is a standard design principle for all application design, except ETL application
design. The benefits and risks of multitasking in ETL application design are dif-
ficult to notice because they are so different. The following example highlights the
difference.

Many applications are built on a relational database (RDBMS) platform. Rela-
tional applications manipulate data using SQL. The following is an example of a
SQL statement that can be found in any operational application.

AU6462.indb 157 2/7/08 9:53:32 AM

158  n  Building and Maintaining a Data Warehouse

	 Select
	 EMPLOYEE.EMPLOYEE_ID
	 ,SUBSTR(EMPLOYEE.LNAME & ‘,’ EMPLOYEE.FNAME & ‘ ‘ & 	 	
	 EMPLOYEE.MNAME) AS NAME
	 , (PAYROLL.BASE_SALARY*TAX_MATRIX.TAX_RATE) AS 	 	
	 TOTAL_TAX_AMT
	 ,((PAYROLL.BASE_SALARY*TAX_MATRIX.TAX_RATE) /PAY_	 	
	 CALENDAR.NUM_WEEKS) AS WEEKLY_TAX_AMT
	 FROM EMPLOYEE
	 INNER JOIN PAYROLL
	 ON EMPLOYEE.EMPLOYEE_ID = PAYROLL.EMPLOYEE_ID
	 INNER JOIN TAX_MATRIX
	 ON EMPLOYEE.TAX_REGION_ID = TAX_MATRIX.TAX_REGION_ID
	 AND EMPLOYEE.DECUCTION_ID = TAX_MATRIX.DEDUCTION_ID
	 AND EMPLOYEE.EXEMPTION_ID = TAX_MATRIX.EXEMPTION_ID
	 INNER PAY_CALENDAR
	 ON PAYROLL.PAY_DATE = CALENDAR.DATE
	 WHERE EMPLOYEE.STATUS IN (‘FT’, ‘PT’)
	 AND EMPLOYEE.DRUG_TEST = ‘PASS’

This SQL calculates, for all Full-Time and Part-Time employees, the total and
weekly tax amounts. In a closed-loop payroll application, this sort of SQL statement
would be valid. This SQL, in an ETL application, would not be wise. This SQL
is performing numerous actions simultaneously. Each of those actions implicitly
incurs one or more assumptions. Some of those simultaneous actions and assump-
tions are listed in Table 6.5.

In an ETL application, simultaneous actions are not a problem. Assumptions
that accompany simultaneous actions are a problem. If any assumption is violated,
then the set of simultaneous actions fails to deliver a complete and accurate set of
data. The cause of such a failure, a violated assumption, is usually extremely dif-
ficult to discern. The occurrence of such a failure may go unnoticed because no
part of this SQL would expose a violated assumption. A better approach would be
to perform each action individually and then combine the separate result sets into
one set of data.

This example of multitasking within a SQL statement can also occur in any
other language and platform. For example:

An ETL application written within an ETL tool can transform event trans-
action records, write them to a file, and load them to a table, all in one
piece of code. When questionable event transaction records are in the data
warehouse:

Was the source data bad?
Did the fact transformation malfunction?
Was the problem in the creation of the load file?
Did the load modify the data?
Which assumption was violated?

n

−
−
−
−
−

AU6462.indb 158 2/7/08 9:53:32 AM

Data Acquisition and Integration  n  159
Ta

bl
e 6

.
5 

Si
m

ul
ta

ne
ou

s
A

ss
um

pt
io

ns
SQ

L
St

at
em

en
t

A
ct

io
n

A
ss

u
m

p
ti

o
n

IN
N

ER
 JO

IN
 P

AY
R

O
LL

 O
N

EM

PL
O

Y
EE

.E
M

PL
O

Y
EE

_I
D

=

 P
AY

R
O

LL
.E

M
PL

O
Y

EE
_I

D

Jo
in

 th
e

Em
p

lo
ye

e
an

d
 P

ay
ro

ll
ta

b
le

s
o

n
 E

m
p

lo
ye

e_
ID

1.
 A

ll
ap

p
lic

ab
le

 e
m

p
lo

ye
es

 a
re

 in
 th

e
Em

p
lo

ye
e

ta
b

le

2.
 A

ll
em

p
lo

ye
es

 r
ec

ei
vi

n
g

a
sa

la
ry

 a
re

 in
 th

e
Pa

yr
o

ll
ta

b
le

3.

 R
ef

er
en

ti
al

 In
te

gr
it

y
b

et
w

ee
n

 th
e

Em
p

lo
ye

e
an

d
 P

ay
ro

ll
ta

b
le

s
is

 c
o

m
p

le
te

IN
N

ER
 JO

IN
 T

A
X

_M
AT

R
IX

O
N

 E
M

PL
O

Y
EE

.T
A

X
_R

EG
IO

N
_I

D
=

 T
A

X
_M

AT
R

IX
.T

A
X

_R
EG

IO
N

_I
D

A
N

D
 E

M
PL

O
Y

EE
.D

ED
U

C
TI

O
N

_I
D

=
 T

A
X

_M
AT

R
IX

.D
ED

U
C

TI
O

N
_I

D
A

N
D

 E
M

PL
O

Y
EE

.E
X

EM
PT

IO
N

_I
D

=
 T

A
X

_M
AT

R
IX

.E
X

EM
PT

IO
N

_I
D

Jo
in

 th
e

Em
p

lo
ye

e
an

d
 T

ax
_M

at
ri

x
ta

b
le

s
o

n
 T

ax
_R

eg
io

n
_I

D
,

D
ed

u
ct

io
n

_I
D

 a
n

d
 E

xe
m

p
ti

o
n

_I
D

1.
 A

ll
ap

p
lic

ab
le

 e
m

p
lo

ye
es

 h
av

e
va

lid
 v

al
u

es

in
 th

e
Ta

x_
R

eg
io

n
_I

D
, D

ed
u

ct
io

n
_I

D
, a

n
d

Ex

em
p

ti
o

n
_I

D
 fi

el
d

s
o

f t
h

e
Em

p
lo

ye
e

ta
b

le

2.
 R

ef
er

en
ti

al
 In

te
gr

it
y

b
et

w
ee

n
 th

e
Em

p
lo

ye
e

an
d

 T
ax

_M
at

ri
x

ta
b

le
s

is
 c

o
m

p
le

te

IN
N

ER
 P

AY
_C

A
LE

N
D

A
R

 O
N

PA

Y
R

O
LL

.P
AY

_D
AT

E
=

C

A
LE

N
D

A
R

.D
AT

E

Jo
in

 th
e

Pa
yr

o
ll

an
d

 C
al

en
d

ar
 ta

b
le

s
o

n
 D

at
e

1.
 T

h
e

Pa
yr

o
ll

ta
b

le
 h

as
 th

e
co

rr
ec

t P
ay

_D
at

e
2.

 R
ef

er
en

tia
l I

n
te

gr
ity

 b
et

w
ee

n
 th

e
Pa

yr
o

ll
an

d

C
al

en
d

ar
 ta

b
le

s
is

 c
o

m
p

le
te

((
PA

Y
R

O
LL

.B
A

SE
_S

A
LA

RY
*T

A
X

_M
A

TR
IX

.T
A

X
_R

A
TE

)
/P

AY
_

C
A

LE
N

D
A

R
.N

U
M

_W
EE

K
S)

A
S

W
EE

K
LY

_T
A

X
_A

M
T

C
al

cu
la

te
 W

ee
kl

y_
Ta

x_
A

m
t

1.
 T

ax
_R

at
e

w
ill

 b
e

av
ai

la
b

le
 fr

o
m

 th
e

Ta
x_

M
at

ri
x

ta
b

le

2.
 N

u
m

_W
ee

ks
 w

ill
 b

e
av

ai
la

b
le

 fr
o

m
 th

e
Pa

y_
C

al
en

d
ar

 ta
b

le

3.
 N

u
m

_W
ee

ks
 fr

o
m

 th
e

Pa
y_

C
al

en
d

ar
 ta

b
le

w

ill
 n

o
t e

q
u

al
 z

er
o

AU6462.indb 159 2/7/08 9:53:32 AM

160  n  Building and Maintaining a Data Warehouse
Ta

bl
e 6

.
5 

Si
m

ul
ta

ne
ou

s
A

ss
um

pt
io

ns
 (c

on
tin

ue
d)

SQ
L

St
at

em
en

t
A

ct
io

n
A

ss
u

m
p

ti
o

n

W
H

ER
E

EM
PL

O
Y

EE
.S

TA
TU

S
IN

 (‘
FT

’,
‘P

T’
)

In
cl

ud
e

on
ly

 F
ul

l-
Ti

m
e

an
d

Pa
rt

-T
im

e
em

pl
oy

ee
s

1.
 A

ll
Fu

ll-
Ti

m
e

em
pl

oy
ee

s
ha

ve
 S

ta
tu

s
=

 ‘F
T’

2.
 A

ll
Pa

rt
-T

im
e

em
pl

oy
ee

s
ha

ve
 S

ta
tu

s
=

 ‘P
T’

3.
 T

he
 S

ta
tu

s
va

lu
e

fo
r

al
l F

ul
l-

 a
nd

 P
ar

t-
Ti

m
e

em
pl

oy
ee

s
is

 s
pe

lle
d

co
rr

ec
tly

W
H

ER
E

EM
PL

O
Y

EE
.D

R
U

G
_T

ES
T

=
 ‘P

A
SS

’
In

cl
ud

e
on

ly
 e

m
pl

oy
ee

s
w

ho
 h

av
e

pa
ss

ed
 th

e
dr

ug
 te

st
1.

 A
ll

em
pl

oy
ee

s
ha

ve
 a

 v
al

id
 v

al
ue

 in
 th

e
D

ru
g_

Te
st

 fi
el

d
of

 th
e

Em
pl

oy
ee

 ta
bl

e
2.

 A
ll

em
pl

oy
ee

s
w

ho
 h

av
e

pa
ss

ed
 th

e
D

ru
g

Te
st

ha

ve
 th

e
va

lu
e

‘P
A

SS
’ s

pe
lle

d
co

rr
ec

tly

W
H

ER
E

PA
Y

R
O

LL
.P

AY
_C

LA
SS

IN
 (‘

A’
, ‘

B
’,

‘D
’)

In
cl

ud
e

on
ly

 e
m

pl
oy

ee
s

w
ith

ap

pl
ic

ab
le

 p
ay

ro
ll

cl
as

se
s

1.
 A

ll
em

pl
oy

ee
s

ha
ve

 a
 v

al
id

 v
al

ue
 in

 th
e

Pa
y_

C
la

ss
 fi

el
d

of
 th

e
Em

pl
oy

ee
 ta

bl
e

2.
 A

ll
em

pl
oy

ee
s

w
ho

 h
av

e
an

 a
pp

lic
ab

le
 p

ay

cl
as

s,
 h

av
e

th
e

Pa
y

C
la

ss
 v

al
ue

 s
pe

lle
d

co
rr

ec
tly

AU6462.indb 160 2/7/08 9:53:32 AM

Data Acquisition and Integration  n  161

An ETL application written in COBOL can extract a list of manufacturing
processes, transform manufacturing specifications, and write them to a load
file. When questionable specification records are in the data warehouse:

Was the source data bad?
Did the transformation malfunction?
Was the problem in the creation of the load file?
Did the load modify the data?
Which assumption was violated?

Principle 01: One Thing at a Time is basically a granular modular approach.
Benefits of using a granular modular approach include:

Create the opportunity for Data Quality and Metadata functions to integrate
within an ETL application.
Create the opportunity to isolate violated assumptions.
Remove any question about the sequence and precedence of ETL functions,
regardless of the language or platform.

A granular modular design that does one thing at a time is inefficient. Capacity
analysts and resource planners will most likely challenge such an inefficient design, as
well they should. An ETL analyst must find that delicate balance between the benefits
of modular granularity and the risks of violated assumptions.

At the lowest total cost of granular modularity (Figure 6.11), not all functions
will be isolated in a modular fashion. The functions with any real risk of violated
assumptions, however, will be isolated.

Principle 02: Know When to Begin

Operational systems rely on operational job schedulers to know when the condi-
tions have been satisfied for a job to begin. Typically, those conditions are expressed
in terms of jobs and completion codes. A satisfactory completion code from a prec-
edent job will trigger the beginning of a subsequent job, as shown in Figure 6.12.

ETL applications, however, rely on conditions within precedent data (i.e., Begin
Conditions). When precedent Begin Conditions have been satisfied, subsequent
applications relying on those conditions can safely begin. In the example above
(Figure 6.12), Job 02 would examine data created by Job 01, not just the return
code generated by Job 01, and Job 05 would examine data created by Job 01, Job
02, Job 03, and Job 04.

An Extract application will examine an operational source system prior to
extracting data (Figure 6.13). Examination of source data and associated data
within an operational source system can provide clues as to whether or not the

n

−
−
−
−
−

n

n

n

AU6462.indb 161 2/7/08 9:53:33 AM

162  n  Building and Maintaining a Data Warehouse

source data is truly ready for extraction. Data elements associated with source data
may include flags, inventories, or exceptions present in operational source data.

A Transform application will examine data provided by preceding Extract appli-
cations, as shown in Figure 6.14. A Load application will examine data provided
by preceding Transform applications to determine whether or not Begin Condi-
tions have been satisfied. In these circumstances, Data Quality and Metadata infor-
mation prove to be extremely helpful, and subsequent applications may require
preceding applications (within an ETL application) to provide Data Quality or
Metadata information.

Principle 02: Know When to Begin is basically a backward-looking design
principle. Rather than place all trust in return codes and job schedulers, an ETL

Risk of Violated AssumptionsCost of Granular Modularity

Total Cost of Granular Modularity

Total Cost of Granular Modularity

Figure 6.11  Cost of Granularity.

Job 01

Job 02Completion

Job 03

Completion Job 04

Job 05Completion

Figure 6.12  Know When to Begin.

AU6462.indb 162 2/7/08 9:53:33 AM

Data Acquisition and Integration  n  163

application can look backward to examine the data associated with precedent con-
ditions to determine whether or not Begin Conditions have been satisfied. Begin
Conditions mitigate the risk and cost of errors in input data. The choice to include
Begin Conditions is a balance between the probability, risk, and cost of input errors
and the expenses incurred by implementing Begin Conditions.

Principle 03: Know When to End

Principle 03: Know When to End is a forward-looking design that requires an ETL
application to examine data it has created. An individual ETL application is best

Operational
Data 01

Operational
Data 02

Operational
Data 03

Operational
Job 01

Operational
Job 02Completion

Operational
Job 03

Completion Operational
Job 04

Extract
Job 05CompletionCompletion

Begin
Condition

01

Begin
Condition

02

Begin
Condition

03

Figure 6.13  Operational Source System.

Operational
Data 02

Operational
Job 01

Operational
Job 02Completion

Operational
Job 03

Completion Operational
Job 04

ETL
Job 05CompletionCompletion

Begin
Condition

01

Begin
Condition

02

Begin
Condition

03

DQ
Information

Metadata
Repository

Figure 6.14  Preceding Extract Applications.

AU6462.indb 163 2/7/08 9:53:34 AM

164  n  Building and Maintaining a Data Warehouse

equipped to know what it intended to create. After completing the core functions
of an ETL application, that same application can review its own output, as shown
in Figure 6.15. A post-application review of output data gives an ETL application
the opportunity to warranty data prior to passing it on to subsequent applications
or data warehouse customers.

An Extract function examines data prior to releasing it to a Transform applica-
tion. The Transform application also reviews load-ready data prior to warranting
that data as ready for a Load application. A Load application can query a data ware-
house to determine whether or not data was successfully loaded. If the data created,
or loaded, by an ETL application fails to pass this final review, an ETL applica-
tion has many options, depending on the severity of the failure. Those options
include data remediation, rebuild the output data completely, and interrupt the job
stream.

Principle 03: Know When to End is a forward-looking design principle. An
ETL application can verify, by examining its own output data, whether or not that
ETL application has completed satisfactorily. Then, the results of that final review
can be captured as Data Quality or Metadata information, and shared with sub-
sequent ETL applications. End Conditions mitigate the risk and cost of errors in
output data. The choice to include End Conditions is a balance between the prob-
ability, risk, and cost of output errors and the expenses incurred by implementing
End Conditions.

Principle 04: Large to Medium to Small

Principle 04: Large to Medium to Small is a design principle that typically spans
across an entire ETL application. Large to Medium to Small is one of three overall

ETL
Job 05

DQ
Information

Metadata
Repository

Input
Data 01

Input
Data 02

Input
Data 03

Output
Data 01

Output
Data 02

Output
Data 03

End
Condition

01

End
Condition

02
End

Condition
03

Figure 6.15  Know when to end.

AU6462.indb 164 2/7/08 9:53:35 AM

Data Acquisition and Integration  n  165

design methods. Coincidentally, Large to Medium to Small happens to work the
best.1 The three overall design methods are:

Small to Medium to Large
Just In Time
Large to Medium to Small

Small to Medium to Large functions like a river. Typically, rivers begin from a
small spring or melting glacier. Then, as other rivers join, the initial river grows by
the volume of additional rivers. Likewise, Small to Medium to Large begins with
a “driver” data element. As data is added to that data element, the data that flows
through an ETL application grows to its final form, as shown in Figure 6.16.

An inherent weakness of this design is the absence of the excluded data. Appli-
cations bring data into the data stream, but only the data that is perceived to be
needed by that data stream. If data not included in the data stream becomes rel-
evant and necessary later in the data stream, then that ETL application will not
have the data it needs. Small to Medium to Large also hides excluded data by
disallowing its entry into an ETL application. The ETL application is not allowed
to capture or measure the disallowed data and, therefore, can neither report nor
control data exclusions.

Just in Time is a design method wherein data enters and leaves an ETL stream
of data, without significantly altering the nature of that data. An ETL application
includes data that is needed when it is needed and dismisses data that is not needed
when that data is no longer needed, which is shown in Figure 6.17.

An inherent weakness of this design is the lack of a big picture. Throughout an
ETL application, that application only looks at the data necessary to perform the next
function. Data that was dismissed early in an ETL application is no longer available
to juxtapose against data that arrives later in that same application.

Finally, Large to Medium to Small design assembles all applicable data ele-
ments and entities. Data that is no longer required is dismissed. The final data set is
a load-ready file that will be loaded to a data warehouse (Figure 6.18).

Inherent strengths of this design are the reverse of the weaknesses of the previ-
ous designs. Excluded data is initially present and, as excluded data is dismissed

n
n
n

Data
Warehouse

Figure 6.16  Small to medium to large.

AU6462.indb 165 2/7/08 9:53:36 AM

166  n  Building and Maintaining a Data Warehouse

from the data stream, it is dismissed within the context of all applicable data. At
the initial stage, all applicable data is juxtaposed simultaneously. The decision to
exclude data, therefore, is made in the broadest context possible, which allows the
greatest possible control of data exclusions.

Principle 05: Stage Data Integrity

Principle 05: Stage Data Integrity is a design principle that maintains the integrity
of a set of stage data. Once created, a set of stage data can only be consumed as a
single contiguous set by subsequent applications. When multiple logical sets of data
share common characteristics (including format, layout, data types, meaning, and
usage), storing them together in a single set of stage data seems reasonable; however,
storing them together creates unnecessary risk for an ETL application.

For example, the following list describes a single set of stage data (Manufactur-
ing Raw Materials) containing raw materials from Companies A, B, and C (Fig-
ure 6.19). This list can also be perceived as three logical sets of data—raw materials
from Companies A, B, and C.

Manufacturing Raw Materials
Sourced from Company A
Sourced from Company B
Sourced from Company C

n

−
−
−

Data
Warehouse

Figure 6.17  Just in time.

Data
Warehouse

Figure 6.18  Large to medium to small.

AU6462.indb 166 2/7/08 9:53:36 AM

Data Acquisition and Integration  n  167

Any function that retrieves a subset of data from an existing dataset is, in
essence, an extract function. An application needing data describing raw materials
from Company A must extract that data from the entire set of Manufacturing Raw
Materials. This is an extract function and is vulnerable to the problems faced by all
extract functions.

Did the extract retrieve all records?
Did the extract retrieve only the required rows?
Did the extract retrieve rows already retrieved by a previous extract (i.e.,
duplicate)?

Rather than introduce an extract function where it does not belong by storing
multiple logical sets of data in a single physical dataset, ETL applications store data
as it will be used by subsequent applications. By storing data physically, as it will
be used, an ETL application establishes and maintains the integrity of individual
sets of stage data.

A single application writes A, B, and C records to multiple data sets (Figure 6.20).
Datasets A, B, and C are each consumed, without modification, by immediately
subsequent applications. Dataset ABC is consumed by a later application. All four
datasets (A, B, C, and ABC) can be used by subsequent applications without the
intervention of an extract function.

Principle 05: Stage Data Integrity is a design principle by which precedent
applications create stage data as it will be consumed by subsequent applications.
This design avoids unnecessary risk and increases the overall integrity of an ETL
application.

n

n

n

A records
&

B records
&

C records

A
B
C

Consume
A records

Consume
B records

&
C records

A AA

BB

CC

B

C

Figure 6.19  Stage Data Integrity: one dataset.

AU6462.indb 167 2/7/08 9:53:37 AM

168  n  Building and Maintaining a Data Warehouse

Principle 06: Know What You Have

Principle 06: Know What You Have is a design principle that prompts an ETL
application to take inventory of inbound data, rather than assume inbound data
contains all that is expected. An ETL application can compare the contents of
inbound data with expected data (Figure 6.21).

Information describing contents of inbound data is available through two
sources. The first source is Metadata. The precedent application that created the
data can also capture an inventory of that data as Metadata. Requirements to per-
form an inventory of data, while creating that data, can be included in the Meta-
data SLA. That’s how a subsequent application can require precedent applications
provide Metadata to accompany created data.

A records
&

B records
&

C records

A

B

C

Consume
A records

Consume
B records

&
C records

A

B

C

AA

BB

CC

A
B
C

A, B, C

Figure 6.20  Stage Data Integrity: multiple datasets.

A
B
C

Compare

A
B
C

What You
Have

What You
Don’t Have

Matches

Mismatches

Figure 6.21  Know what you have.

AU6462.indb 168 2/7/08 9:53:38 AM

Data Acquisition and Integration  n  169

The second source of information describing contents of inbound data is the data
itself. If no Metadata describing inbound data is available, then the only remain-
ing option is to profile the inbound data. To profile inbound data, an application
may need to read every record of the inbound data. Statistical methods, including
sampling, may not provide the required information. If an application requires the
inclusion of all 40,000 raw materials, a sample of 500 records will not provide a
reasonable inventory of the inbound data. If possible, the profile of inbound data
occurs simultaneously as the inbound data is processed. Then, if the inbound data
is satisfactory, the inbound data (which has been processed) can be released to the
next application or function.

The reverse of Know What You Have is Know What You Don’t Have. The
second output of the comparison of inbound data and expected data is a list of
mismatches, i.e., missing data. Knowledge of missing data provides an ETL appli-
cation the opportunity to apply a threshold. If the impact of missing data exceeds
an applied threshold, that application has the opportunity to choose its response.
Responses can include a reduced Data Quality rating, a default value as substitute
data, or termination of a job stream.

An application incorporates Principle 06: Know What You Have to shield itself
from the possibility of missing data and other anomalies. Both methods, data pro-
file and Metadata, incur additional cost in the forms of application development,
maintenance, and resource consumption. The decision to include either method,
therefore, is a balance between the risk of data anomalies and the cost of mitigating
that risk. Three key factors in that balance are:

History: Has the inbound data demonstrated a probability of data
anomalies?
Threshold: What is the threshold? What is the probability that threshold will
be exceeded?
Response: What is the required response when the threshold is exceeded?

Process Principles Conclusion

ETL Process Principles describe the logical processes that contribute to a bullet-
proof ETL application.

Principle 01: One Thing at a Time describes how to isolate individual func-
tions along with their actions and assumptions.
Principle 02: Know When to Begin describes how to use prerequisite condi-
tions in data to determine whether or not an application or function should
begin.

n

n

n

n

n

AU6462.indb 169 2/7/08 9:53:38 AM

170  n  Building and Maintaining a Data Warehouse

Principle 03: Know When to End describes how to use requisite conditions
in data to determine whether or not an application or function has completed
its purpose.
Principle 04: Large to Medium to Small describes how to manage a set of
data throughout all its transformations.
Principle 05: Stage Data Integrity describes how to establish and maintain
whole and self-contained data throughout an ETL application.
Principle 06: Know What You Have describes how to inventory inbound data
to determine what is present and missing.

ETL Process Principles, of course, neither supplant nor replace best practices
of operational applications. ETL Process Principles, in addition to best practices of
operational applications are intended to contribute to a bulletproof ETL applica-
tion. These principles can insulate an ETL application from unexpected variations
that can occur in source data. Rather than expect every day to be like yesterday,
ETL Process Principles can provide sufficient granular control to notice when varia-
tions occur, including variations that would adversely affect either the ETL applica-
tion or the data warehouse.

ETL Staging Principles

The analogy between a manufacturing process and ETL breaks down in one place:
stage data.

In a manufacturing process, when a bolt is used to fasten two pieces of metal
together, that bolt is now embedded in the finished product. Afterward, that
manufacturing process can only describe the bolt that is now in the finished
product by saying, “It was a type XYZ123 bolt.”
In an ETL application, however, when a set of stage data is used to fasten two
pieces of data together, that stage data is still stage data. Afterward, that ETL
application can describe stage data that is now in the finished product by say-
ing, “I used exactly this row of data and none other.”

For this reason, the useful lifespan of stage data in an ETL application goes
much longer than the application that consumes the stage data. Data Quality and
Metadata applications can measure stage data. Support analysts can inspect stage
data.

The properties of stage data that extend its lifespan are its integrity and continu-
ity. The integrity and continuity of stage data also increase the control and integrity
of an ETL application. ETL Staging Principles provide design principles by which
an ETL analyst can manage and control the creation and use of stage structures,
which also increases the control and integrity of an ETL application and the useful

n

n

n

n

n

n

AU6462.indb 170 2/7/08 9:53:38 AM

Data Acquisition and Integration  n  171

lifespan of the stage data. The following topics describe each of the ETL Staging
Principles on a conceptual level.

Principle 07: Name the Data

Identification is a key element of control. Granular identification is in direct pro-
portion to precise control. Data (as well as a person, car, airplane, boat, etc.) is
identified by its name. A name, however, ceases to identify one dataset when two
datasets share the same name. To achieve granular identification, datasets of the
same type must have a method of unique identification.

Principle 07: Name the Data is a design principle that prompts an ETL applica-
tion to choose the level of granularity at which data will be named and, therefore,
controlled. For example:

Look at the nearest bottle of headache or sinus pain relief. There is a lot num-
ber on the bottle. That lot number corresponds to a batch of product that was
created at one time. The most granular identification a manufacturer has of
that product is the lot number. The most granular identification, and control,
available for that product, therefore, is the lot number.
Look at the nearest car (manufactured for the United States). If you look
closely enough, there is a Vehicle Identification Number (VIN). That car’s
VIN uniquely identifies that car from all other cars. The license tag can,
and probably will, change; however, the VIN will never change. The most
granular identification, and control, available for that product, therefore, is
the individual car.

In each of these instances, a decision was made to identify one product (bottle
of medicine) at the lot number (i.e., batch lot), and another product (automobile) at
the individual product level. Likewise, an ETL analyst chooses the level of granu-
larity by which data will be named.

A data name should not identify the instance of a dataset. If the operating
system allows long names, a date, timestamp, or other uniquely identifying text
can be embedded in a file name. Mainframe operating systems allow names with
multiple nodes (a node is a text string eight characters long between two periods),
and Generation Data Groups (GDGs) with their uniquely identifying generation
number. These and other methods will allow a data name to uniquely identify an
instance of a data name.

Specific data names can include a wide variety of specific identifying features.
Typically, specific data names are embedded in data records rather than file names.
Identifying data names can include elements such as:

Unique identifier of the function that created the data.

n

n

n

AU6462.indb 171 2/7/08 9:53:39 AM

172  n  Building and Maintaining a Data Warehouse

Unique version of the function that created the data.
Unique identifier of the function for which the data is intended.
Unique version of the function for which the data is intended.
Unique batch number of the data.
Unique row number of each row.
Metadata key as a foreign key to a Metadata Repository.
Data Quality key as a foreign key to a Data Quality Repository.

Data names have specific meaning, purpose, and use. All data names should
satisfy a real requirement. Otherwise, any data names that do not satisfy a require-
ment should not be included.

The advantage of specific data names is clarity. Specific data names applied
correctly can remove any doubt about the nature of a set, row, column, or cell of
data. The disadvantage of specific data names is cost. As identifying features, of
increasing granularity, are embedded into a dataset, the level of control and integ-
rity increase in direct proportion.

Principle 08: Own the Data

An ETL application is one occasion when sharing (the instruction all parents give
their children) becomes a bad design. Operational applications frequently share
datasets. Rather than continuously synchronize multiple datasets, operational
applications share common datasets. When an operational application updates a
shared dataset, those updates are available to other operational applications without
incurring synchronization overhead.

A feature of data warehousing that distinguishes data warehouses from other
data constructs is time variance. Time variance is the feature by which a data ware-
house reports changes in data through time. For example, a time-variant data ware-
house can capture the following:

May 13: Candy XYZ123 began using Dye Color #34.
Sales averaged 500,000 units weekly.
Returns average 10,000 units weekly.

July 24: Candy XYZ123 switched to Dye Color #67.
Sales averaged 4,500,000 units weekly.
Returns average 2,000 units weekly.

November 30: Candy XYZ123 switched to Dye Color #35.
Sales averaged 750,000 units weekly.
Returns average 12,000 units weekly.

Based on this time variant information, the manufacturer of Candy XYZ123
would probably prefer to use Dye Color #67. For an ETL application to provide

n
n
n
n
n
n
n

n
−
−

n
−
−

n
−
−

AU6462.indb 172 2/7/08 9:53:39 AM

Data Acquisition and Integration  n  173

time variant data to a data warehouse, that ETL application must be able to control
time by freezing a dataset at a moment in time. An ETL application uses a fro-
zen dataset to capture, at a moment in time, the data in that dataset. Subsequent
updates to the source dataset will be captured in the next ETL cycle or batch. For
the time variant purposes of a data warehouse, however, an ETL application will
create its own instance or copy of a source dataset. By restricting access to that
dataset copy, the ETL application using that dataset copy can be assured that no
operational updates have been introduced.

ETL applications use exclusive dataset copies to isolate operational source data,
interim transformed data, and load-ready data. So, ETL applications can refuse
to share with operational source systems and other ETL applications. By freezing
time in a dataset, which is then compared to data frozen at a different time, an ETL
application can transform time-variant data.

Principle 09: Build the Data

Datasets are used throughout an ETL application. The creation of those datasets,
therefore, significantly affects the success of an ETL application. The creation of a
dataset is similar to the creation of a house.

Pour the concrete foundation
Assemble the frame on top of the foundation
Attach the roof and walls to the frame
Apply paint, fixtures, and furnishings to the interior.

Notice the sequence goes from the outside to the inside. The area of the house
is defined by the foundation. The perimeter of the house is defined by the frame.
The perimeter is sealed by the walls and roof. Then, finally, the details are attached
to an existing framework.

The creation of a dataset uses the same sequence, from the outside foundation
and frame to the inside data.

Create the foundation of a dataset.
Sequential file, logical record length, and storage method.
XML file.
Relational table.

Define the frame on top of the foundation.
COBOL copybook.
XML layout.
Relational data definition.

Define the structure within the layout.
Define the meaning of each field or column.

n
n
n
n

n
−
−
−

n
−
−
−

n
−

AU6462.indb 173 2/7/08 9:53:39 AM

174  n  Building and Maintaining a Data Warehouse

Define the accepted domain, range, and relational integrity for each field
or column.
Determine the expected cardinality of the dataset.

Attach data to the interior of the dataset.
Insert data using the COBOL copybook, XML layout, or relational data
definition.
Verify the data conforms to the structure within the layout.

This probably seems to be over-thinking the creation of a dataset. All applica-
tions create datasets. So, why this attention to detail in an ETL application? The
answer is simple—control. By isolating the logical steps in the creation of a dataset,
Principle 09: Build the Data allows an ETL application to control the creation of
a dataset.

Rather than allow a dataset to inherit its properties from existing constraints
or classes, define a new dataset and its properties. Rather than allow a dataset to
inherit its demographics from the data within, define and control these demograph-
ics before any data is added to that dataset. Rather than propagate the properties of
an existing dataset by copying that dataset, define a dataset and its properties (even
if those properties are identical).

An ETL application can best control the data within an ETL application by
controlling the creation of datasets, which are best controlled from the outside
(foundation and frame). Rather than allow a SQL Select or COBOL Read state-
ment to define a dataset from the inside, a dataset is best defined and controlled
from the outside, by defining the structure, properties, layout, and expectations,
and then applying the data.

Principle 10: Type the Data

Data type mismatches, numeric data overflows, and null violations can stop an
ETL application. Principle 10: Type the Data is a design principle intended to pro-
tect an ETL application from data that can cause an abnormal end. The principle is
very simple—verify that the data type of inbound (or transformed) data is compat-
ible with the data type of the destination before moving inbound (or transformed)
data to its destination (Figure 6.22).

This principle is simple. The application of this principle, however, is not so sim-
ple. During the initial design of an ETL application, the data types of source and
destination datasets are known. When those data types are incompatible, a decision
must be made. What will the ETL application do with records containing incom-
patible data types? Instances of incompatible data types include the following:

A source field allows alpha characters. Assurances from the source system
indicate the source field always contains only numeric values. The destination

−

−
n

−

−

n

AU6462.indb 174 2/7/08 9:53:39 AM

Data Acquisition and Integration  n  175

field is numeric. What will the ETL application do with inbound records
containing alpha characters?
A transformation multiplies two values. The product should always be less
than 5,000. The destination field is defined as Small Integer. What will the
ETL application do with transformed records that exceed the numeric range
of a Small Integer field?

Some of the options are:

Option #1: Discard the record
Option #2: Provide a default value
Option #3: Report the incompatible data type
Option #4: Ignore the incompatible data type (and allow the application to
end abnormally)

Each of these decisions has implications for the behavior of the entire data ware-
house, Data Quality SLA, and Metadata SLA. So, these decisions must be made with
the consensus of data stewards and data warehouse designers. While it may seem
more expedient to make these decisions alone, in the long run these decisions are best
made with a consensus of data warehouse constituents.

n

n
n
n
n

Test
Data Type

Compatibility
Inbound

Data

Compatible

OPTIONS:
Discard the record
Provide a default Value
Report the incompatible data type
Ignore the incompatible data type

Incompatible

Outbound
Data

Option #2
Retain the

original
value

Figure 6.22  Type Data.

AU6462.indb 175 2/7/08 9:53:40 AM

176  n  Building and Maintaining a Data Warehouse

Option #2 includes an additional element. Before overwriting an incompatible
data value with a default value, capture the original data value. The original data
value can be captured as part of a Data Quality record, Metadata record or within
the outbound data in a field that is compatible with the inbound data type. The
storage location for discarded data is not important; the ability to retrieve discarded
data is important. This is not a Recycle Wheel nor should it be considered a Recycle
Wheel. Rather, the retention of discarded incompatible data is insurance against
the prospect that a discarded data element might actually be vitally important data
without which the sky will come crashing down.

After an ETL application has been implemented, operational source systems
may introduce variations in source data that did not exist during the initial design.
Operational source systems may change data types, domains, ranges, etc. Such
changes can cause an ETL application to end abnormally. Changes in source sys-
tem data, however, do not constitute a violation or failure of Principle 10: Type
the Data, rather, they constitute a change in source data. A change in source data
capable of adversely affecting an ETL application should cause a revision of the data
warehouse and ETL application to accommodate the change in source data.

Principle 11: Land the Data

Operational application best practices suggest that interim data should only be
retained in a cataloged dataset when a subsequent person or application will need
that interim data. Otherwise, if no person or application will need the interim
data, then interim data should be passed from one function to another function
via temporary datasets. When the last person or application has finished using a
cataloged interim dataset, that dataset should be decataloged and removed, releas-
ing storage space and resources. Figure 6.23 illustrates the practice of not retaining
interim data.

For ETL applications, however, the best practice is to land (i.e., retain in a
cataloged dataset) interim data.2 After the last person and application have finished
using an interim dataset, that dataset is still available. Figure 6.24 illustrates the
practice of retaining interim data.

The purposes for retaining interim data include the following:

Problem Investigation: Abnormal problems in an ETL application rarely
occur within the function that reported the problem-causing data. Allowing
interim data to evaporate in a temporary dataset removes the possibility of
using interim data to triage an abnormal problem.
Principle 09: Build the Data: In combination with Principle 09: Build the
Data, defining the dataset in which interim data will be stored strengthens
the structure of that data.

n

n

AU6462.indb 176 2/7/08 9:53:40 AM

Data Acquisition and Integration  n  177

Data Quality and Metadata: Data Quality and Metadata applications can
profile interim data. The profiles and measurements applied to interim data
are defined in the Data Quality SLA and Metadata SLA.
Restart and Rerun: If an abnormal problem requires an ETL job stream be
restarted or rerun from a step that has already completed, a retained dataset
can be used again. Otherwise, a nonretained dataset must be created again,
which would increase the scope and risks of a restart or rerun.

An interim dataset should never be updated. An update to an interim dataset
changes the data and, therefore, means that interim data is not really retained.
Rather, updates should be captured in another interim dataset.

Principle 11: Land the Data consumes a respectable amount of disk and cata-
log space. For that reason, an ETL platform should have significant disk storage

n

n

Interim
Data

01

Interim
Data

02

Interim
Data

03

Function
A

Function
B

Temporary
datasets are

available during
a job execution.

Temporary
datasets are not
available after a
job execution.

Operational Datasets

Figure 6.23  Operational datasets.

AU6462.indb 177 2/7/08 9:53:40 AM

178  n  Building and Maintaining a Data Warehouse

available for interim data. Also, an ETL application needs a clearly defined method
of archiving and removing interim data. Otherwise, too much of a good thing can
get in the way. Landing interim data contributes to a bulletproof, yet flexible, ETL
application. Landed interim data must be managed and controlled, like all other
resources, otherwise it will get in the way.

Staging Principles Conclusion

ETL Staging Principles describe the physical manipulation of interim data in an
ETL stage environment.

Interim
Data

01

Interim
Data

02

Interim
Data

03

Function
A

Function
B

Retained
datasets are

available during
a job execution.

Retained
datasets are still
available after a
job execution.

ETL Datasets

Interim
Data

01

Interim
Data

02

Interim
Data

03

Figure 6.24  Extract, Transform, and Load (ETL) datasets.

AU6462.indb 178 2/7/08 9:53:41 AM

Data Acquisition and Integration  n  179

Principle 07: Name the Data describes how to identify data and its features,
origin and destination with an appropriate level of granularity and control.
Principle 08: Own the Data describes how to secure data to prevent interfer-
ence by other applications, including ETL and operational applications.
Principle 09: Build the Data describes how to create a dataset from its
foundation.
Principle 10: Type the Data describes how to protect ETL functions from
incompatible data types.
Principle 11: Land the Data describes the need to retain interim data beyond
its immediate use.

An ETL staging environment is the factory in which data is captured and trans-
formed into what will become a data warehouse. Visibility and control, features
of an effective and efficient manufacturing assembly line, are also features of the
ETL Staging Principles. By incorporating ETL Staging Principles in the Extract,
Transform, and Load applications an ETL application can know what is on the
assembly line now, where and how it came from, where and how it is going, and
what to do about it.

ETL Functions
ETL is not a nebulous cloud wherein miracles occur. Rather, ETL applications
tend to share a similar set of functions (Figure 6.25). At first glance, these ETL
functions look different from functions that typically occur in operational applica-
tions because they are different. ETL functions are designed to discern what has
happened in the enterprise, and bring that information to the data warehouse. An
ETL analyst needs a set of functions, like a carpenter needs a set of tools. Once an
ETL analyst masters a specific function, he or she will be able to use that function
as needed. The ETL functions listed below are standard in every ETL environment.
These functions comprise the majority of functions in ETL applications. An ETL
analyst must understand, and be able to apply, the following ETL functions in
order to have a successful ETL application.

Extract Data from a Contiguous Dataset

This is the simplest Extract function (Figure 6.26). A contiguous dataset may be a
flat file, relational table, or XML file. The dataset is stationary and self-contained.
An Extract function is able to retrieve all the data from the dataset without any
modifications, conditions, or extraneous functions. Once the data is in the ETL
environment, a Transform function can filter or modify the data.

The difficulty of such a simple Extract function is to keep it simple. As though
they can exert a vacuum of complexity, simple Extract functions attract additional

n

n

n

n

n

AU6462.indb 179 2/7/08 9:53:41 AM

180  n  Building and Maintaining a Data Warehouse

functions and complexity to them. Resist this temptation at all costs. A simple
Extract function is a beautiful and elegant design, and should be allowed to remain
that way.

Extract Data from a Data Flow

Asynchronous messaging and real-time transactions have introduced a class of
data, which is both infinite and bounded. Extracting such data is really a mat-
ter of catching it as it goes by. This is, of course, real-time ETL (Figure 6.27).

Data
Warehouse

...and then a
miracle occurs!

Source Data

Target Data

Figure 6.25  Extract, Transform, and Load (ETL) functions.

Source Extract Stage

ETL EnvironmentSource System

Figure 6.26  Contiguous data.

AU6462.indb 180 2/7/08 9:53:42 AM

Data Acquisition and Integration  n  181

When a data warehouse customer expresses the requirement that an ETL applica-
tion retrieve data in real-time, the first question that should come from the ETL
analyst is: “Why?” Why would a data warehouse customer, armed with the years
of data, including trends, seasonality, and the most recent data available through
batch ETL, change a business decision, strategy, or tactic based on the information
that arrived in the past two seconds?

Real-time ETL usually feeds real-time data to an ODS. This fits the mission of
an ODS.

Capture and store only data values that are current and effective.
Reflect the current state of the operational environment.

All that said, an ETL application must be able to know:

Each message has been caught
Once
Only once

If the source system, which is creating the data flow, includes a control mecha-
nism, the ETL application should try to leverage that control mechanism. If the
source system does not have a control mechanism for a data flow, an ETL applica-
tion should create a control mechanism of its own. Control mechanisms are at the
heart of every ETL application. In real-time ETL, control mechanisms must be
able to control the flow of data and, therefore, control the granularity of the flow
of data. If a data flow sends records in bundles of ten, then the control mechanism
must log and record bundles of ten. If a data flow sends records in bundles of a
thousand, then the control mechanism must log and record bundles of a thousand.
The control mechanism must be able to directly associate each record within a
bundle, with that bundle.

Real-time ETL often works best by employing the technology or tool that cre-
ated the data flow to read the data flow. Using an XML tool to get XML files and
convert them from Tool A format to Tool B format is a violation of Principle 01:
One Thing at a Time. Instead, get the XML files using the same technology that

n
n

n
n
n

Stage

ETL EnvironmentSource System

Extract

Figure 6.27  Data flow.

AU6462.indb 181 2/7/08 9:53:43 AM

182  n  Building and Maintaining a Data Warehouse

put the XML files. Once the XML files have been extracted from the real-time data
flow, then the ETL application can transform them.

Row-Level Transformation

Row-level transformations are the simplest transformations (Figure 6.28). A row
(or record) of data is in the memory of the ETL application. Based on conditions
within that data, an ETL application will perform (or not perform) an update on
the row.

A row-level update function is typically applied to every row in a staged dataset.
The data row presents all the input data values needed by the row-level function to
perform the required updates. The difficulty of such a simple Transform function is
to keep it simple. As though they can exert a vacuum of complexity, simple Transform
functions attract additional functions and complexity to them. Resist this temptation
at all costs. A simple Transform function is another beautiful and elegant design, and
should be allowed to remain that way.

Dataset-Level Transformation

Some transformations are performed within the context of a whole set of data (Fig-
ure 6.29). In these situations the entire dataset is read into memory. The Transform
function must address the whole dataset at a time to derive the information neces-
sary to update each individual row (or record).

Transform functions that summarize Fact data and aggregate Dimension data
operate at the dataset level. They use the entire dataset to derive data values, which
arithmetically represent a set of Fact data or they use an entire dataset to derive
a subset of Dimension values that represent a set of Dimension data. A Dataset-
Level Transform function should be isolated to that dataset and not attempt to
include other datasets or portions of other datasets in the iteration of the Transform
function.

123 nullAB-23AngelB41001 23984YesA

function

Figure 6.28  Row-level transformation.

AU6462.indb 182 2/7/08 9:53:43 AM

Data Acquisition and Integration  n  183

Surrogate Key Generation: Intradataset

A Transform function can generate a sequential numeric value that uniquely identifies
each row/record of a dataset (Figure 6.30). The numeric unique identifier supplants
the need for a unique key, hence, the name Surrogate Key. A Transform function can
generate a Surrogate Key that will be unique within the boundary of that dataset.

Usually, a Surrogate Key is needed because the data lacks a key that uniquely
identifies each row, and sometimes in that iteration of ETL, the ETL application
will need to uniquely identify each row. The presence of a Surrogate Key allows the

123 8AB-23AngelE41001 23984YesA

123 nullAB-23AngelC41001 23984YesA6335 3AB-23SueB21003 6434YesA

2324 5AB-23RonB31002 123NoB

2479 5AB-23EllenB11004 53YesC

8 6AB-23RobA41005 223NoB

8AB-23E4 23984YesA

nullAB-23C4 23984YesA 3AB-23B2 6434YesC

5AB-23B3 123NoB

function

Figure 6.29  Dataset transformation.

AU6462.indb 183 2/7/08 9:53:44 AM

184  n  Building and Maintaining a Data Warehouse

ETL application and the data warehouse to identify and isolate each row of that
dataset.

Data Warehouse-Level Transformation

Sometimes, a transformation must be performed within the context of the data
warehouse. The Transform function does not have all the input data necessary to
derive the data required of that Transform function. The data warehouse has the

8AB-23AngelE41001 23984YesA

nullAB-23AngelC41001 23984YesA 3AB-23SueB21003 6434YesA

5AB-23RonB31002 123NoB

5AB-23EllenB11004 53YesC

6AB-23RobA41005 223NoB

1 8AB-23AngelE41001 23984YesA

123 nullAB-23AngelC41001 23984YesA3 3AB-23SueB21003 6434YesA

2 5AB-23RonB31002 123NoB

4 5AB-23EllenB11004 53YesC

5 6AB-23RobA41005 223NoB

Surrogate
Key

Generator

Figure 6.30  Surrogate Key: Intradataset.

AU6462.indb 184 2/7/08 9:53:45 AM

Data Acquisition and Integration  n  185

data that will allow the ETL application to perform its required updates. In such a
circumstance, a Transform function must perform its task by using both the input
data and data from the data warehouse.

Surrogate Key Generation: Intra-Data Warehouse

A Transform function can assign a unique identifier to each row/record in a dataset.
When the resulting row, with a surrogate key, will eventually be loaded into a data
warehouse (including the key), the identifier key must be unique throughout the data
warehouse (Figure 6.31). The best way to achieve this uniqueness is to retrieve the
maximum unique identifier in the data warehouse. Then, begin assigning a unique
identifier to new rows/records starting from the maximum unique identifier in the
data warehouse, incremented by one.

Look-Up

An ETL application may need to find the unique identifier in the data warehouse
for a specific row/record (Figure 6.32). The input data provides enough information
to allow a Transform function to find the uniquely identifying key within the data
warehouse. A Transform function uses the input data values to query the data ware-
house. The returning result set includes the unique identifier for the row/record of
input data.

If the input row/record has values that will identify the correct unique identi-
fier, why did the ETL application need the unique identifier? Apparently, the data
native to the row/record identifies each record uniquely enough. The data values
that uniquely identified each row/record may not persist with the row/record as
it is modified by a later Transform step. Or a data warehouse may include data
from three different subsidiaries. Dimension data within the three subsidiaries may
require customized look-up logic. The performance of the look-up function and the
subsequent assignment of the unique key that uniquely identifies all rows/records
for that Dimension across all subsidiaries facilitates the Data Integration of a data
warehouse.

Changed Data Capture

A common requirement of ETL applications is to identify and capture Dimension
updates that have been performed by the source system. An ETL application will
typically perform this function by juxtaposing Dimension data from the data ware-
house against corresponding Dimension data from the source system (Figure 6.33).
The result set is:

AU6462.indb 185 2/7/08 9:53:45 AM

186  n  Building and Maintaining a Data Warehouse

The rows in the data warehouse and the operational application that share the
same key values, but different attribute values. This scenario indicates rows
that have been updated.
The rows in the data warehouse, but not in the operational application. This
scenario indicates rows that existed yesterday, but not today.
The rows in the operational application, but not in the data warehouse. This
scenario indicates rows that did not exist yesterday, but do exist today.
The rows that are identical in both the operational environment and data
warehouse. This scenario indicates rows in which no data has changed.

n

n

n

n

E41001YesA

B21003YesA

B31002NoB

B11004YesC

A41005NoB

AB E41001YesA

DD B21003YesA

AC B31002NoB

EF B11004YesC

AA A41005NoB

Look-Up
Data

Warehouse

Figure 6.31  Surrogate Key: Intradata warehouse.

AU6462.indb 186 2/7/08 9:53:46 AM

Data Acquisition and Integration  n  187

ETL Key

The key values by which each and every instance of a Dimension entity can be
identified are called the ETL Key. An entity from the source system is juxtaposed
against an entity from the data warehouse by finding corresponding entities that
share the same ETL Key. The ETL Key is usually similar to the Logical Key of an
entity or the Physical Key of the Dimension table. The Logical Key or Physical Key
may satisfactorily identify each and every instance of a Dimension entity.

If, however, the Logical Key and Physical Key of a Dimension entity is not
granular enough to identify each and every instance of a Dimension entity, the
ETL Key will derive a level of granularity sufficient to identify each and every
instance of a Dimension entity. Common examples of Logical Keys and Physical
Keys that do not necessarily identify each and every instance of a Dimension entity
include:

Social Security Number: People can change their Social Security Number.
Name: People can change their name.

n
n

Data
Warehouse

Current
Data
Values

Source
System

Extract
Data
Values

Changed
Data

Capture

Differences

Figure 6.32  Look-Up.

AU6462.indb 187 2/7/08 9:53:46 AM

188  n  Building and Maintaining a Data Warehouse

Universal Product Code (UPC): UPC numbers are recycled.

These Keys may suffice as Logical or Physical Keys. Depending on the volatil-
ity of these Keys and the data warehouse’s exposure to risk by using them, an ETL
analyst may choose to investigate possible other Keys that can be used as ETL Keys.
For example:

In lieu of Social Security Number or Name: The person’s birthday, place of
birth, mother’s maiden name, and mother’s birthday. These data values are
not wont to change and may have a high probability of identifying an indi-
vidual person.

n

n

E41001YesA

C41001YesA B21003YesA

B31002NoB

B11004YesC

A41005NoB

4013 E41001YesA

123 C41001YesA4015 B21003YesA

4014 B31002NoB

4016 B11004YesC

4017 A41005NoB

Surrogate
Key

Generator
Data

Warehouse

Figure 6.33  Changed data capture.

AU6462.indb 188 2/7/08 9:53:47 AM

Data Acquisition and Integration  n  189

In lieu of UPC: The product’s manufacturer, distributor, internal product
code, retail pack code, and country of origin. The data values may have a high
probability of identifying an individual product.

The selection of an ETL Key, therefore, requires a bit more thought than just
leveraging the Logical Key or the Physical Key. Instead, the ETL Key is the set of
data values by which the ETL application can identify each and every instance of
a Dimension entity. The ETL Key may be the Logical Key, it may be the Physical
Key, it may be a more granular and precise key than either the Logical or Physical
Key.

Universe to Universe and Candidate to Universe

Changed Data Capture (CDC) basically occurs in two forms: Universe to Universe
and Candidate to Universe. Universe to Universe CDC is the best practice. In Uni-
verse to Universe CDC, the entire universe of data values from moment #1 is com-
pared to the entire universe of values from moment #2. The differences between
Universe of Data Values #1 and the Universe of Data Values #2 is the net effect of
the changes in the source system that occurred between moment #1 and moment
#2. Because the Universe to Universe CDC uses all the data values available from
the source system, no source system updates can inadvertently escape the notice of
the ETL application. That is why Universe to Universe CDC is the preferred CDC
design.

When the volume of data is too large to allow Universe to Universe CDC to
occur or when the data is available and required on a real-time basis, the Candidate
to Universe CDC method will allow an ETL application to compare individual
source system rows (i.e., Candidate rows) to the universe of data values in the data
warehouse. An ETL application will bring individual Candidate rows to itself for
one of two reasons:

A real-time ETL application delivers individual rows or groups of individual
data rows to itself.
The universe of data values is too large to allow normal ETL processing to
occur within the allowed time frame.

A single record, or set of records, is delivered to the ETL application. The ETL
application compares the Candidate row to the enterprise. If they are different, the
data value in the Candidate row is delivered to the data warehouse. Candidate rows
can be selected for delivery to the ETL application for multiple reasons:

n

n

n

AU6462.indb 189 2/7/08 9:53:47 AM

190  n  Building and Maintaining a Data Warehouse

An operational transaction Log indicates update activity occurred on a specific
row.

The Effective or Not Effective dates in an operational dataset indicate something
happened to a specific row.

Business Rules and business relations within the operational data indicate that a
change occurred in the source system that will modify a data value derived
from a table without actually updating the source system table (i.e., a back-
door update).

The gap in Candidate to Universe CDC is its inability to detect when a source
system row is terminated. When a row disappears, that row cannot become a Can-
didate row. Without a Candidate row, the Candidate to Universe CDC will not
consider the deleted source system row because it does not receive a Candidate
row.

Load Data from a Stable and Contiguous Dataset

A Load function loads data from a stable and contiguous dataset (Figure 6.34).
This is the simplest and most common method of loading data. The Load function
interacts physically with the data warehouse. So, a Load application must be as
simple and bulletproof as possible. The best method for a simple and bulletproof
Load application is to load a data warehouse from a stable and contiguous dataset.

Load Data from a Data Flow

Real-time Load applications use data that was created by an ETL application (Fig-
ure 6.35). This gives an ETL analyst the opportunity to embed the necessary con-
trol mechanisms into the data. A real-time Load application should checkpoint on
a basis frequently enough to be meaningful, but not so frequently as to interfere
with the ETL application.

Data Load

ETL EnvironmentSource System

Data
Warehouse

Figure 6.34  Stable and contiguous data.

AU6462.indb 190 2/7/08 9:53:48 AM

Data Acquisition and Integration  n  191

Control mechanisms are the key to a successful real-time Load application. An
ETL application must be able to recognize when and where a hiccup occurred in
the real-time data. The ETL application will probably not be able to recover lost or
corrupted data. But, at a minimum, an ETL application should be able to notify
the data warehouse team when a discrepancy occurs in the load data.

An ETL application must be able to know:

Each row has been loaded
Once
Only once

A Transform application creates the real-time load data. The Transform appli-
cation that generates the Load records also generates control data (Metadata) for
the Load data. The control data will be used to control the Load application as it
loads the data to a data warehouse. Control mechanisms are at the heart of every
ETL application. Load control mechanisms also work best in bundles; individual
records are far too numerous to log and control individually. Thus, Load control
mechanisms work best in bundles, albeit very small and rapid bundles. Each bun-
dle is logged and monitored. Each record within a bundle is directly associated with
that bundle. In that way, a Load application can log and monitor the movement of
data as it moves from a data flow to a data warehouse.

Transaction Summary

A Transaction Summary arithmetically sums numeric measurements in granular-
detailed Event data. This Event data can be any quantifiable measurement of enter-
prise activity.

Productivity throughput
Sales (retail or wholesale)
Customer activity

n
n
n

n
n
n

Load Data

Load Data
Warehouse

Figure 6.35  Data flow.

AU6462.indb 191 2/7/08 9:53:48 AM

192  n  Building and Maintaining a Data Warehouse

The goal of a Transaction Summary is to increase the query response time of a
data warehouse. Query response time is improved when a Transaction Summary
reduces the volume of data the data warehouse RDBMS must manipulate to return
the result set. Query response time is also improved when a Transaction Summary
reduces the arithmetic processes the data warehouse RDBMS must perform to
return the result set.

These goals are best met when a Transaction Summary precalculates an arith-
metic summation, which is queried frequently by the data warehouse customers,
and then stores the result set as a physical table (Figure 6.36). When data ware-
house customers submit a query for that arithmetic summation, they can query
a Transaction Summary table and receive the result set faster with reduced CPU
cycles and input/output (I/O) consumption.

A Transaction Summary applies an arithmetic summation by summing
together the numeric data from rows that share a common attribute. For example,
Transaction data can be summarized in Time (Day-Level Summary), Geography
(City-Level Summary), and Hierarchy (Department-Level Summary). Transaction
summaries, therefore, remove a level of granular detail.

Time: Remove the hours, minutes, and seconds in Transaction data, leaving
only Day-Level data.
Geography: Remove the Zip Code, street address, and apartment number in
Transaction data, leaving only City-Level data.
Hierarchy: Remove the individual employee name and number in Transac-
tion data, leaving only Department-Level data.

By removing granular detail, a Transaction Summary also reduces the number
of rows manipulated in a result set. In that reduced result set, the required arithme-
tic summation has already been achieved. The result is the data warehouse RDBMS

n

n

n

Transaction
Data Load

Data WarehouseSource System

Transaction
Details

Transaction
Summary

Summarize

Load

Figure 6.36  Transaction Summary.

AU6462.indb 192 2/7/08 9:53:49 AM

Data Acquisition and Integration  n  193

manipulates fewer rows and avoids performing the arithmetic summation process
(again and again and again) while returning the answer to the data warehouse cus-
tomer faster, and with reduced CPU cycles and I/Os.

The return on investment (ROI) of a Transaction Summary increases with the
popularity and frequency of the arithmetic summation in the Transaction Sum-
mary. System CPU and I/O resources are consumed once to create the data. Then,
System storage resources are consumed throughout the day to store the data. The
ROI is then based on how often data warehouse customers will query that data.
If a single data warehouse customer queries that data once a day, it was not worth
the system resources consumed to create and store it. But, if many data warehouse
customers query that data every five minutes, the ROI is extremely high.

Dimension Aggregation

A Dimension Aggregate holds the result set of a query that joins multiple Dimen-
sion tables. The goal of a Dimension Aggregate is to increase the query response
time of a data warehouse. Query response time is improved when a Dimension
Aggregate reduces the volume of data the data warehouse RDBMS must manipu-
late to return the result set. Query response time is also improved when a Transac-
tion Summary reduces the relational join processes the data warehouse RDBMS
must perform to return the result set.

These goals are best met when a Dimension Aggregate prejoins multiple Dimen-
sion tables, which are queried frequently by the data warehouse customers, and
then stores the result set as a physical table. When data warehouse customers sub-
mit a query for that set of joined Dimension tables, they can query a Dimension
Aggregate table and receive the result set faster with reduced CPU cycles and I/O
consumption.

The example in Figure 6.37 shows Dimension data from the Product, Geogra-
phy, Hierarchy, and Distribution subject areas. These tables are joined once. The
result set is stored in a physical table. Then, when a data warehouse customer queries
the data warehouse for the Sales data for a Product that was sold in a Geographic
location by someone in the Hierarchy dimension and shipped by the Distribution
Department, the data warehouse RDBMS is able to avoid joining all the Dimension
tables because that join has already been done.

The ROI of a Dimension Aggregate increases with the popularity and frequency
of the Dimension tables joined in the Dimension Aggregate. System CPU and I/O
resources are consumed once to join the data. Then, System storage resources are
consumed throughout the day to store the data. The ROI is then based on how
often data warehouse customers will submit a query that uses data from this join
path. If a single data warehouse customer queries that data once in a day, it was not
worth the system resources consumed to create and store it. But, if many data ware-
house customers query that data every five minutes, the ROI is extremely high.

AU6462.indb 193 2/7/08 9:53:49 AM

194  n  Building and Maintaining a Data Warehouse

Common Problems
An ETL application, once installed, is static while the changing world is dynamic.
Listed below are a few problems that occur when either the data or business rules
change.

Source Data Anomalies

Garbage In Garbage Out (GIGO) refers to the reality that outbound data is no
better than the inbound data by which the outbound data was created. An ETL
application suffers this same reality. Unfortunately, unless an ETL application can
detect and resolve inbound data anomalies, these anomalies become data ware-
house anomalies.

Incomplete Source Data

A common data anomaly is incomplete data. Incompleteness occurs in three
forms:

		 Records in a set of data are missing.
		 Fields in a record are not populated.
		 A set of data is missing completely.

An ETL application can detect the third form of incomplete data rather easily.
The second form can be detected if the unpopulated fields are key fields or directly
associated with other populated fields.

Product
Dimension

Distribution
Dimension

Hierarchy
Dimension

Geography
Dimension

Products

Distributions

Hierarchies

Geographies

Extract
Products

Extract
Distributions

Extract
Hierarchies

Extract
Geographies

Aggregate Aggregate
Dimension

Figure 6.37  Dimension aggregation.

AU6462.indb 194 2/7/08 9:53:50 AM

Data Acquisition and Integration  n  195

The first form of incomplete data is the most common and most difficult to
detect. Typically, missing records occur in transaction event data. Detection of a
transaction event, that is independent of other transaction events, that did occur, but
was not recorded, is a common circumstance and difficult to detect.

Redundant Source Data

Operational applications frequently resolve their own missing records problem by
restating a set of data, yielding a set of data with missing records that are now pres-
ent, and present records that are now repeated. These repeated and redundant sets
of data can result in repeated and redundant data in a data warehouse, unless an
ETL application can detect and resolve the repeated and redundant condition.

Misstated Source Data

Another common anomaly occurs when source data contains errors. Source data
may identify the wrong physical plant, object, or person. Detection of source data
errors varies in feasibility and treatment. Some source data errors can be detected
while the source data is still within an ETL application. Unfortunately, some
source data errors can only be detected within the context of other data in a data
warehouse. Unless detected and treated by an ETL application, source data errors
become data warehouse errors.

Business Rule Changes

Operational applications can (and do) change the logic by which data is manipu-
lated and understood. Such changes may require no alteration of the physical mani-
festation of source data. Changes in logic or business rules are typically subtle and
difficult to detect.

Obsolete Data

A common manifestation of changing business rules is the discontinued use of
a dataset. The physical dataset may remain extant for purposes associated with
historical data. Current operations, however, do not include the discontinued data-
set. Meanwhile, an ETL application may not know to refer to the new dataset
rather than the discontinued dataset. The result is incorrect data within a data
warehouse.

AU6462.indb 195 2/7/08 9:53:50 AM

196  n  Building and Maintaining a Data Warehouse

Redefined Data

An operational application may continue using a dataset with a different format or
layout. Hopefully, a new format or layout will cause abnormal problems in an ETL
application, which will be noticed. A redefined dataset, however, may cause no
operational problems, but may cause data errors. Unless detected, these data errors
will become part of a data warehouse.

Unrecorded Data

All organizations, large and small, have a handful of codes and values that are
known and understood by all relevant organization members. Because these codes
and values are known and understood, no one records them in a stable operational
dataset. These are the unrecorded data of an organization.

An ETL application may record these codes and values for its own purposes.
Without a record of the existence and meaning of these codes and values, an ETL
application cannot know when these codes and values change, and they do change.
Changes in an organization’s unrecorded codes and values may result in data ware-
house errors.

Closing Remarks
An ETL application (Figure 6.38) begins and ends with data warehouse custom-
ers. They are the reason for a data warehouse. A data warehouse designer captures
customer expectations in the design of a data warehouse. A Target System analysis
captures the behavior of data in a data warehouse design. The behavior of data is a
result of actions performed by an ETL application. These behaviors are expressed
as Direct Requirements. The Data Mapping is a road map showing how an ETL
application will achieve data behaviors. Typically, a Data Mapping starts at a source
system and ends at a data warehouse.

The Data Quality SLA and Metadata SLA capture the information necessary
for customers to use the data in a data warehouse.

Is the data complete?
Are there any anomalies?
When is the data available?
What is the profile of today’s data?

All of these questions are captured as Indirect Requirements. The Direct
Requirements (data behavior) and Indirect Requirements (information about data
behavior) meet together in a single physical design. That physical design declares
the physical hardware, platforms, datasets, and jobs that are the ETL application,

n
n
n
n

AU6462.indb 196 2/7/08 9:53:50 AM

Data Acquisition and Integration  n  197

D
at

a
W

ar
eh

ou
se

T
ar

ge
t S

ys
te

m
A

na
ly

sis

ET
L

D
ire

ct
Re

qu
ire

m
en

ts

C
us

to
m

er
Ex

pe
ct

at
io

ns

D
at

a
Q

ua
lit

y
SL

A
ET

L
In

di
re

ct
Re

qu
ire

m
en

ts

M
et

ad
at

a
SL

A

D
at

a
M

ap
pi

ng
/

Lo
gi

ca
l D

es
ig

n

Ph
ys

ic
al

D
es

ig
n

ET
L

A
pp

lic
at

io
n

So
ur

ce
D

at
a

D
at

a
W

ar
eh

ou
se

C
us

to
m

er
Ex

pe
ct

at
io

ns

ET
L

Pr
in

ci
pl

es

T
ar

ge
t S

ys
te

m
A

na
ly

sis

So
ur

ce
 S

ys
te

m
A

na
ly

sis

Fi
gu

re
 6

.38 

ET
L

be
gi

nn
in

g
to

 e
nd

.

AU6462.indb 197 2/7/08 9:53:50 AM

198  n  Building and Maintaining a Data Warehouse

which delivers data to a data warehouse. The data in that data warehouse meets the
expectations of data warehouse customers, which is the original intent.

References
	 1.	 Mark Beyer, personal communication, 2002.
	 2.	 Ibid.

AU6462.indb 198 2/7/08 9:53:51 AM

199

Chapter 7

Business Intelligence
Reporting

Introduction
Business Intelligence Reporting, otherwise known as BI Reporting, or just BI, is
the face of a data warehouse (Figure 7.1). BI Reporting is what the data warehouse
customers see. All the hardware, software, data architectures, data models, Source
System Analysis, Target System Analysis, and ETL applications culminate in data
displayed on a computer monitor or printed on a piece of paper. All that work, the
effort and investment, will be counted a blazing failure if the BI Reporting fails to
deliver or all of that work, the effort and investment, will be counted a tremendous
success if the BI Reporting delivers the data and value expected of a data ware-
house, which will lead to subsequent iterations of data warehouse development.

BI Reporting Success Factors
The success factors of BI Reporting include performance, the user interface, pre-
sentation of the data architecture, alignment with the data model, ability to answer
questions, mobility, flexibility, and availability. These success factors and their busi-
ness relevance are discussed below.

AU6462.indb 199 2/7/08 9:53:51 AM

200  n  Building and Maintaining a Data Warehouse

So
ur

ce
 D

at
a

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts

M
et

ad
at

a
Ap

pl
ic

at
io

n(
s)

D
at

a Q
ua

lit
y

D
at

ab
as

e
M

et
ad

at
a

D
at

ab
as

e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

RD
BM

S

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

M

et
ad

at
a

Re
po

si
to

ry

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

D
at

ab
as

e
D

es
ig

n

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

So
ur

ce
 D

at
a

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts

M
et

ad
at

a
Ap

pl
ic

at
io

n(
s)

D
at

a Q
ua

lit
y

D
at

ab
as

e
M

et
ad

at
a

D
at

ab
as

e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

RD
BM

S

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

M

et
ad

at
a

Re
po

si
to

ry

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

D
at

ab
as

e
D

es
ig

n

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

O
LA

P

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

O
LA

P

Fi
gu

re
 7

.1 

B
us

in
es

s
In

te
lli

ge
nc

e
(B

I)
 R

ep
or

ti
ng

.

AU6462.indb 200 2/7/08 9:53:52 AM

Business Intelligence Reporting  n  201

Performance

A successful BI Reporting application will return answer sets in a consistent time
frame. Initially, data warehouse customers will accept only subsecond response
time as reasonable. In the early days of a data warehouse, subsecond response time
may actually occur. That is unfortunate because as new and additional customers
begin to use a data warehouse, each will consume central processing unit (CPU)
cycles and input/output (I/Os), degrading the response time for all data warehouse
customers. The CPU cycles and I/Os of a data warehouse are a finite resource. As
one customer consumes CPU cycles and I/Os, those CPU cycles and I/Os are taken
from another customer. A successful BI Reporting application manages the finite
resource of CPU cycles and I/Os by managing the customers’ use of them. Data
warehouse customers will eventually accept subminute response time in lieu of sub-
second response time, as long as the response times are consistent. A BI report will
become, in the minds of a customer, a two-minute report. A successful BI Report-
ing application will manage the consumption of resources so that a two-minute
report is always a two-minute report.

An unsuccessful BI Reporting application fails to manage the consumption of
data warehouse resources. When a customer is allowed to adversely affect all other
data warehouse customers, then for those other customers a two-minute report will
become a one-hour report. Data warehouse customers will not accept the incon-
sistent response times because it does not allow them to plan their work. If a cus-
tomer has an assigned task that must be finished by the afternoon, which requires
the result set of a two-minute report, the customer must plan enough time for the
result set of that two-minute report. An unsuccessful BI Reporting application will
allow that two-minute report to become a two-hour report (by letting Fred from
Logistics submit forty-two high impact queries), which will send that data ware-
house customer to his or her afternoon meeting without the result set required to
complete the assigned task.

User Interface

A successful BI Reporting application is intuitive and easily understood. A success-
ful user interface is organized along the thought processes and methods already
present in the enterprise. A business question native to the enterprise (How profit-
able is my business unit? How many personnel hours are required to fulfill a cus-
tomer order? Where are the capital assets of my business unit?) is native to the BI
Reporting application. The Source System Analysis was performed so the data ware-
house designer could accurately architect and model the data warehouse to reflect
the enterprise. The ETL applications were designed and developed to reflect the
enterprise within the data elements of the data warehouse. A successful BI Report-
ing application continues this philosophy—the data warehouse is a reflection of the

AU6462.indb 201 2/7/08 9:53:53 AM

202  n  Building and Maintaining a Data Warehouse

enterprise into the User Interface. When a data warehouse customer is looking at
the User Interface of a BI Reporting application, that customer is looking at his or
her enterprise in data.

An unsuccessful BI Reporting application requires data warehouse customers to
“learn the tool”. Data warehouse customers are first and foremost business people.
They understand and operate their business. An unsuccessful BI Reporting applica-
tion will require data warehouse customers to translate their business questions into
“tool” queries and then translate the “tool” result sets into business information.

Presentation of the Data Architecture
A successful BI Reporting application presents data from the Operational Data
Store (ODS) as operational data, data from a Data Mart as information assembled
for a specific purpose and business unit, and data from a Data Warehouse using the
guidelines in the Data Warehousing Philosophy. Each of these three sets of data
(ODS, Data Mart, and Data Warehouse) is distinguished from each other, so the
customer understands the meaning and intention of the data he or she is viewing.

An unsuccessful BI Reporting application presents these three sets of data
(ODS, Data Mart, and Data Warehouse) with a homogenous User Interface, so
that customers are not sure of which set of data they are viewing. Or, a BI Report-
ing application may mix data from the three sets of data (ODS, Data Mart, and
Data Warehouse). If the three sets of data physically exist on the same platform,
a BI Reporting tool may join data elements from one data set with data elements
from another data set. The User Interface in which this occurs most frequently
is an ad hoc Open Database Connectivity (ODBC) interface. A data warehouse
customer will search for a data element with a foreign key that matches the data ele-
ment he or she wants to use. Unaware of the distinction between ODS, Data Mart,
and Data Warehouse data as presented in the ODBC interface, a data warehouse
customer can inadvertently join an ODS Dimension table (which has no history)
to a Data Warehouse Fact table (which does have history) and then wonder where
all that history went.

Alignment with the Data Model
A successful BI Reporting application synchronizes with the relations and relational
integrity of a data model. The relations and cardinalities embedded in a data model
are intentional. They reflect the relations and cardinalities of the enterprise. By syn-
chronizing with the data model, a BI Reporting application continues this reflec-
tion of the enterprise through the data reported to the data warehouse customer.

An unsuccessful BI Reporting application violates the relations and relational
integrity of a data model. By introducing relations where none exist and cardi-
nalities that are not true, a BI Reporting application distorts the reflection of the

AU6462.indb 202 2/7/08 9:53:53 AM

Business Intelligence Reporting  n  203

enterprise. At best, a data warehouse customer will recognize the distortion and
refuse to accept the data. At worst, a data warehouse customer will not recognize
the distortion and use the data to form tactical or strategic decisions.

Ability to Answer Questions

A successful BI Reporting application is able to use the data in a data warehouse
to answer the questions posed to it. This requires the ability to identify the data
elements that will contribute to an answer set, join them correctly, and present
the result set in the business terms understood by the customer. Also, but no less
important, the answer set is correct.

An unsuccessful BI Reporting application is not able to generate the correct
answer set with the data elements available. The BI Reporting application may not be
able to identify all the data elements that will contribute to an answer set or, having
identified all the correct data elements, a BI Reporting application may not be able to
leverage them correctly. The end result is either no answer or an incorrect answer.

Mobility

A successful BI Reporting application empowers data warehouse customers to take
the answer set with them. Having generated the information necessary to answer a
business question, a data warehouse customer can then save, print, copy/paste the
information to any destination.

An unsuccessful BI Reporting application requires data warehouse customers
to carry their computer monitor around and say, “Look at this monitor. That’s
the answer to our question.” This is, of course, absurd. But, a BI analyst must
define the mobility threshold below, which a BI Reporting application is considered
unsuccessful. Does the enterprise require BI reports be printed, copy/pasted into
spreadsheets, captured as permanent documents, published through an intranet,
published real-time through an Internet Web site to enterprise agents around the
globe? Each of these levels of mobility includes a cost and a return on investment
(ROI). An enterprise requires, and is willing and able to invest in, mobility within
it BI Reporting application, but how much mobility?

Flexibility

A successful BI Reporting application can answer questions that have never before
been asked. The world is a dynamic and changing business environment. New play-
ers are coming into the marketplace all the time. Existing players are constantly
redefining themselves within the marketplace. A BI Reporting application should

AU6462.indb 203 2/7/08 9:53:53 AM

204  n  Building and Maintaining a Data Warehouse

help its customers to keep up with the dynamic and changing marketplace by allow-
ing them to ask questions that are framed in the present state of the marketplace.

An unsuccessful BI Reporting application expects the world to remain static
and frozen; expecting the world will always look as it does now. A BI Reporting
application that only allows business questions framed in the enterprise as it existed
on a date in the past will find it has no future with the enterprise.

Availability

A successful BI Reporting application is available during the active cycles of the
enterprise. Implicitly, availability of the BI Reporting application also includes
availability of the data that will be used by the BI Reporting application. Data
availability requires coordination with Extract, Transform, and Load (ETL) appli-
cations that load the data. ETL Load applications can interfere with a BI Reporting
application in two ways. First, an ETL Load application might lock a table required
by the BI Reporting application. Second, an ETL Load application, if loading dur-
ing a BI Reporting cycle, might update the data being reported. The results of a data
update during a BI Reporting cycle cause confusion (Why did the data change?)
and suspicion of the BI Reporting application (Is this thing working right?).

An unsuccessful BI Reporting application fails to match the active cycles of the
enterprise. The customers are not sure if they are looking at the most recent data or
if the most recent data is still on its way. Customers may also experience significant
delays in report delivery if the BI Reporting application is down during the enter-
prise active cycle. By failing to accommodate the active cycles of the enterprise, a
BI Reporting application communicates to the customers that they need to find
another alternative, which they will.

A BI Reporting application is limited in its ability to excel at these success fac-
tors by the data architecture, data model, and data that precede it. The query per-
formance of a BI Reporting application cannot exceed the query performance it
inherits from the Relational Database Management System (RDBMS). The ability
of a BI Reporting application to answer questions cannot exceed the ability of a
data model to answer questions. The flexibility of a BI Reporting application cannot
exceed the flexibility of a data model. The seeds of a BI Reporting applications suc-
cess, therefore, are planted in the RDBMS and data model of its data warehouse.

If the performance, answers, and flexibility are feasible given the Database
Design, the BI application has the job of harnessing and leveraging these features to
their fullest extent possible. If, however, the performance, answers, or flexibility are
not feasible given the Database Design, the BI application should not be expected
to compensate for the lack of these features in the data warehouse.

AU6462.indb 204 2/7/08 9:53:53 AM

Business Intelligence Reporting  n  205

BI Customer Success Factors
BI Reporting customers leverage a BI Reporting application as they perform their
business functions within the enterprise. Each BI Reporting customer has indi-
vidual assignments and functions within the enterprise. The cost of providing every
member of the enterprise with their own individual BI Reporting application, on
its own server, with its own data warehouse, and its own network infrastructure is,
of course, prohibitively high. That is why these are all shared resources. So, rather
than an individual BI Reporting application, a BI Reporting analyst presents each
customer with an individualized BI Reporting application. The success factors of an
individualized BI Reporting application include its ability to support the processes
and satisfy the needs of individual BI Reporting customers.

Proactive Processes

The enterprise needs to know when a problem is approaching with the maximum
possible lead-time. Once an approaching problem has been observed, the lead-time
allows the enterprise to align its resources to prepare the best possible response to
the approaching problem. Some members of the enterprise have a responsibility to
monitor conditions within the enterprise that could harm the enterprise.

For proactive processes, a BI Reporting application should relieve customers of
the need to remember to query enterprise data. The risk is that the customer will be
too busy or just forget to run the query at the exact moment a problem emerges. A BI
Reporting application’s ability to mitigate this risk by performing the proactive pro-
cesses is a success factor for the customers as they use the BI Reporting application.

Reactive Processes

The enterprise needs to assess its recent past in the context of long-term and seasonal
trends. The information from these assessments helps the enterprise know whether
short-term tactics and long-term strategies are currently working as intended or
should they be modified in the near future. Business processes such as these are
reactive because they allow the enterprise to react to recent events.

BI Reporting customers need the toolsets necessary to review and analyze recent
events in the context of long-term and seasonal trends. Is a spike in activity the
beginning of an upward trend or a seasonal pattern? A BI Reporting application’s
ability to give its customers the toolset necessary to answer the questions that sup-
port the reactive processes of the enterprise is a success factor for the customers as
they use the BI Reporting application.

AU6462.indb 205 2/7/08 9:53:53 AM

206  n  Building and Maintaining a Data Warehouse

Predefined Processes

Some business processes are well defined, repeated, and stable. Predefined business
processes could include such queries as:

How many units did we sell?
How much cash came in, and out, in the past week?
What is the net present value of investments held by each customer?

In predefined processes, everything is known, except the answer. The time
frame, query, and audience are all known. A predefined process has very few, if any,
variables that require the help or participation of a member of the enterprise.

A BI Reporting application should be able to remember and execute a pre-
defined process. Programmatic responses to the result set of a predefined process
can be included in a BI Reporting application, including report distribution and
sending alerts. The ability of a BI Reporting application to support customers’ pre-
defined reporting processes is a success factor for the customers as they use the BI
Reporting application.

Ad Hoc Processes

Not all questions have been identified and programmed into a BI Reporting appli-
cation because not all questions are known. Regardless, the enterprise’s need for
the answer to a question must be satisfied. The enterprise may not be able to wait
for a BI Reporting developer to gather the requirements, develop, test, and release
the report back to the enterprise. When the enterprise cannot wait for the answer,
a member of the enterprise must be able to ask the question in the timeframe of the
enterprise. A BI Reporting application’s ability to support ad hoc processes is a suc-
cess factor for the customers as they use the BI Reporting application.

Data Needs

Data is the granular minutia values that document the existence of an enterprise
entity or measure an enterprise event. For example:

The date, time, place, and product of each individual sales transaction
The number of warehouses in the southeast region
The name of a building

Members of the enterprise sometimes require the data of the enterprise. On these
occasions, the question asks for the most granular minutia information available

n

n

n

n

n

n

AU6462.indb 206 2/7/08 9:53:54 AM

Business Intelligence Reporting  n  207

within the enterprise. A BI Reporting application’s ability to present enterprise data
is a success factor for the customers as they use the BI Reporting application.

Information Needs

Information is data interpreted within a context.1 Information questions juxtapose
two or more data points to answer a question that is expected to yield an answer
that will help the enterprise. For example:

Profitability: What was the recent margin between revenues and expenses?
Trends: Did the business unit sell more or less product this quarter as com-
pared to last quarter?
Ratios: What is the ROI of the data warehouse?

These and similar questions are asked by members of the enterprise on a fre-
quent basis. A BI Reporting application’s ability to answer informational questions
is a success factor for the customers as they use the BI Reporting application.

Analytic Needs

Sometimes, the question that must be answered is, “What question should I ask?”
BI Reporting processes begin their lifecycle as a search for the question. Much like
scouts searching for something, anything, they’ll know it when they see it, busi-
ness analysts search the enterprise and its environment for a question. This search is
the analytic process, searching for a correlation between events, for an association
between factors within and around the enterprise. Business analysts need a toolset
that will enable them to search for the questions that will lead to the answers. A BI
Reporting application’s ability to empower and enable analytic processes is a suc-
cess factor for the customers as they use the BI Reporting application.

BI Reporting Application
A BI Reporting application is a tool, or set of tools, that provide the user interface
between a data warehouse and its customers (Figure 7.2). The architecture, features,
and functions vary between the different BI Reporting tools. In general, BI Reporting
tools provide a layer of abstraction that allows the data warehouse customers to interact
with a data warehouse without learning the Structured Query Language (SQL) syn-
tax, network address, or database connectivity required to query a data warehouse.

n

n

n

AU6462.indb 207 2/7/08 9:53:54 AM

208  n  Building and Maintaining a Data Warehouse

Architecture

The architecture of BI Reporting tools includes one or more servers between the
data warehouse and customers. These servers have a roadmap of the data ware-
house. Through its user interface, customers tell a BI Reporting application the
required information. The BI Reporting application submits the SQL to the data
warehouse. When the result returns from the data warehouse, the BI Reporting
application returns it to the customer.

BI Reporting tools market themselves on their ability to connect with RDBMS
platforms. The companies that develop and own BI Reporting tools negotiate
partnerships with the companies that develop and own RDBMS platforms. The
partnership means that the owners of the RDBMS platform have shared their pro-
prietary information, including application programming interfaces (APIs) and
other interfaces, which allow a BI Reporting tool to connect with the most possible
features and efficiency. When the owners of a RDBMS platform are not quite so
forthcoming with the keys to their kingdom, they may share proprietary informa-
tion that is not quite so close to the operating system, but is also not quite as packed
with features and efficiency. The intent behind these partnerships is symbiotic. By
including themselves in an architecture that is more efficient than others, they hope
to attract newcomers to the marketplace to purchase their platform as well as cus-
tomers who have already purchased the platform that is the other half of the part-
nership. The least efficient connectivity is through ODBC. A BI Reporting tool will
use ODBC when no other connectivity is available. In their marketing literature,
BI Reporting tools will usually state they have a direct ODBC connection.

Data
Warehouse

Data
Mart

ODS

Report
Server

Middleware
Server

BI Reporting Application

Figure 7.2  Business Intelligence (BI) Reporting Application.

AU6462.indb 208 2/7/08 9:53:55 AM

Business Intelligence Reporting  n  209

BI Reporting Methods
BI Reporting tools interact with data warehouse customers using one of the follow-
ing three methods. Each method has its own advantages and disadvantages. None
of these methods addresses all the data warehouse customers’ needs and skills. For
that reason, most BI Reporting tools combine these methods. Some of the com-
binations have produced stellar results, some are still working on it. As a potential
BI Reporting tool customer, a BI Reporting analyst must be well-versed on all the
features and options, so that he or she can choose a BI Reporting tool with the best
fit for the enterprise.

Predefined Reports

Predefined reports are basically SQL statements with a label. The BI Reporting tool
has a library of predefined reports. A large selection of reports may compensate for
the lack of interactive or menu-driven report creation. Data warehouse customers
need to be able to find the exact permutation of Fact and Dimension data in a
report. If that is not available, the BI Reporting team has the responsibility of cre-
ating that report. Either way, the report required by the data warehouse customer
must be provided by the BI Reporting application.

The SQL in all the reports can be optimized for maximum query efficiency.
The BI Reporting team can test and validate each report, verifying it does indeed
return the data that it promises to return. Also, the BI Reporting team can own and
catalog all the BI reports, thus avoiding redundant reports.

Interactive Reports

Interactive reports require the BI Reporting tool translate the list of data elements
required by the customer into a SQL statement. Then, the BI Reporting tool submits
that SQL to the data warehouse and returns the result set back to the data warehouse
customer. A BI Reporting tool usually uses drop-down lists, menus, and user input
boxes to indicate the list of data elements and WHERE clauses required by the
data warehouse customer. To achieve the translation of data elements and WHERE
clauses, a BI Reporting tool must have its own roadmap of the data warehouse. That
roadmap of the data warehouse must be maintained and synchronized with the data
warehouse; if the data warehouse changes, the BI Reporting roadmap changes.

Interactive reports provide flexibility and ad hoc reporting that does not exist
with predefined reports. The interactive BI Reporting tool uses the list of data ele-
ments and WHERE clauses provided by the customer and its own roadmap to
generate a SQL statement. That SQL statement is submitted to the data warehouse.
The result set is returned to the data warehouse customer.

AU6462.indb 209 2/7/08 9:53:55 AM

210  n  Building and Maintaining a Data Warehouse

The price for that flexibility is the roadmap of the data warehouse, which
includes the cost of a BI Reporting server, probably a middleware server, develop-
ment and maintenance of the BI Reporting tool, and the roadmap. All in all, this
flexibility is not inexpensive. This flexibility must also be managed. If the data
warehouse customers are allowed free reign with a BI Reporting application, they
will create redundant reports (e.g., 100+ copies of one report), incorrect reports,
and inefficient reports.

Online Analytical Process (OLAP) Reports

Online Analytic Processing (OLAP) applications precalculate and store the answers
(i.e., result sets) to permutations of Dimensions. The precalculated result sets are
stored in a multidimensional structure, which is referred to as a Cube. The mul-
tidimensional cube is able to navigate directly to the cell that holds the result set
associated with the permutation of Dimensions indicated by the customer. As a
result, the answer set comes back to the customer with nearly instant response
time.

The multiplication table in Table 7.1 illustrates the precalculated and stored
result sets. The numbers on the left and top are the Dimensions. The numbers
inside the table are the result sets. When a customer indicates the permutation 2 ×
3, the OLAP application does not calculate 2 × 3. Rather, the OLAP application
finds the cell that is the intersection of 2 and 3. That cell holds the answer. Without
calculating or knowing the answer, the OLAP application simply returns the value
held in the cell at the intersection of 2 and 3 to the customer.2

Table 7.1  Precalculated Result Sets
X 1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12

2 1 2 3 4 5 6 7 8 9 10 11 12

3 3 6 9 12 15 18 21 24 27 30 33 36

4 4 8 12 16 20 24 28 32 36 40 44 48

5 5 10 15 20 25 30 35 40 45 50 55 60

6 6 12 18 24 30 36 42 48 54 60 66 72

7 7 14 21 28 35 42 49 56 63 70 77 84

8 8 16 24 32 40 48 56 64 72 80 88 96

9 9 18 27 36 45 54 63 72 81 90 99 108

10 10 20 30 40 50 60 70 80 90 100 110 120

11 11 22 33 44 55 66 77 88 99 110 121 132

12 12 24 36 48 60 72 84 96 108 120 132 144

AU6462.indb 210 2/7/08 9:53:55 AM

Business Intelligence Reporting  n  211

The tradeoff is a limited set of Dimensions. Because the result sets are precalcu-
lated and stored in the multidimensional cube, storage capacity is a limiting factor.
To offset this, OLAP applications actually precalculate and store only a portion of
the intersecting cells. Because 2 × 3 is the same as 3 × 2, the OLAP application need
only store the result of one permutation, knowing that the stored result set will hold
the answer to both permutations. Table 7.2 illustrates this method by which a result
set can be stored only once.

The final, and best, feature of an OLAP application is the user interface. An
OLAP application uses a GUI interface. The customer is able to point-and-click
on a cell that is a reference to a permutation of Dimensions. The result set returns
immediately because the result set has been precalculated and stored, allowing the
customer to ask questions (via point-and-click) and receive answers in a near stream
of consciousness.

OLAP is purely an analytic tool. The result set is rarely mobile. The analyst
using an OLAP application must have a deep understanding of the business and
the enterprise to achieve the stream of consciousness analysis. The result set and
the path by which the analyst achieved the result set are usually not repeatable.
An OLAP application is good at finding where to look to find the permutation of
Dimensions that is likely to yield helpful results. A presentable report of informa-
tion (information that was first detected by an OLAP application) is best created
in a BI Reporting application intended to create reports that will be understood by
a wider audience.

OLAP applications offer three permutations of storage capacity requirements
and performance. These permutations allow the customer to make the decision,

Table 7.2  Nonredundant Result Sets
X 1 2 3 4 5 6 7 8 9 10 11 12

1 1

2 1 2

3 3 6 9

4 4 8 12 16

5 5 10 15 20 25

6 6 12 18 24 30 36

7 7 14 21 28 35 42 49

8 8 16 24 32 40 48 56 64

9 9 18 27 36 45 54 63 72 81

10 10 20 30 40 50 60 70 80 90 100

11 11 22 33 44 55 66 77 88 99 110 121

12 12 24 36 48 60 72 84 96 108 120 132 144

AU6462.indb 211 2/7/08 9:53:56 AM

212  n  Building and Maintaining a Data Warehouse

the final tradeoff between storage capacity and performance. At the time an OLAP
cube is built, the customer can choose one of three OLAP technologies.

MOLAP

Multidimensional OLAP (MOLAP) stores all the result sets of all the permuta-
tions of Dimension in an OLAP cube. MOLAP requires significant storage capac-
ity. The creation of all the result sets in a MOLAP cube requires significant CPU
cycles, I/Os, and memory capacity. MOLAP provides the fastest performance for
the customer.

ROLAP

Relational OLAP (ROLAP) stores no result sets. Rather, ROLAP identifies the
data within an associated data warehouse by which it can calculate at runtime all
result sets. When a customer indicates an intersection of Dimensions, the ROLAP
cube translates that information into a SQL statement, which is submitted to a data
warehouse. The result set comes back as a data value that is reflected in the OLAP
GUI (graphical user interface). A ROLAP cube requires the least storage capacity
on the OLAP server; however, ROLAP transfers consumption of CPU cycles and
I/Os over to the data warehouse. ROLAP provides the slowest performance and the
maximum number of Dimensions for the customer.

HOLAP

Hybrid OLAP is a combination of MOLAP and ROLAP. By precalculating and
storing most, but not all, of the result sets within an OLAP cube, a HOLAP
cube achieves a compromise between capacity, performance, and permutations of
Dimensions available to the customer.

Drilling

Within OLAP, Drilling is the concept whereby the customer is able to ask the same
question (Number of units manufactured?) at successively lower hierarchical levels.
Through a series of point-and-click queries, the customer Drills down to lower and
lower levels of granularity. For example:

A customer can begin by asking, “How many widgets did the enterprise man-
ufacture today?”
A customer can drill down by asking, “How many widgets did the Eastern
Division manufacture today?”

n

n

AU6462.indb 212 2/7/08 9:53:56 AM

Business Intelligence Reporting  n  213

A customer can drill down farther by asking, “How many widgets did the
Southeastern Region manufacture today?”
A customer can continue drilling down by asking increasingly precise, and hier-
archically lower, questions. Drilling stops when the customer gets to the bottom
of the hierarchy, “How many widgets did Plant #236 manufacture today?”

The Drilling concept of OLAP is not original to OLAP. Analysts queried up
and down hierarchies before the creation of OLAP cubes. What OLAP cubes added
to Drilling as a concept is an understanding of the power of drilling up and down
hierarchies. As a result, the concept of Drilling has matured in other BI Reporting
technologies and methods.

Push versus Pull

Push

BI Reports are pushed to members of the enterprise on a scheduled basis. Other
than the schedule, no event triggers a pushed report. Typically, pushed reports are
integral to, and designed for, recurring business processes. A pushed report looks
the same, answers the same questions, and presents the same data from day to day.

Pull

A member of the enterprise also can request BI Reports. An enterprise event occurs
that requires information in a BI Report. In response, a member of the enterprise
requests that BI Report. Pulled BI Reports are typically canned reports, but with
input parameters. The input parameters allow the report to answer the question
posed by the enterprise event.

Printed on Paper

Despite all the advances in technology, BI Reporting applications are still required
to include the functionality that prints reports on paper. Although increasingly
fewer people distribute reports by walking around with pieces of paper in their
hands, a printed page from a report will always provide a concrete record of a report
and the information on that report.

Report Archives

BI reports chronicle the activities and history of an enterprise. At a point in time, they
record the questions that were asked, and the answers. BI reports can be archived

n

n

AU6462.indb 213 2/7/08 9:53:56 AM

214  n  Building and Maintaining a Data Warehouse

electronically or optically in addition to publication to their intended audience. The
result is a history of the enterprise. By capturing the information available at the
time of a decision, archived reports create a context for historical decisions.

Web-Based BI Reporting
BI Reporting applications publish reports via corporate intranets and the Internet.3
This method allows a BI Reporting application to span physical and geographic
boundaries. The Push, Pull, and Interactive features of BI Reporting are viable
options across a corporate intranet and the Internet. The connective capacities of BI
Reporting tools and networks have removed the physical and geographic constraints
that had previously tied BI Reporting to a physical location or local network.

Operational BI Reporting: From an ODS
BI Reporting applications leverage the operational data in an ODS. BI reports
generated from the data in an ODS relieve the operational source system of the
responsibility to publish reports. By letting the BI Reporting application do what it
does best, the operational source system is allowed to do what it does best.

The business cycles of the operational system provide the cycles by which the ODS
gathers, and the BI Reporting application reports, operational data. The ODS and BI
Reporting application should not allow operational data to go stale by moving slower
than the operational system. The ODS and BI Reporting application also should not
repeat operational reports by gathering and reporting operational data faster than
the operational source system generates it. Rather, the ODS and BI Reporting appli-
cation should be synchronized with the operational source system. The periodicity of
this synchronization can be as slow as daily, or as fast as real-time.

Operational BI Reporting: From an
Operational System (Real-Time)
When an ODS is not available, but operational BI reports are still required, a BI
Reporting application can retrieve its data directly from an operational source sys-
tem. Used this way, a BI Reporting application becomes a reporting module of
an operational system. This method leverages the reporting capabilities of the BI
Reporting tool, while still removing reporting responsibilities from the operational
system. The risk to this approach is that the BI Reporting application may interfere
with the operational system. This is a risk that must be managed and mitigated. The
business cycles of the operational system provide the cycles by which the BI Report-
ing application reports operational data. The BI Reporting application should not
allow operational data to go stale by moving slower than the operational system.

AU6462.indb 214 2/7/08 9:53:57 AM

Business Intelligence Reporting  n  215

The BI Reporting application also should not repeat operational reports by reporting
operational data faster than the operational source system generates it. Rather, the
BI Reporting application should be synchronized with the operational system. The
periodicity of this synchronization can be as slow as daily or as fast as real-time.

Operational BI Reporting: EDI, Partnerships, and Data Sharing
BI Reporting applications can share data and information with partners of the
enterprise. Electronic Data Interchange (EDI) is the sharing of documents, data,
and information. An enterprise will share specific data and information for prear-
ranged purposes. Typically, an enterprise will share orders, inventory levels, and
near-term plans to allow its partners to supply product and materials at the time
and place they are needed.

BI Reporting: Thus Far
In the early days of BI Reporting, the reporting tools, infrastructures, and applica-
tions we presently associate with BI Reporting were not yet created. BI Reporting
was limited to the printing functions inherent in operational applications. Then, as
BI Reporting tools developed and matured, they found three fast paths to ROI.

Customer Relationship Management (CRM)
Without customers, any business or enterprise will die—quickly. So, it is no surprise
that BI Reporting tools found a niche by enhancing interaction with customers. Cus-
tomer Relationship Management (CRM) systems allow the enterprise to recognize
the customer, regardless of the agent actually talking to the customer. By providing
customer-specific information to the agent, the agent is able to give the impression of
a personal interaction with the customer. By referencing the name of the customer’s
business, line of work, or other details, the agent is able to communicate to the cus-
tomer that the enterprise remembered these details about the customer.

CRM systems also remember the buying patterns and seasonality of the cus-
tomer. If the customer seems to miss a typical buying period, a CRM can alert the
enterprise that a potential transaction has not yet happened. CRM systems can also
associate a transaction event to typical buying behavior; when the customer pur-
chases nails, the CRM can suggest the customer also consider a product typically
purchased with nails. CRM systems can also remember birthdays and anniversa-
ries. By sending out cards congratulating a customer on a birthday or anniversary,
an enterprise is able to simultaneously remind the customer that the enterprise
exists and generate a small measure of good will. Clearly, BI Reporting has, and
continues to, serve well in CRM.

AU6462.indb 215 2/7/08 9:53:57 AM

216  n  Building and Maintaining a Data Warehouse

Business Metrics Measure the Enterprise

BI Reporting applications also achieve immediate ROI by giving visibility to the
state of the enterprise. Published reports disclose the activity levels, benchmark
measurements, and key performance indicators of the enterprise. The visibility
allows an enterprise to recognize its position in the marketplace and respond to that
information. Rather than remain blind to it, BI Reporting applications illuminate
the enterprise in the context of the marketplace.

Decisions and Decision Making Closer to the Action

An interesting effect of BI Reporting applications is the availability of information
at all hierarchical levels of the enterprise. In the early days, only those managers
within walking distance of the carbon impact printer, which printed the reports
of the enterprise, would receive the reports generated by operational applications.
When BI Reporting applications disseminated operational reports, these reports
could be distributed to members of the enterprise closer to the action. Managers
back in the office no longer had to tell the workers on the floor and in the field what
was in the report; instead, those workers could see the report for themselves.

BI Reporting: Coming Soon
Recent and upcoming developments in BI Reporting have less to do with the tech-
nology of BI Reporting and more to do with the use of that technology. Although
the technology continues to advance and improve, the analysts and developers
using BI Reporting technology are still finding ways to achieve their potential in
BI Reporting.

Reporting around the Event

For those BI Reporting applications that report a specific event or condition, BI
Reporting analysts know someone will ask, “Why?” In an effort to streamline the
“why” question and its answer, BI Reporting analysts have begun to include related
and relevant information with the BI report of an event. They have begun to report
around the event. The net effect is to simultaneously provide the enterprise event
and its context. By providing the context of the event in the first report, the enter-
prise agent addressing the event can dispense with the request to generate a report
of the context of the event.

AU6462.indb 216 2/7/08 9:53:57 AM

Business Intelligence Reporting  n  217

BI Search

BI reports that have already been designed and coded can be cataloged and indexed.4

When a member of the enterprise needs a specific piece of information, that person
can scan the catalog and index of existing BI reports.5 If a BI report already exists
that presents the required information, that person has simultaneously avoided the
creation of a new BI report and obtained the required information.

Sarbanes–Oxley and BI Reporting

The Sarbanes–Oxley (SOX) legislation that addresses recent corporate tragedies
applies to the applications that create the data of the enterprise, and to the appli-
cations that report the data of the enterprise.6 BI Reporting applications that are
regulated by the SOX legislation now must conform to the following guidelines.

Quality Assurance (QA): A BI report must be thoroughly tested to validate
the data it presents.
Change Management: The BI report that generates the information viewed by
the enterprise must be the BI report that is intended to generate that data.
Security: The information disclosed by a BI report must be visible to, and
used by, only the intended target audience.
Operations Management: The execution of a BI report and distribution of its
result must occur via the infrastructures that are controlled by the enterprise
information systems.

Data Mining
Data Mining is a search for patterns and associations within data that are not
immediately obvious or may be hidden altogether. Data Mining is a very dynamic
exercise. As a pattern emerges, it may lead to a question that will lead to another
pattern that may open up a new line of inquiry and discovery.7 The inquiry and
discovery in Data Mining follows one of two paths:

Exploratory Analysis: This is the search for a hypothesis, a business rule that
can predict future events and conditions.
Confirmatory Analysis: This is the test of a hypothesis. A business rule has
been found that requires validation and verification.8

An enterprise performs data mining to achieve a competitive advantage.9 The
enterprise that can decipher the tea leaves of information within itself and its
environment to be able to predict the near, and not so near, future possesses a

n

n

n

n

n

n

AU6462.indb 217 2/7/08 9:53:57 AM

218  n  Building and Maintaining a Data Warehouse

competitive advantage over those in the marketplace who can only react to events
and conditions after they have happened.

At first glance, Data Mining has the appearance of a second semester statistical
time-series class project. The professor distributes to the class a data file containing
thousands of rows of comma separated values (CSV) data. In each row, the first value
is the dependent value; all the other values are the independent values. The assign-
ment is find the independent variables and statistical algorithm that best predict the
dependent variable; remembering to include the confidence measurements.

Data Mining is similar to that assignment. An enterprise wants to be able to
predict an event or condition, i.e., what function and factors in f (x, y, z) = A? In
the best case scenario, factors x, y, and z are within the power of the enterprise to
manipulate. In that case, the enterprise can cause result A to occur by manipulating
factors x, y, and z. In the next best-case scenario, factors x, y, and z are known by
the enterprise. The enterprise can know result A is about to occur whenever factors
x, y, and z have occurred.

In the second semester statistical time-series class, the assignment was testing
the students’ ability to perform and measure statistical time-series functions on an
almost infinite set of permutations of independent and dependent variables. That
may have actually been the point, considering how difficult it was.

Statistics Concepts

Data Mining uses many of the concepts and terminology found in Statistics. This
does not mean that Data Mining is a statistical exercise. It does, however, mean
that Data Mining is an exercise that includes elements of statistics. The founda-
tional and most prevalent of these concepts and terms are explained in the follow-
ing sections.

Random Error

Slight fluctuations occur constantly in the universe. These fluctuations manifest
themselves in our daily lives. We experience these fluctuations all the time. Some-
times we’re aware of them, sometimes not. For example:

In the morning, we take varying durations of time to eat breakfast, dress, and
get out the door, for no apparent reason.
The morning commute using the same route consumes varying durations of
time, for no apparent reason.
The number of people in the elevator going to work varies from one morning
to the next, for no apparent reason.

n

n

n

AU6462.indb 218 2/7/08 9:53:57 AM

Business Intelligence Reporting  n  219

These slight fluctuations that occur everywhere and all the time were illustrated
by W. Edwards Deming.10

In Deming’s example, he held a handful of coins and tried to drop them, one at
a time, onto a single spot in the floor. Marking first the target spot on the floor and
then all the spots where the coins actually fell, Deming observed:

Most coins did not fall on the same spot.
Most coins did not fall on the target spot.
Most coins fell very close to the target spot.

Was Deming’s aim poor with the coins? No, because his results and observa-
tions can be repeated. In fact, they can only be repeated. No one is able to stand
over a spot in the floor and hit it exactly with a handful of coins. Why? The answer
is Random Error.

While Random Error is random, it is not error. Rather, Random Error is the
naturally occurring variance between a target value and an actual value. Ran-
dom Error is ubiquitous and unavoidable. Any process, therefore, that proclaims
it achieves perfect results is not measuring itself well enough to identify its own
Random Error.

Data Mining experiences Random Error. In the case of Data Mining, Random
Error is the naturally occurring variance between the data value derived by an
algorithm and the actual data value. Since Random Error occurs everywhere all the
time, including Data Mining algorithms, all Data Mining algorithms will rarely
derive the correct answer. But, a good Data Mining algorithm will consistently
derive an answer that is closest to the correct answer. Random Error, measured,
recorded, and graphed, should render a graph that looks like a bell curve, preferably
a tall, narrow, bell curve (Figure 7.3).

So, it may seem counter-intuitive, but a good Data Mining algorithm is not
the algorithm that derives the right answer, but the best answer. Why not the right
answer? The right answer also experiences the ubiquitous Random Error.

n

n

n

Zero
Error

Negative
Error

Positive
Error

Figure 7.3  Random Error.

AU6462.indb 219 2/7/08 9:53:58 AM

220  n  Building and Maintaining a Data Warehouse

Statistical Significance

So, the goal of Data Mining, therefore, is not to find an algorithm that derives the
right answer, but to find an algorithm that derives the best answer. The best answer
is described as the answer that is Statistically Significant. An algorithm is Statisti-
cally Significant when it adds the least possible Error, in addition to the unavoid-
able Random Error.

For example, the top graph in Figure 7.4 illustrates the Error generated by an
algorithm that derives expected values that are more prone to Error than Random
Error. The difference between Random Error and Actual Error is a measure of an
algorithm’s Statistical Significance. The algorithm that adds the least Error in addi-
tion to Random Error (i.e., Actual Error – Random Error) is the most Statistically
Significant algorithm.

Variables: Dependent and Independent

An algorithm uses multiple input data values to predict an output data value. The
multiple input data values are the Independent Variables. They are independent
because their data value does not rely on any other data value. The output data
value is the Dependent variable. It is dependent because its data value depends on

Zero
Error

Negative
Error

Zero
Error

Negative
Error

Positive
Error

Positive
Error

Error wider
than Random

Error

Error more
lop-sided than
Random Error

Figure 7.4  Nonrandom Error.

AU6462.indb 220 2/7/08 9:53:58 AM

Business Intelligence Reporting  n  221

the data values in the Independent Variables. An algorithm can be expected to have
multiple Independent Variables, but only one Dependent Variable.

Hypothesis

The Hypothesis of every algorithm is that the algorithm is able to accurately pre-
dict the Dependent Variable using the Independent Variables. The measured Error
between the predicted Dependent Variable and the actual Dependent Variable,
adjusted for Random Error, is the Error associated directly with the algorithm and
the measure of its Statistical Significance. The algorithm with the greatest Error is
the least Statistically Significant. But, the algorithm with the least Error is the most
Statistically Significant. An algorithm, therefore, may never derive the right answer,
but be the most Statistically Significant algorithm by which answers can be derived.

Data Mining Tools
Data Mining tools have mitigated the difficulty of performing and measuring sta-
tistical time-series functions. Generally available Data Mining tools handle all the
statistical and time-series functions as well as the confidence measurements. These
Data Mining tools are powerful software packages that enhance and accelerate the
Data Mining process. They include the statistical algorithms and functions that are
at the center of Data Mining.

Data Mining tools, like all competing software packages, can be compared to
each other. The criteria on which to compare Data Mining tools are:11

Platform: The computers and operating systems on which the Data Mining
tools will operate.
Algorithm: The library of statistical functions inside each Data Mining tool.
Data Input options: File layouts accepted by the Data Mining tool.
Model Output options: Methods by which the Data Mining tool presents
its results.
Usability: The least skill set necessary to use the Data Mining tool.
Visualization: The graphic representation of a predictive model.
Automation Methods: The power of the Data Mining tool to perform and measure
the statistical functions and the final hypothesis without human intervention.

By comparing Data Mining tools along these criteria, a BI analyst can deter-
mine which Data Mining tool best fits his or her skills and needs. Regardless of
which Data Mining tool is selected, a BI analyst must have a strong understanding
of the statistical principles and methods used by the Data Mining tool and the
business meaning of the methods and data. As always, no amount of tool can com-
pensate for a lack of knowledge.

n

n
n
n

n
n
n

AU6462.indb 221 2/7/08 9:53:59 AM

222  n  Building and Maintaining a Data Warehouse

Data Mining Activities
Data Mining is a specific activity. A BI analyst does not accidentally mine data. In
a data warehouse full of gigabytes or terabytes of data, a BI analyst cannot simply
bump into a golden nugget. Rather, a BI analyst has to intentionally search for
the correlations and associations in those gigabytes and terabytes of data. The first
step is to recognize that no Data Mining tool is going to mine these gigabytes or
terabytes of data. Data Mining tools, despite all of their statistical power, actually,
because of all their statistical power, require the data be brought to them. Data
Mining tools require data be brought to them in specific formats (hence, the simi-
larity to the CSV file in that second semester statistical time-series class).

Data Preparation is similar to preparing a house for painting. The preparation
work is usually two or three times the work of painting. Data Preparation is usually
two or three times the work of Data Mining. But, if enough attention is given to
the preparation, the final product will be much better.

Data Cleansing

The Data Mining tool is going to derive correlations between independent variables,
dependent variables, and algorithms that may or may not explain their association.
To do this, a Data Mining tool needs a clean set of data, without any “noise” data
that might cause confusion or distraction.12 This is not the data warehouse. This is
not data that will be presented to data warehouse customers. Rather, this data will
be used by the Data Mining tool and no one else. So, the constraints in the Data
Warehousing Philosophy do not apply. That being said, some of the Data Cleansing
methods are:

Missing Values: Identify missing values in the data. Fill them in with a rea-
sonable value. This mitigates the risk that an empty spot in the data that does
not normally occur may lead the Data Mining tool to believe that empty spot
always occurs.
Outliers: Identify unreasonable data values. In the data warehouse, these
outliers are retained. But, in the data presented to a Data Mining tool, these
values are modified to a more reasonable value. This mitigates the risk that an
outlier in the data that does not normally occur may lead the Data Mining
tool to believe that outlier always occurs.
Sample Bias: Preferably, feed a Data Mining tool with a universe (a whole
and complete set) of data, not just a sample. A sample of data should only
be used when the delivery of a universe of data is physically and logistically
impossible (including asking that person fours doors down and two doors
over, who can move mountains of data, to help gather the universe of data).
If, and only if, the universe of data is impossible, use a sample of data for Data
Mining. If a sample is used, check the bias of that sample. For example:

n

n

n

AU6462.indb 222 2/7/08 9:53:59 AM

Business Intelligence Reporting  n  223

A sample of customers throughout the world should not be used to inves-
tigate patterns in Georgia sales tax.
A sample of customers in Georgia should not be used to investigate time-
of-day purchasing behavior in Scandinavia.

These examples of sample bias are obvious. The sample bias in data used in Data
Mining is usually far subtler. The point is to realize the act of sampling data applies
a logic algorithm to the universe of data. The Data Mining tool is not aware of this
logic algorithm. Even if a Data Mining tool were aware of the logic algorithm used
to sample data, the Data Mining tool could not compensate for bias of that sample.

Remember, you do not want the Data Mining tool to derive unusual or biased
behavior of the enterprise. Instead, you want the Data Mining tool to derive the
normal behavior of the enterprise.

Data Inspection

A Data Mining tool perceives data as variables. A Data Mining tool understands
two kinds of variables: Independent Variables and Dependent Variables. In the
cause–effect concept of the world wherein every effect is preceded by one or more
causes, Independent Variables are the cause and a Dependent Variable is the effect.
In Data Inspection, a BI analyst reviews the meaning, content, and inconsistencies
within each Variable. The methods applied in Source System Analysis can also be
applied to Data Inspection:

Data profile
Histogram
Business Rule validation

Compound Variables

Variables that are composed of two or more discreet data elements (e.g., shoe style
and size, date and time, etc.) can be separated into their distinct data elements. The
result would be two new Variables and the removal of the compound Variable.

Lag Variables

When an Independent Variable affects subsequent periods, but not the period in
which it occurs, that Independent Variable must be displaced in time to the time
period it affects. A Lag Variable can be expressed as an Independent Variable (one
period prior). The BI analyst doesn’t know the length of the trail of effect following
a Lagging Variable. Therefore, a single Lagging Variable can become Independent

−

−

n
n
n

AU6462.indb 223 2/7/08 9:53:59 AM

224  n  Building and Maintaining a Data Warehouse

Variable (one period prior), Independent Variable (two periods prior), Independent
Variable (three periods prior), Independent Variable (× periods prior). The creation
of Lag Variables is an educated guess. Thus, it is best to guess many times and let
the Data Mining tool find the best correlation.

Numeric Variables

Numeric Variables quantify the measurements applied to enterprise entities. These
could be the number of units is a transaction, the size of a building, or the tem-
perature of molten iron ore. In each case, the Numeric Variable quantifies a single
aspect of an enterprise entity. To inspect a Numeric Variable, the mathematical
mean, mode, and median of all the measurements of a Variable will identify the
mathematical center of that Numeric Variable.13 Does that mathematical center
look correct? If the Numeric Variable represents the height of people and the math-
ematical center is 12 feet, that Numeric Variable is wrong.

A Distribution Histogram of a Numeric Variable is also helpful. The Distribu-
tion Histogram of a Numeric Variable should resemble a bell curve, centered on the
mathematical center of the Numeric Variable. If it is not a bell curve, or if it is not
centered on the mathematical center of the Numeric Variable, then the Numeric
Variable requires further investigation. Either, the Numeric Variable means some-
thing other than was originally represented or is just plain wrong. By juxtaposing a
Distribution Histogram over the mathematical center of a Numeric Variable, a BI
analyst is able to derive some level of confidence in that Numeric Variable.

Categorical Variables

Categorical Variables qualify enterprise entities into groups by directly associating
one of a set of mutually exclusive attributes to an entity. For example:

Blue: From the set Red, White, and Blue
Yes: From the set Yes and No
Upper Midwest: From the set Northeast, Southeast, Upper Midwest, Lower
Midwest, Northwest, and Southwest
Female: From the set Male and Female

A BI analyst can measure the distribution of Categorical Variables. That distri-
bution compared to the expectations of the Variable provides some level of confi-
dence in it.

n

n

n

n

AU6462.indb 224 2/7/08 9:53:59 AM

Business Intelligence Reporting  n  225

Hypothesis

Inherently, the set of Independent Variables is a hypothesis within themselves. That
inherent hypothesis is that these Independent Variables have some sort of connec-
tion to the Dependent Variable. Beyond that ambiguous hypothesis, Exploratory
Analysis is a search for an explanation as to how (not necessarily why) some subset
of these Independent Variables relates to, or associates with, the Dependent Vari-
able. The relation, or association, derived from Exploratory Analysis is an algo-
rithm. For example:

Growth in sales is inversely proportional to changes in price.
Increases in manufacturing throughput are directly proportional to certifica-
tion levels.

These algorithms are also hypotheses. Exploratory Analysis uses the input data
to discover the algorithm (i.e., hypothesis).

Confirmatory Analysis begins with the hypothesis. In Confirmatory Analysis,
the BI analyst tries to predict the Dependent Variable by using the Independent Vari-
ables and the hypothesized algorithm. The variance between the predicted value and
the actual value is a measurement of the confidence in the hypothesized algorithm.

The goal is important. The goal of Data Mining is the achievement of a com-
petitive advantage. Inside the data is a key by which the enterprise can identify
approaching opportunities and threats. That key, finding it, validating it, and using
it to the advantage of the enterprise is important, and the reason for Data Mining.

Data Mining Algorithms

Data Mining tools offer many different algorithms because Data Mining is not a
one-size-fits-all methodology. A BI analyst must come to the Data Mining exercise
with a knowledge of the data and a knowledge of the algorithms. Data Mining
does not work by just throwing algorithms at data and then waiting to see what
works. The best-fit algorithm will not work to some degree. Therefore, a BI analyst
should begin the Data Mining exercise with an understanding of the independent
variables, dependent variable, and the available algorithms. From that perspective,
a BI analyst can begin to select an algorithm, or set of algorithms, that might be
able to predict the dependent variable with sufficient confidence.

Five of the myriad Data Mining algorithms are discussed in the following sec-
tions. The purpose of these sections is not to disseminate all possible knowledge of
these algorithms, but rather, the purpose is to provide a sense of what algorithms
are, how they work, and how a BI analyst works the algorithms.

n

n

AU6462.indb 225 2/7/08 9:54:00 AM

226  n  Building and Maintaining a Data Warehouse

Neural Network

The Neural Network algorithm is based on the processes of cognitive learning in the
neurological infrastructure of the human brain (Figure 7.5).14 The Neural Network
begins when a BI analyst defines a set of neurons (hence, Neural), otherwise known
as nodes. These nodes are lined up in multiple rows, or layers. Within each node is
a function. That function will use as input the data values that comes into the node.
The output is the result of the function having been applied to the input data.

Nodes are connected by links. Links serve two purposes. First, they pass data
values from:

An input to a node
A node to another node
A node to an output

Each input is linked to all nodes in the first layer. All nodes in the first layer are
linked to all nodes in the second layer. All nodes in the subsequent layers are linked
to all nodes in the next layer. Finally, all nodes in the last layer are connected to the
output. The result looks like a Cartesian join from input to nodes, from nodes to
nodes, and from nodes to output.

The second purpose of links is that they apply a weight to the data values that
pass through them. This is how the Neural Network “learns.” By iteratively apply-
ing varying weights to the data values as they pass through, the Neural Network is
able to adjust its decision-making process.

This is very similar to priorities and their application to decision making by
humans. For example:

n

n

n

Figure 7.5  Neural Network.

AU6462.indb 226 2/7/08 9:54:00 AM

Business Intelligence Reporting  n  227

Node 1: I want to play flag football.
Node 2: I just stepped on a nail. It is sticking up through my foot.
Outcome: Zero weight is applied to the data value from Node 1. Node 2
receives 100 percent weight. The decision is: Go to the doctor.

In this scenario, had the value from Node 2 been: “I have a cramp in my leg,”
then Node 1 would have received some weight. Interestingly, the Neural Network
would require iterations of training to learn the correct weight to apply.

There is no guarantee a Neural Network will be able to predict the dependent
variable. After several iterations of learning (i.e., adjusting the weights applied by
the links), a Neural Network may be no closer to predicting the dependent variable
with any level of confidence. In these situations, a BI analyst can throw away that
set of neurons and links and start over. This is perfectly acceptable, albeit annoying.
A BI analyst can start over by creating a whole new set of neurons with new func-
tions, lined up in new rows, and connected by new links.

Decision Tree

A Decision Tree is a stack of binary decision boxes (Figure 7.6). Within each box
is a categorical question, which separates the input values based on their answers.
For example:

Are you greater than five feet tall?
Yes
No

Are you left-handed?
Yes
No

What is your annual salary?

< 50,000
> 50,000

Each decision box yields two outputs. These outputs either lead to another deci-
sion box or a termination point. When the answer to a decision box is statistically
significant, the set of independent variables proceeds to the next decision box. When
the answer to a decision box is statistically insignificant, the set of independent
variables goes immediately to a termination point. Based on their answers, a set of
independent variables will either pass all the way to the bottom of the Decision Tree
or cause that set of independent variables to terminate the Decision Tree.

n
n
n

n
−
−

n
−
−

n

−
−

AU6462.indb 227 2/7/08 9:54:00 AM

228  n  Building and Maintaining a Data Warehouse

A Decision Tree also has no guarantee of predicting the dependent variable. If
all rows of independent variables terminate the Decision Tree, then none of them
will yield a prediction for the dependent variable. A BI analyst can redefine, recre-
ate, and restructure the Decision Tree many times before finding a permutation
that predicts the dependent variable with an acceptable level of confidence.

CHAID

CHAID (Chi-squared automatic interaction detector) is also a decision tree, a non-
binary decision tree.15 That means every decision box can simultaneously output
multiple (i.e., more than two) branches (Figure 7.7). A CHAID tree applies one
independent variable at a time. Each independent variable is treated categorically.
Numeric independent variables are banded into categories so the CHAID statisti-
cal test can treat them categorically. The categories in each layer of CHAID have an

Input

Output

Question
#1 TerminationInsignificant

Question
#2 TerminationInsignificant

Question
#3 TerminationInsignificant

Significant

Significant

Significant

Figure 7.6  Decision Tree.

AU6462.indb 228 2/7/08 9:54:01 AM

Business Intelligence Reporting  n  229

equal probability of occurring. If they did not have an equal opportunity of occur-
ring, the CHAID tree would be self-prophetic and useless because the outcome
would be built into the tree. For example:

Layer 1 Independent Variable is Profession. The categories are
Government employee
Educational employee
Student
Private Sector

Layer 2 Independent Variable is Income level. The categories are
0 to 10,000
10,001 to 50,000
50,001 to 250,000
> 250,001

n

−
−
−
−

n

−
−
−
−

Input

Output

Question
#1

TerminationTerminationTermination Termination

Question
#2

TerminationTerminationTermination Termination

Question
#3

TerminationTerminationTermination Termination

Figure 7.7  Chi-squared automatic interaction detector (CHAID).

AU6462.indb 229 2/7/08 9:54:02 AM

230  n  Building and Maintaining a Data Warehouse

Layer 3 Independent Variable is Housing. The categories are
Homeowner
Condominium owner
Renter

An input record is tested using the Chi-squared method to determine the Layer
1 category for which it is most significant. If the Chi-squared test directed the input
record to a Layer 1 category, which is not exploded into Layer 2, then that record
terminates the CHAID tree. One category in Layer 1, the statistically most signifi-
cant and, therefore, least independent category, is exploded into the categories of
the next independent variable in Layer 2. This process continues until the record
either terminates or exhausts all independent variables.16

CHAID is a nonbinary decision tree. Input records are Chi-squared tested to
determine down which branch in the tree they will travel. If the input record goes
down an insignificant branch in the tree, that record is terminated. If the input
record continues to go down a significant branch, that record will eventually reach
a prediction of the dependent variable.

Nearest Neighbor

The Nearest Neighbor algorithm is an interesting application of the old saying
“Birds of a feather flock together.” The idea behind Nearest Neighbor (Figure 7.8)
is that if I’m trying to predict the dependent variable for a single row, I’ll go find
another row that looks just like it, and use the dependent variable from that row.17
The independent variables in the other row, by some unknown means, lead to the
dependent variable in that row. By correlating the two rows based on their similari-
ties, the same unknown means that yielded the dependent variable in the other row
will also yield the same, or at least extremely similar, dependent variable in the row
in question.

n

−
−
−

f(a, b, c) Output = m

f(d, e, f) Output = n

f(g, h, i) Output = o

f(j, k, l) Output = p

f(g, h, i) Output = ??

Figure 7.8  Nearest Neighbor.

AU6462.indb 230 2/7/08 9:54:02 AM

Business Intelligence Reporting  n  231

This method is invalidated when the independent variables have no direct con-
nection or association with the dependent variable. For example:

Height, Weight, and Annual Salary → Left-Handed
Left-Handed, Favorite Movie, and Mother’s Maiden Name → Hair Color

But then, if the dependent and independent variables were so disconnected
from each other, the whole Data Mining exercise was doomed to not find a connec-
tion, regardless of the algorithm.

If, however, a direct and strong connection does exist between the independent
and dependent variables, Nearest Neighbor may be able to predict the dependent
variable. Nearest Neighbor does not make any attempt to explain why the depen-
dent variable is connected to the independent variables. Rather, Nearest Neighbor
simply borrows the dependent variable from another record to predict the depen-
dent variable for the record in question.

Rule Induction

The Rule Induction method is basically Data Mining by brute force. All the input
records are given to a Rule Induction engine (Table 7.3). The Rule Induction engine
will identify patterns by which sets, subsets, and permutations of independent variables
have any positive correlation with the dependent variable. These correlated patterns
are the Rules.18 A Rule Induction engine will identify many Rules, some useful and
some useless. Each Rule is accompanied by two measures: Coverage and Accuracy.

Coverage measures the portion of the input records for which the Rule applies.
Accuracy measures the strength of the prediction provided by the Rule. A Rule may
have an accuracy of 95 percent for 0.01 percent of the input records, or a Rule may
have an accuracy of 75 percent for 95 percent of the input records. Coverage and
Accuracy, therefore, are the measures by which a BI analyst can determine whether
or not a Rule should be used by the enterprise to predict the dependent variable.

Genetic Algorithm

A Genetic Algorithm applies the concept of mutation to Rules or Patterns, which
have already been identified (Figure 7.9). The focus of Genetic Algorithm is the
Rules, not the input data. Input data is used to test mutated Rules. The output of
a Genetic Algorithm is not a predicted dependent variable. Rather, the output of a
Genetic Algorithm is a Rule that can predict a dependent variable.

In one form of Genetic Algorithm, two Rules are combined (i.e., crossbred),
yielding a new Rule that shares characteristics of its parent Rules. The new rule is
then tested for its ability to predict the dependent variable.19

n
n

AU6462.indb 231 2/7/08 9:54:03 AM

232  n  Building and Maintaining a Data Warehouse
Ta

bl
e 7

.
3 

R
ul

e
In

du
ct

io
n

In
d

ep
en

d
en

t
Va

ri
ab

le
 #

1
In

d
ep

en
d

en
t

Va
ri

ab
le

 #
2

In
d

ep
en

d
en

t
Va

ri
ab

le
 #

3
In

d
ep

en
d

en
t

Va
ri

ab
le

 #
4

In
d

ep
en

d
en

t
Va

ri
ab

le
 #

5
In

d
ep

en
d

en
t

Va
ri

ab
le

 #
6

D
ep

en
d

en
t 

Va
ri

ab
le

0.
43

63
78

32
6

2.
1

0.
30

17
12

43
2

28
0.

43
17

59
14

1
14

0.
48

62
87

57
7

0.
19

32
67

36
9

0.
5

0.
41

21
54

94
32

0.
24

35
13

29
4

59
0.

76
06

52
42

1

0.
13

12
11

43
6

0.
1

0.
38

78
98

01
3

0
0.

21
95

40
63

9
7

0.
62

04
90

49
6

0.
75

45
26

08
3

2.
7

0.
06

75
56

22
5

36
0.

21
13

06
93

8
15

3
0.

53
84

06
39

7

0.
21

15
95

86
6

1.
9

0.
10

01
85

32
1

3
0.

54
12

10
06

3
18

1
0.

76
29

89
83

8

0.
31

58
25

22
9

1.
3

0.
18

94
70

41
1

5
0.

14
91

41
51

9
10

1
0.

67
77

18
15

8

0.
91

43
41

87
6

2.
8

0.
93

91
35

93
9

21
0.

97
08

47
97

43
0

0.
11

25
77

91
3

0.
94

81
86

86
1

2.
2

0.
19

83
47

5
29

0.
76

37
62

17
7

37
7

0.
56

19
12

73
1

0.
26

57
90

17
8

2.
3

0.
56

25
33

07
7

33
0.

35
83

74
77

28
2

0.
21

18
17

04
7

0.
65

47
56

93
4

2.
4

0.
01

40
14

48
5

37
0.

46
11

04
25

41
1

0.
81

33
01

51
9

0.
08

02
83

59
4

0.
2

0.
53

08
73

72
25

0.
04

55
11

72
4

35
2

0.
47

94
50

00
1

0.
89

29
33

65
2.

8
0.

49
80

41
27

3
36

0.
93

08
39

62
8

38
0

0.
71

79
97

9

0.
52

65
38

62
6

1.
1

0.
56

53
57

12
1

28
0.

93
65

52
18

3
35

3
0.

96
00

82
90

6

0.
55

20
62

59
6

1.
2

0.
60

30
52

89
4

4
0.

06
74

25
63

6
42

0.
53

85
15

97
5

0.
78

74
15

44
2

2.
4

0.
42

39
17

66
4

8
0.

55
37

29
29

7
28

1
0.

20
56

75
16

7

0.
54

48
33

74
5

0.
2

0.
77

89
87

41
3

3
0.

92
18

77
81

9
40

5
0.

12
42

63
15

2

0.
97

43
67

87
7

1.
1

0.
03

02
76

99
9

13
0.

21
31

02
34

7
27

0
0.

83
36

17
43

0.
11

72
15

38
1

2.
6

0.
69

57
66

06
9

17
0.

46
00

62
28

6
76

0.
75

91
78

27

0.
25

69
06

54
2

0.
1

0.
52

19
72

83
2

13
0.

97
69

99
19

1
1

0.
35

46
09

34
3

AU6462.indb 232 2/7/08 9:54:03 AM

Business Intelligence Reporting  n  233

In another form of Genetic Algorithm, two Rules are juxtaposed against each
other. The weaker Rule is discarded and the stronger Rule is allowed to continue
with a slight random modification. The Rule resulting from this method is then
tested for its ability to predict the dependent variable.20

Rule Validation and Testing

Every Rule, regardless of the algorithm that generated it, must be validated and
tested using a significantly large set of data. That set of data cannot be the set of
data that was used to derive the Rule. Tempting as it may be, a Rule should not
be accepted based on its ability to predict one set of data. Without validation in
another set of data, the risk that the Rule may not apply to data “in the field,” has
not been mitigated.

Overfitting

If something is too good to be true, it probably is. A pitfall common to all Data
Mining efforts is the desire to find the perfect Rule. No Rule is perfect. If a Rule
predicts 100 percent of the dependent variables with 100 percent accuracy, that
Rule is useless. Why? Because a Rule that can predict 100 percent of the dependent
variables with 100 percent accuracy in a set of data can predict dependent variables
only in that set of data. The natural variations and randomness that exist in the
world will not allow a Rule to predict 100 percent of the dependent variables with
100 percent accuracy. Therefore, when a Rule begins to compensate for natural
randomness, the Rule is overfitting the test data and will not be able to predict
dependent variables in real data.

Rule A

Rule B
Mutation Rule A’B’

Rule A

Rule B
Mutation Rule A’

Figure 7.9  Genetic Algorithm.

AU6462.indb 233 2/7/08 9:54:04 AM

234  n  Building and Maintaining a Data Warehouse

Closing Remarks
Business Intelligence (BI) Reporting has come a long way from the carbon-printed
reports on green bar paper that were distributed on employees’ desks during the
night. The product offerings of static, dynamic, push, pull, ad hoc, and OLAP BI
applications are varied and plentiful. An enterprise can now generate and distribute
its data and information from a data warehouse, ODS, or operational information
system. Data Mining is still maturing and available for those on the leading edge.
With these technologies and methods available, an enterprise only need ask, “What
do I want to see?” and “How do I want to see it?”

References
	 1.	 Dorian Pyle, Business Modeling and Data Mining (Amsterdam, Boston: Morgan

Kaufmann Publishers, 2003).
	 2.	 Louis Agosta, The Essential Guide to Data Warehousing (Upper Saddle River, NJ:

Prentice Hall PTR, 2000).
	 3,	 Ken Bisconti, Integrating BI tools into the enterprise portal, DM Review (2005).
	 4.	 Philip Russom, TDWI: BI search and text analytics: Best practices in search, DM

Review (2007).
	 5.	 Wayne W. Eckerson, The real value of BI search,” TDWI (2007).
	 6.	 Brandon Lucado, Aligning your BI Environment with SOX internal controls,” DM

Review (2007).
	 7.	 Kamran Parsaye, Datamines for data warehouses, DM Review (1999).
	 8.	 Information Discovery, Inc. A characterization of data mining technologies and pro-

cesses by Information Discovery, Inc., DM Review (2004).
	 9.	 William H. Inmon, R. H. Terdeman, and Claudia Imhoff, Exploration Warehousing:

Turning Business Information into Business Opportunity (New York: John Wiley &
Sons, 2000).

	 10.	 W. Edwards Deming, Out of the Crisis (Cambridge, MA: Massachusetts Institute of
Technology Center for Advanced Engineering Study, 1986).

	 11.	 John F. Elder and Dean W. Abbott, A comparison of leading data mining tools, Fourth
International Conference on Knowledge Discovery and Data Mining, New York, August
1998, http://www.datamininglab.com/pubs/kdd98_elder_abbott_nopics_bw.pdf.

	 12.	 Pyle, Business Modeling and Data Mining.
	 13.	 Ibid.
	 14.	 StatSoft, Inc., Data mining techniques, http://www.statsoft.com/textbook/stdatmin.

html.
	 15.	 Janine Okell, Neural networks versus CHAID, DM Review (1999).
	 16.	 StatSoft, Inc., CHAID analysis, StatSoft, Inc., http://www.statsoft.com/textbook/

stchaid.html.

AU6462.indb 234 2/7/08 9:54:04 AM

Business Intelligence Reporting  n  235

	 17.	 Alex Berson and Stephen J. Smith, Data Warehousing, Data Mining, and OLAP,
McGraw-Hill Series on Data Warehousing and Data Management (New York:
McGraw-Hill, 1997).

	 18.	 Ibid.
	 19.	 Ibid.
	 20.	 Information Discovery, Inc., A characterization of data mining technologies and pro-

cesses by Information Discovery, Inc., DM Review, 2004.

AU6462.indb 235 2/7/08 9:54:04 AM

AU6462.indb 236 2/7/08 9:54:04 AM

237

Chapter 8

Data Quality

Introduction
The quality of the data in a data warehouse determines the reputation and value
of that data warehouse. If customers perceive the data in a data warehouse to be
misleading or just plain wrong, they won’t use the data warehouse. If customers
can find or create a superior source of data elsewhere, they will abandon a data
warehouse altogether. Data Quality, the perceived reputation and value, of a data
warehouse, therefore, is vital to the success of a data warehouse. Unfortunately, per-
ceived reputation and perceived value are subjective qualifications and cannot be
measured. Quantitative measurement, however, is the key to Data Quality (Figure
8.1). To understand how to apply quantitative measurement to data, we turn to the
statistician who defined and quantified quality during the twentieth century—W.
Edwards Deming.

Deming’s Definition of Quality
Deming’s definition of Quality begins with a distinction between Features and
Quality.1 Features are the buzzers and whistles included with a product that do not
specifically address the core purpose of a product. Typically, people see Features
first. For example, the following are features of a product.

Leather seats in a carn

AU6462.indb 237 2/7/08 9:54:04 AM

238  n  Building and Maintaining a Data Warehouse

So
ur

ce
 D

at
a

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts

M
et

ad
at

a
Ap

pl
ic

at
io

n(
s)

D
at

a Q
ua

lit
y

D
at

ab
as

e
M

et
ad

at
a

D
at

ab
as

e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

RD
BM

S

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

O
LA

P

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

M

et
ad

at
a

Re
po

si
to

ry

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

D
at

ab
as

e
D

es
ig

n

So
ur

ce
 D

at
a

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts
M

et
ad

at
a

Ap
pl

ic
at

io
n(

s)

D
at

a Q
ua

lit
y

D
at

ab
as

e
M

et
ad

at
a

D
at

ab
as

e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

RD
BM

S

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

O
LA

P

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

M

et
ad

at
a

Re
po

si
to

ry

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

D
at

ab
as

e
D

es
ig

n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts

D
at

a Q
ua

lit
y

D
at

ab
as

e

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

Fi
gu

re
 8

.1 

D
at

a
Q

ua
lit

y.

AU6462.indb 238 2/7/08 9:54:06 AM

Data Quality  n  239

Graphical user interface (GUI) point-and-click buttons and scroll bars in a
spreadsheet
Mother of Pearl inlays in a guitar

Deming’s point is not that Features have no value. Of course, the leather seats,
GUI screen, and Mother of Pearl inlays all have value, but, they are features. They
do not make the car move, make a spreadsheet calculate, or make the guitar play.
Their value is subjective and, therefore, impossible to measure.

So, what is Quality? Deming’s answer is based on expectations and whether
or not those expectations are achieved. Deming defined Quality as the success or
failure to achieve a customer’s expectations.2

Quality in a car
When I start the car, the car starts.
When I drive the car, the car moves.
When I stop the car, the car stops.
The speedometer indicates the speed of the car accurately.
The odometer indicates the mileage of the car accurately.

Quality in a spreadsheet
When I turn on the spreadsheet, the spreadsheet starts.
When I turn off the spreadsheet, the spreadsheet stops.
When I sort data in a spreadsheet, the spreadsheet sorts correctly.
When I perform arithmetic calculations in a spreadsheet, the spreadsheet
calculates the numbers correctly.

Quality in a guitar
When I play a G chord on a guitar, the guitar sounds a G chord.
When I tune a guitar, the guitar stays in tune.
When I stop playing a guitar, the guitar stops making sounds.
When I play the guitar tomorrow, the guitar sounds as it did today.

These are the expectations of customers as they consume a car, spreadsheet, and
guitar. Deming would measure the quality of a car, spreadsheet, and guitar against
expectations such as these. For each of these products, their quality is their ability
to meet these expectations.

Note that quality is not their ability to exceed these expectations. In the mea-
surement of quality, the idea of exceeding an expectation is non sequitur. For
instance, if the expectation of a manufacturing process is that a bolt will be two
inches long, a bolt cannot exceed this expectation. A two inch bolt cannot be more
than two inches. A car cannot start more than start. A spreadsheet cannot calculate
2 × 3 any better than the product of 2 × 3, which is 6. A guitar cannot play a G
chord more than a G chord. Likewise, in a data warehouse, a complete dataset can-
not be more complete than complete. And, the arrival of data in a data warehouse

n

n

n
−
−
−
−
−

n
−
−
−
−

n
−
−
−
−

AU6462.indb 239 2/7/08 9:54:06 AM

240  n  Building and Maintaining a Data Warehouse

cannot be any more on time than on time. In all of these cases, Quality is the suc-
cess or failure to meet customer expectations.

Data Quality Service Level Agreement (SLA)
In a data warehouse, Quality is the success or failure to deliver data that meets the
expectations of its customers. Back in the bolt manufacturing plant, the quality
of bolts can be measured with a two-inch measuring tape. Bolts are compared to
the measuring tape. If a series of bolts measure to consistently be between 1.995
and 2.005 inches, then the bolt manufacturing process is deemed to be working
correctly. Quality in a data warehouse also requires measurement. Customer expec-
tations of a data warehouse, therefore, must be expressed in well-defined and quan-
tifiable terms. For example:

Completeness
Not Quantifiable: Most of the warehouses should be present in the data
warehouse.
Quantifiable: 95 percent of the warehouses should be present in the data
warehouse.

Latency
Not Quantifiable: The warehouse data should be in before the staff
arrives.
Quantifiable: The warehouse data should be in by 6:30 a.m.

Accuracy
Not Quantifiable: The warehouse data should equal what actually hap-
pens in the warehouse.
Quantifiable: The total inventory movement of each product in a ware-
house reported by the data warehouse should be within 2 percent (+/−)
the total movement of each product as reported by the warehouse end-
of-day process.

Reasonable
Not Quantifiable: Total inventory movement in a warehouse should be
similar to the average inventory movement.
Quantifiable: Total inventory movement in a warehouse should be within
5 percent (+/−) the seasonal average.

You cannot use a measuring tape, scale, or measuring cup to quantitatively
measure data and, therefore, Data Quality. But, in a dataset with millions of rows,
you can measure the frequency with which binary conditions occur and you can
validate data warehouse data against other information systems with similar data.
The first step toward achieving a quality data warehouse is the creation of Quality

n
−

−

n
−

−
n

−

−

n
−

−

AU6462.indb 240 2/7/08 9:54:06 AM

Data Quality  n  241

expectations. Those expectations are captured and documented in a Data Quality
Service Level Agreement (SLA).

A Data Quality SLA is a repository of the quantifiable expectations of data
warehouse customers. A Data Quality SLA is also an agreement and includes these
provisions:

The expectations in the Data Quality SLA are defined precisely and clearly.
The expectations in the Data Quality SLA are quantitative and can be
measured.
The data warehouse team will perform the measurements in each
expectation.
The data warehouse team will use the results of the Data Quality measure-
ments to improve the data warehouse.
The data warehouse team will publish the results of Data Quality
measurements.

These provisions of a Data Quality SLA provide a set of expectations against
which a data warehouse can be measured. Data Quality measurements can be per-
formed, the results documented, published, and compared to previous and subse-
quent periods.

Deming’s Statistical Process Control
In manufacturing, Deming defined Quality as the consistency with which manu-
factured product matches expectations.3 If a bolt is expected to be one-half inch
wide by two inches long, then that bolt and every other bolt from that manufactur-
ing process should be one-half inch wide by two inches long. By measuring bolts
as they come from the manufacturing process, Deming asserted the manufacturer
can know whether or not the manufacturing process is in control or out of control.
Deming did not propose measuring bolts to find good bolts, he instead proposed
measuring bolts as a means of measuring the process. The manufacturing process
was the focus of Deming’s attention, not the bolts. If the manufacturing process is
in control, it will generate bolts that are one-half inch wide by two inches long all
day long.

A data warehouse has the same quality issues as a bolt manufacturer. A data
warehouse process that is in control will generate data that meets expectations all
day long. A data warehouse process that is not in control will generate nonsense
data. The processes of the data warehouse are the focus of Deming’s Process Con-
trol method, which measures the process by measuring the product—by measuring
its data.4

Deming’s focus on process rather than product ran counter to the qual-
ity enforcement methods of his contemporaries. Manufacturers had previously

n
n

n

n

n

AU6462.indb 241 2/7/08 9:54:07 AM

242  n  Building and Maintaining a Data Warehouse

enforced quality by inspecting completed product as it left the assembly line.
Defective product was returned to the assembly line for rework. Deming’s focus
on the individual processes removed the need for final inspection and the need for
rework. By assuring each manufacturing process is in control, Deming asserted
the final product, which is the cumulative sum of the processes that created it, will
meet the customers’ expectations.

If any manufacturing process is found to be out of control, that individual
process is fixed. The problem could be a worn-down machine part, a new assem-
bly line worker needing training, or a parts bin labeled incorrectly. The point is
that the individual out-of-control process is identified before it is allowed to affect
the finished product. The manufacturing process is stopped. Once the process is
repaired, the manufacturing process resumes. The work interruption costs less than
the rework that would happen had the process not been stopped.

Extract, Transform, and Load (ETL) processes have the same manufacturing
properties. By measuring each individual ETL process, the data warehouse team
can monitor the health of the ETL application. If a single process is out of control,
the ETL process can stop, allowing time to adjust the errant ETL process. The time
and effort spent to adjust an out-of-control ETL process costs less than the rework
that would happen had the process not been stopped. When all ETL processes are
back in control, the data in the data warehouse will meet the expectations of the
customer.5

Process Measurement
The expectations of the source system are in the Source System Analysis. Yet, once
again, this document is the map and lexicon of the source system. All the expec-
tations of the data in the data warehouse come directly from the Source System
Analysis. If the source system behaves contrary to the Source System Analysis, then
the processes within the source system are probably out of control and need to be
adjusted.

The expectations of the ETL applications are listed in the Target System Analy-
sis. The ETL applications provide the behavior of the data in a data warehouse.
Without the ETL to modify and move its data, a data warehouse would be static
and have no behavior. If the data passing through an ETL application behaves
contrary to the expectations identified in the Target System Analysis, then the
processes within the ETL application are probably out of control, and need to be
adjusted.

Listed below are the categories of expectations held by the data warehouse
designer and data warehouse customers. Each of these focuses on a data warehouse
process. By measuring the individual processes, a data warehouse team is able to
identify those processes that are out of control and need help and those that are in
control.

AU6462.indb 242 2/7/08 9:54:07 AM

Data Quality  n  243

Data Model: The Target System Analysis identified the data and data behav-
ior expected to occur in a data warehouse. These data behaviors can be mea-
sured by identifying instances of data in the data warehouse that contradict
the expectations identified in the Target System Analysis.

Relational Integrity: The primary key/foreign key relationships between
tables in the data warehouse require a primary key in the parent table for
every foreign key in a child table. Instances of orphan foreign keys with-
out a primary key in a parent table can be recorded and counted as indi-
vidual instances of failure to meet the expectations of the data model.
Domain: The universe of data values expected in a data element can be
compared to the actual data values. Instances of actual data values that are
not in the domain can be recorded and counted as individual instances of
failure to meet the expectations of the data model.
Range: The boundaries within which all data values of a data element
are expected to exist. Instances of actual data values outside the expected
boundary can be recorded and counted as individual instances of failure
to meet the expectations of the data model.

ETL (Extract): The Data Mapping identified the source data that is expected
to provide the data needed by the data warehouse.

Relational Integrity: The primary key/foreign key relationships between
tables in the source system require a primary key in the parent table for
every foreign key in a child table. Instances of orphan foreign keys with-
out a primary key in a parent table can be recorded and counted as indi-
vidual instances of failure to meet the expectations of the source system.
Domain: The universe of data values expected in a data element can be
compared to the actual data values. Instances of actual data values that are
not in the domain can be recorded and counted as individual instances of
failure to meet the expectations of the source system.
Range: The boundaries within which all data values of a data element
are expected to exist. Instances of actual data values outside the expected
boundary can be recorded and counted as individual instances of failure
to meet the expectations of the source system.
Completeness: The presence of the entire population of enterprise entities
(e.g., manufacturing plants, warehouses, employees, etc.) in a set of data.
Instances of gaps in the entities present in a set of data can be recorded
and counted as individual instances of failure to meet the expectations of
the source system.
Latency: Data from a source system should be available to the data ware-
house within a time frame that allows the ETL application to process
and load that data. Instances of unavailable source system data can be
recorded and counted as individual instances of failure to meet the expec-
tations of the source system.

n

−

−

−

n

−

−

−

−

−

AU6462.indb 243 2/7/08 9:54:07 AM

244  n  Building and Maintaining a Data Warehouse

Business Rules: Data from a source system exists within the context of
that source system. The business rules of the source system govern the
data from the source system. Typically, these business rules govern con-
tent of data in three ways.

Intrarecord Business Rules: Column A + Column B = Column C.
The business rule exists entirely within each individual record.
Intradataset Business Rules: Row 1.Column A + Row 2.Column A =
Row 3.Column B. The business rule spans across records within a set
of data, but still remains within the set of data.
Cross-Dataset Business Rules: File 1.Column A = Table 2.Column B.
The business rule spans across sets of data within a source system.

Instances of source system data that violates the source system business
rules can be recorded and counted as individual instances of failure to
meet the expectations of the source system.

ETL (Transform): The Data Mapping identified the transformations that
are expected to synthesize raw data elements into information. These trans-
formations can inadvertently create data values that do not conform to the
business rules of the data in the data warehouse. Transformed data values can
violate the business rules of a data warehouse six ways.

Relational Integrity: The Transform process creates orphan foreign keys
that do not relate to a primary key.
Domain: The Transform process creates data values that are not in the
expected set of output data values.
Range: The Transform process creates data values that are outside the
expected boundary of data values.
Completeness: The Transform process creates a set of data with gaps in
the data.
Latency: The Transform process consumes so much time creating the
data that the data arrives too late.
Business Rules:

Intrarecord Business Rules: Column A + Column B = Column C.
The business rule exists entirely within each individual record.
Intradataset Business Rules: Row 1.Column A + Row 2.Column A =
Row 3.Column B. The business rule spans across records within a set
of data, but still remains within the set of data.
Cross-Dataset Business Rules: File 1.Column A = File 2.Column B.
The business rule spans across sets of data within an iteration of trans-
formed data.

Instances of transformed data that violate the data warehouse business
rules can be recorded and counted as individual instances of failure to
meet the expectations of the ETL application.

−

n

n

n

−

n

−

−

−

−

−

−
n

n

n

−

AU6462.indb 244 2/7/08 9:54:07 AM

Data Quality  n  245

Business Intelligence (BI) Reporting: The reporting tools provide the data
that the customers expect to see. The data warehouse team cannot program-
matically discern whether or not the data warehouse customers are seeing the
data they want to see. The only way to know if data warehouse customers
are seeing the data they want to see is to ask them. Anecdotal information
is less objective than quantitative measurement. Instances of data warehouse
customers receiving, and not receiving, the information they expect can
still be recorded and counted as individual instances of the BI Reporting
application.
Customer Education: Data warehouse customers must understand the
meaning of the data in the data warehouse. This understanding sets the
customer expectations of the data warehouse. Members of the business in
the enterprise will come and go. Some will move from one business area to
another business area. Each of these changes is another opportunity for a
person to come into contact with the data warehouse for the first time. These
are the people who will need to learn about what is, and is not, in the data
warehouse. Although Customer Education cannot be counted as a success or
failure of a data warehouse, Customer Education does contribute to the suc-
cess of a data warehouse.
Data Warehouse Education: The data warehouse team must understand
the meaning of the data in the business from the perspective of the customer.
This understanding sets the customer expectations of the data warehouse
team. The business side of the enterprise is always changing. The business
changes in response to competitive, marketplace, and regulatory changes
in the world that surround the enterprise. The data warehouse team should
maintain visibility and awareness of these changes in the business. Some of
these changes will require the data warehouse change to keep up with the
business. Although Data Warehouse Education cannot be counted as a suc-
cess or failure of a data warehouse, it does contribute to the success of a data
warehouse.
Return on Investment (ROI): Stability is a great asset in a data warehouse.
A data warehouse that cannot absorb the intermittent changes in the business
without significant rework or repair will be perceived as more of a cost com-
ponent of the enterprise, rather than as an investment. By designing a data
warehouse with sufficient flexibility, the ability to absorb intermittent changes
in the business will increase the perceived ROI of the data warehouse.

The Data Model, ETL (Extract), and ETL (Transform) expectations should be
measured programmatically. Data volumes and rapid throughput render manual
inspection infeasible. Deming’s third point (cease dependence on inspection) advo-
cates a departure from manual inspection. So, rather than inspect data as it passes
through the ETL application, or after it has arrived in the data warehouse, the
data should be tested programmatically by processes that measure the data against

n

n

n

n

AU6462.indb 245 2/7/08 9:54:08 AM

246  n  Building and Maintaining a Data Warehouse

business rules.6 By linking measurement processes with data warehouse processes,
the measurement processes will not be inadvertently forgotten.

ETL (Extract) business rules are used to measure the data extracted from the
source system and, therefore, occur immediately after data has been extracted from
the source system. ETL (Transform) business rules are used to measure the data
derived by the ETL application and, therefore, occur immediately after data has
been derived in the ETL application. The Data Model business rules are used to
measure the data in the data warehouse and, therefore, occur after data has been
loaded into the data warehouse.

Methods and Strategies
The Source System Analysis identifies the business rules that should reflect in the
data received from the source system. The Target System Analysis identifies the
business rules that should reflect in the data loaded into the data warehouse. Process
measurement provides a means by which data is measured against business rules,
identifying data that does not conform to its expectations. That’s all well and good.
But, what happens when you find one? How can a data warehouse respond to data
that does not conform to its expectations?

The following methods and strategies are options, not mandates or best prac-
tices. Rather, the options listed below should be chosen based on the corporate
management and culture surrounding the data warehouse. Data Quality methods
that work well in one setting may fail in another setting. So, there is no one-size-
fits-all in Data Quality. Rather, involve members of the business to gain their feed-
back, approval, and buy-in.

All the methods and strategies listed below include a reporting function. Every
Data Quality methodology is a communication methodology. Errant data will
never be addressed if no one knows about it. The business needs to know that the
data warehouse team is aware of the errant data. It’s one of those human psychology
phenomena. By announcing the existence and presence of errant data, members
of the business will perceive the quality of data in a data warehouse to be at least
somewhat under control. But, if the existence and presence of errant data are not
announced, business members who find errant data (and, yes, they will find it) will
perceive that no one is communicating with them and wonder if the errant data
that was discovered is the tip of the iceberg or the entire population of errant data.
Invariably, business members will decide the errant data is the tip of an iceberg.
Communication, therefore, can reduce the perceived (but not the real) volume and
severity of errant data, and engender some level of cooperation in the treatment of
errant data.

AU6462.indb 246 2/7/08 9:54:08 AM

Data Quality  n  247

Data Stewardship

Applicable expectations:

BI Reporting
Customer Education
Data Warehouse Education
ROI

Data Stewardship is a strategy. A member of each business area included in the
data warehouse is engaged to participate in the data warehouse as a Data Steward.
This person must have a complete understanding of the business area, its data, pro-
cesses, and people. A Data Steward must also be able to understand the concepts
and philosophy of the data warehouse. Finally, a Data Steward must be able and
willing to engage in the general oversight of the data warehouse. In general, a Data
Steward is not only a liaison between the business and the data warehouse, but a
champion of both the business area and the data warehouse.

A Data Steward participates in all communications between the business area
and the data warehouse. Sensitive communications should go through the Data
Steward before they are published to the business area. A Data Steward represents
the data warehouse to the business area. By discussing the data warehouse with
members of the business area, a Data Steward is able to bring the opinions and
preferences of the business area to the data warehouse. A Data Steward represents
the business to the data warehouse. By discussing the business with members of the
data warehouse team, a Data Steward is able to bring the questions and concerns of
the data warehouse team to the business area.7

When you find a Data Steward who is able and willing to champion the data
warehouse to the business and the business to the data warehouse, treat that per-
son with consideration and respect. Some suggest that Data Stewardship should
include deliverables and responsibilities that are intended to keep a Data Steward
accountable to the data warehouse. But, more often than not, a person who is will-
ing to be a Data Steward will respond when treated as a friend—a friend of the
data warehouse.

Post-Load Audit and Report Errant Data

Applicable expectations:

Data Model

After data has been loaded into a data warehouse, programmatically query the
data in the data warehouse. The SQL should test and validate that the data in a data

n
n
n
n

n

AU6462.indb 247 2/7/08 9:54:08 AM

248  n  Building and Maintaining a Data Warehouse

warehouse conforms to the expectations of the data warehouse, which are outlined
in the Target System Analysis.

Errant data should be reported to members of the business area who are inter-
ested in, or using, that subject area from which the errant data originated, and
the data warehouse team. Reporting the errant data is intended to communicate
the existence and presence of errant data. The process that created that data is the
focus. By reporting data that contradicts the Target System Analysis, members of
the subject area from which the errant data originated can help remediate the data,
or at least just be aware of the errant data and its treatment. Remember, the indi-
vidual data elements are not the focus. The focus is on the processes that populate
the data warehouse—the processes not the data—, but we use the data to measure
the process.

Plug in a Default Value and Report Errant Data
Applicable expectations:

ETL (Extract)
ETL (Transform)

When an errant data element is encountered, the portion of the data element
that does not conform to its expectations can be replaced by a default value (Fig-
ure 8.2). The default value may have a specific meaning (e.g., no known value,

n
n

Source Extract Stage
Outbound

ETL EnvironmentSource System

Stage
Inbound

Transform Stage
Outbound

ETL Environment

Data Quality
Results

Data Quality
Reporting

A

A

BI Report :
Data

Quality

Figure 8.2  Default value.

AU6462.indb 248 2/7/08 9:54:08 AM

Data Quality  n  249

rejected value, etc.). The data is allowed to proceed toward the data warehouse with
the defaulted values in place of the errant values. This method is also known as a
Soft Reject.

Errant data should be reported to members of the business area who are inter-
ested in, or using, that subject area from which the errant data originated, and
the data warehouse team. Reporting the errant data is intended to communicate
the existence and presence of errant data. The process that created that data is the
focus. By reporting data that contradicts the Target System Analysis, members of
the subject area from which the errant data originated can help remediate the data,
or at least just be aware of the errant data and its treatment. Remember, the indi-
vidual data elements are not the focus. The focus is on the processes that populate
the data warehouse—the processes not the data—, but we use the data to measure
the process.

Reject a Record and Report the Errant Record

Applicable expectations:

ETL (Extract)
ETL (Transform)

When an errant data element is encountered, the entire record or row may be
discarded altogether. The remainder of the data is allowed to proceed toward the
data warehouse, but without the rejected record or row. This method is also known
as a Hard Reject.

Errant data should be reported to members of the business area who are inter-
ested in, or using, that subject area from which the errant data originated, and the
data warehouse team. Reporting the errant data is intended to communicate the
existence and presence of errant data. The process that created that data is the focus.
By reporting data that contradicts the Target System Analysis, members of the sub-
ject area from which the errant data originated can be aware of the errant data and
its Hard Rejection. Remember, the individual data elements are not the focus. The
focus is on the processes that populate the data warehouse—the processes not the
data—but we use the data to measure the process.

Reject a Dataset and Report the Errant Dataset

Applicable expectations:

ETL (Extract)
ETL (Transform)

n
n

n
n

AU6462.indb 249 2/7/08 9:54:09 AM

250  n  Building and Maintaining a Data Warehouse

When an errant data element is encountered, the entire set of data may be
discarded altogether. No part of the data is allowed to proceed toward the data
warehouse. This method is also known as a Hard Reject.

Errant data should be reported to members of the business area who are inter-
ested in, or using, that subject area from which the errant data originated, and the
data warehouse team. Reporting the errant data is intended to communicate the
existence and presence of errant data. The process that created that data is the focus.
By reporting data that contradicts the Target System Analysis, members of the sub-
ject area from which the errant data originated can be aware of the errant data and
its Hard Rejection. Remember, the individual data elements are not the focus. The
focus is on the processes that populate the data warehouse—the processes not the
data—but we use the data to measure the process.

Recycle the Data: In Place and Report Errant Data

Applicable expectations:

ETL (Extract)
ETL (Transform)

When management from the business area is committed to remediation of errant
data in a data warehouse, this method facilitates that remediation (Figure 8.3). A
data element that is subject to remediation can be recorded into two fields, rather
than just one. The first field is the original errant data value. The second field is the
defaulted data value. When a correct data value becomes available, that correct data
value will overwrite the second defaulted data field. The first field, containing the
original data value, is used only to find the correct data value. The second data field,
containing the correct data value, is the data field that is visible to the data ware-
house customers. The first data field that holds the incorrect data value is generally
not available to data warehouse customers.

This strategy requires communication between the data warehouse team and
the Data Stewards. The business person who is assigned the task of finding the cor-
rect data value must be included in the data warehouse team and its meetings and
discussions. Contrary to Deming’s focus on processes, rather than product inspec-
tion, a Recycle Wheel allows a data warehouse team to inspect, repair, and rework
individual rows of data. A Recycle Wheel should only be used for data that merits
the necessary overhead and involvement. If a Recycle Wheel is used indiscrimi-
nately for all Data Quality measurements, data that does not merit such treatment
will taint the entire Recycle Wheel causing the Recycle Wheel to seem overdone
and irrelevant. A Recycle Wheel, therefore, can be used to treat Data Quality mea-
surements for only those data elements that merit such treatment, while all other

n
n

AU6462.indb 250 2/7/08 9:54:09 AM

Data Quality  n  251

data elements can be treated by another method. Such discriminate use of a Recycle
Wheel will cast a connotation of relevance and value to those data elements that are
treated by a Recycle Wheel method.

The cost of this method is the use of two data fields, regardless of whether or
not any errant data is present. For every instance of that data element, twice the
original data storage is consumed by this method. The benefit of this method is the
fact that the nonerrant portion of the data is available, and remains available until
or if a member of the business area provides the correct data value. In these situa-
tions, management (a member of the business area) may commit to participating in
the treatment of errant data. The patience and priorities that make this participa-
tion possible often wane. When the business area management ceases to participate
in the remediation of errant data, the remainder of the data is still allowed to add
value to the data warehouse, and the default data values are not detracting from the
value of the data warehouse.

Source Extract
Stage

Outbound
With DQ_ID

ETL EnvironmentSource System

Stage Inbound
with DQ_ID Transform Stage Outbound

with DQ_ID

ETL Environment

Data Quality
Results

with DQ_ID

Data
Quality

Reporting

A

A

BI Report
:

Data
Quality

Load

Data
Warehouse

In Place
Updates

Figure 8.3  Recycle in Place.

AU6462.indb 251 2/7/08 9:54:09 AM

252  n  Building and Maintaining a Data Warehouse

Recycle the Data: Recycle Wheel and Report Errant Data

Applicable expectations:

ETL (Extract)
ETL (Transform)

When management from the business area is committed to remediation of
errant data in a data warehouse, this method facilitates that remediation. A data
element that is subject to remediation can be held in abeyance, away from the data
warehouse, in a separate table. This separate table is often called a Recycle Wheel
(Figure 8.4). When a correct data value becomes available, that correct data value
will overwrite the errant data field in the Recycle Wheel. Then, the corrected record
or row of data in the Recycle Wheel is forwarded to the ETL application to be
included in the next iteration of data going to the data warehouse.

This strategy requires communication between the data warehouse team and
the Data Stewards. The business person who is assigned the task of finding the cor-
rect data value must be included in the data warehouse team and its meetings and
discussions.

The cost of a Recycle Wheel is the storage and maintenance cost of the table
that functions as a Recycle Wheel. The benefit of a Recycle Wheel is the fact that
data is allowed into a data warehouse only when that data is correct. Contrary

n

n

Source Extract Stage
Outbound

ETL EnvironmentSource System

Stage
Inbound

Transform Stage
Outbound

ETL Environment

Data Quality
Results

Data
Quality

Reporting

A

A

Recycle
Wheel

Recycle
Wheel

BI Report :
Data Quality

Figure 8.4  Recycle Wheel.

AU6462.indb 252 2/7/08 9:54:10 AM

Data Quality  n  253

to Deming’s focus on processes, rather than product inspection, a Recycle Wheel
allows a data warehouse team to inspect, repair, and rework individual rows of data.
A Recycle Wheel should only be used for data that merits the necessary overhead
and involvement. If a Recycle Wheel is used indiscriminately for all Data Qual-
ity measurements, data that does not merit such treatment will taint the entire
Recycle Wheel, causing the Recycle Wheel to seem overdone and irrelevant. A
Recycle Wheel, therefore, can be used to treat Data Quality measurements for only
those data elements that merit such treatment, while all other data elements can
be treated by another method. Such discriminate use of a Recycle Wheel will cast
a connotation of relevance and value to those data elements that are treated by a
Recycle Wheel method.

The disadvantage of a Recycle Wheel is that management and, therefore, mem-
bers of the business area quickly lose the commitment necessary to correct the data
in the Recycle Wheel on a daily basis. When the management and members of the
business area lose their commitment to the Recycle Wheel, the result is a Recycle
Wheel that continues to grow larger as the data accumulates, and the data that is
accumulating in the Recycle Wheel will probably never be loaded into the data
warehouse, depriving the data warehouse of any value in that data.

Data Quality Repository
In the figures above, the boxes labeled Data Quality Results and Data Quality
Reporting implicitly refer to a Data Quality Repository. A Data Quality Repository
is a Fact table, or set of Fact tables, each documenting individual instances of data
in the data warehouse that did not meet the expectations of a Data Quality mea-
surement. The Data Quality function that performs a Data Quality measurement
will record the results of errant data warehouse data in a Data Quality fact table.

Retention of Data Quality Fact rows requires two levels of planning. The first
level of retention planning is true of all data in a data warehouse – How long should
rows be retained? For a Data Quality Repository, the answer is usually based on
the duration of time required to identify trends in the quality of the data in a data
warehouse. How much data is required to identify and report individual processes
that are out of control? The answer should be tailored to the individual process. A
process that occurs annually will have different retention requirements from a real-
time process. For each process, retention requirements are based on the data needed
to monitor, triage, and treat the individual process. Retention requirements can be
stated in the following:

An absolute period of time (two months)
A relative period of time (two months without a Data Quality incident)
An absolute number of iterations (42 ETL cycles)

n
n
n

AU6462.indb 253 2/7/08 9:54:10 AM

254  n  Building and Maintaining a Data Warehouse

A relative number of iterations (42 ETL cycles without a Data Quality
incident)

The second level of retention planning is specific to a Data Quality Repository
– How many individual rows of data are required to cause someone to notice a Data
Quality incident has occurred? When an ETL process completely breaks (e.g., files
are out of sequence, a wrong file was used, a job was restarted incorrectly, etc.),
do you really need 400,000 rows of Data Quality Fact table rows to know that
something went dreadfully wrong? Probably not. In such situations, a Data Quality
Repository needs only enough rows to triage the situation, and a summary row that
is guaranteed to draw attention to the ETL process that broke. In other data ware-
house Fact tables, the data warehouse team wants all of the rows. In a Data Quality
Repository, however, when a single event causes an excessive number of rows to
be inserted into a Data Quality Fact table, the data warehouse team may consider
writing only enough rows to triage the process that is out of control.

Data Quality Fact Table: Dimensional Data Model

A Data Quality Repository should share Conformed Dimension tables with the
Metadata Repository (Figure 8.5). This use of Conformed Dimension tables
between the Data Quality and Metadata Repositories will enhance the ability of a
data warehouse team to monitor individual instances of data warehouse processes
and the quality of those processes. Therefore, if the Metadata Repository uses a

n

Fact
Table

Batch_ID
Batch_ID
Batch_ID

Data
Warehouse

Data Quality Repository

Tables
Table, Hierarchy, Attribute, Property
Table, Hierarchy, Attribute, Property

ETL Processes
ETL Process, Source, Target, Transformation
ETL Process, Source, Target, Transformation

Dimension
Table

Batch_ID
Batch_ID
Batch_ID

Fact
Table

Table, ETL Process, Batch_ID, Unique_ID, DQ_ID
Table, ETL Process, Batch_ID, Unique_ID, DQ_ID

Data Quality Description
DQ_ID, DQ_Description, Recipients

Figure 8.5  Dimensional Data Quality Repository.

AU6462.indb 254 2/7/08 9:54:11 AM

Data Quality  n  255

Dimension Data Model, then the Data Quality Repository should also use the
Dimension tables within the Metadata Repository’s Dimensional Data Model.

By this approach, the tables unique to the Data Quality Repository should be
the Data Quality Fact tables and any Data Quality Dimension tables that provide
descriptions and look-up values to foreign keys in the Data Quality Fact tables.
The remaining Dimension tables in the Data Quality Repository should be the
Conformed Dimension tables that are shared by the Data Quality Repository and
the Metadata Repository.

Data Quality Fact Table: Third Normal Form Data Model

The use of Conformed Dimension tables between the Data Quality and Metadata
Repositories has a special significance for Third Normal Form Repositories (Fig-
ure 8.6). The data warehouse designer must design the Metadata and Data Quality
Fact and Dimension tables so that they join at the same grains (Unit of Measure-
ment and Hierarchy). The tables, ETL processes, Batch_ID, etc. referenced in the
Data Quality Repository must match their corresponding references in the Metadata
Repository. Otherwise, the data warehouse team’s ability to monitor the data ware-
house by joining the Data Quality and Metadata Repositories will be limited to the
Dimensions that are Conformed Dimensions.

Fact
Table

Batch_ID
Batch_ID
Batch_ID Fact

Table
Table, ETL Process, Batch_ID, Unique_ID, DQ_ID
Table, ETL Process, Batch_ID, Unique_ID, DQ_ID

Data
Warehouse

Data Quality RepositoryAttribute

Hierarchy Property

Target

Transformation

Source

Tables
Table
Table

ETL Processes
ETL Process
ETL Process

Dimension
Table

Batch_ID
Batch_ID
Batch_ID

Data Quality Description
DQ_ID, DQ_Description

Data Quality Recipients
DQ_ID, DQ_Recipients

Figure 8.6  Third Normal Form Data Quality Repository.

AU6462.indb 255 2/7/08 9:54:11 AM

256  n  Building and Maintaining a Data Warehouse

Data Quality Reporting
Data Quality Reporting occurs by leveraging the BI Reporting infrastructures
already present in a data warehouse. The list of recipients of a Data Quality Report
is based on the DQ_ID. Those members of the enterprise and data warehouse team
who have an interest in occurrences of a specific DQ_ID receive predefined reports,
driven by a Data Quality Fact table, which are pushed to the DQ_ID Recipients.

Unlike conventional BI Reporting, Data Quality Reporting can have varying
levels of repetition:

Following conventional BI Reporting design, a single Data Quality incident
can be reported once with no follow up or repetition.
A single Data Quality incident that requires a follow-up action or resolution can
continue to report until the follow-up action or resolution is complete.
A summary Data Quality report that measures the number of Data Qual-
ity incidents, responses to Data Quality incidents that require follow up or
resolution can provide a high-level view of the quality of the data in a data
warehouse.

Follow Through
Deming taught the real purpose behind process measurements was to identify pro-
cesses that are out of control. The Data Quality Measurements discussed above are
such process measurements. From the perspective of a data warehouse, there are
two groups of processes that are measured: Source System and Data Warehouse
processes.

The Data Quality measurements that measure the raw data from a source system
are process measurements of the source system. The Subject Matter Experts (SMEs)
of the source system will probably not believe or appreciate the measurements and
results (when not favorable) of their source system. Regardless, the diplomatic mis-
sion of a data warehouse designer is to triage the Data Quality measurements.

On the one hand, the data warehouse designer may have misunderstood the
data coming from the source system. The data coming from the source system
may indeed be perfect and without error. The error may be in the data warehouse
designer’s understanding of the data coming from the source system. Such a mis-
understanding could not be revealed until the ETL application began reporting
Data Quality measurement results that were unfavorable. In such situations, the
data warehouse designer must revise the Source System Analysis. The revision of
the Source System Analysis ripples through the Data Model, ETL, Data Quality,
and Metadata designs.

In another scenario, the source system has been modified. The Source System
Analysis document, at the time of its writing, was correct. Since then, however, the

n

n

n

AU6462.indb 256 2/7/08 9:54:12 AM

Data Quality  n  257

source system has been modified, resulting in data that behaves differently than
expected by the ETL application. In such situations, the data warehouse designer
must revise the Source System Analysis. The revision of the Source System Analysis
ripples through the Data Model, ETL, Data Quality, and Metadata designs.

In the last scenario, the source system has a bug. The Source System Analysis
document is still correct and should not be updated. The SME of the Source Sys-
tem, however, has the task of fixing the source system. Data Quality measurements
will continue to report results that indicate errors in the source system data. The
challenges of this scenario are:

Resist the temptation to ignore Data Quality measurement results from that
source system. The identification and negotiation of a single Data Quality
measurement does not mean that is the only error that can occur in a source
system. Other source system errors can occur and be detected. Those addi-
tional Data Quality measurements should not be ignored.
Communicate when the identified and negotiated source system bug is fixed.
The source system SME may fix the bug and tell no one about it. The Data
Quality measurements may continue to report the same bug manifestation.
The data warehouse designer, unaware of the bug fix, thinks the Data Qual-
ity measurement results are still revealing the same source system bug, which
apparently has not been fixed yet.

The second group of processes that are measured are the processes internal to
the data warehouse. These processes, because they are internal to the data ware-
house, are much easier for the data warehouse designer to triage and fix. All the
processes are known and controlled by the data warehouse team. So, assessing the
root cause and resolution of internal data warehouse processes can happen with
much less negotiation.

In the life cycle of a data warehouse, the processes internal to a data warehouse
must be addressed before any source system processes. Any flaws in data warehouse
processes will be perceived (or at least accused) by source system SMEs to be the
complete and total source of all data imperfections. In the case of a new data ware-
house implementation, this is unfortunately usually more true than false. After the
data warehouse internal processes have been fixed, so that data warehouse processes
create no data flaws, the data warehouse designer is poised to address the source sys-
tem. If after fixing the data warehouse processes, the source system is still creating
data with flaws, the data warehouse designer can negotiate them with the source
system SME. If the source system SME is willing to address the data flaws and fix
the source system, then the data warehouse has realized an additional benefit to the
enterprise beyond its purpose as a decision support system; the data warehouse has
revealed errors in the operational applications of the enterprise. The fact that, at
that point, the data flaws continued to occur, no one in the enterprise had known

n

n

AU6462.indb 257 2/7/08 9:54:12 AM

258  n  Building and Maintaining a Data Warehouse

about or addressed the bug in the operational application that was creating the
flawed data.

Closing Remarks
A data warehouse is intended to improve the decisions and processes of the enter-
prise. The data warehouse’s contribution to the enterprise is muted by the presence
of errant data. By focusing on a continuous improvement of the processes that cre-
ate the data in a data warehouse, the data warehouse team and Data Stewards can
mitigate the muting effect of errant data.

Errant processes in the ETL applications are the first processes to be improved.
Once the ETL processes have been improved, the processes in the source systems
can be addressed. As long as the data warehouse, through its ETL applications,
continues to introduce errant data, the SME of the source system will point to the
ETL applications as the sole source of errant data.

The first generation of Data Quality applications focused on mailing addresses
and lists of names and addresses. Customer Relationship Management (CRM)
continues to rely heavily on these first generation Data Quality applications to pro-
vide correct mailing addresses and consolidate duplicate names. These are difficult
tasks. The Data Quality applications are available on the shelves of software stores
and perform the CRM Data Quality functions very well.

The next generation, this generation, of Data Quality applications focuses on
the data processes in a data warehouse. Following Deming’s Fourteen Points, these
Data Quality applications are intended to identify data warehouse processes that
are out of control. Once identified, a data warehouse process that is out of control
can be adjusted, and, once adjusted, that process will forward data to the data
warehouse that meets the expectations of the designer and customers of the data
warehouse.

References
	 1.	 W. Edwards Deming, Out of the Crisis (Cambridge, MA: Massachusetts Institute of

Technology Center for Advanced Engineering Study, 1986).
	 2.	 Ibid.
	 3. Ibid.
	 4.	 Fon Silvers, Deming, data quality and ETL: Statistical process pontrol, dataWare-

house.com (2006).
	 5.	 Fon Silvers, Deming, data quality and ETL, Part 1: Point 3—Cease dependence on

inspection, DM Review (2006).
	 6.	 Ibid.
	 7.	 Larry English, Data Stewardship: Accountability for the Information Resource, TDWI

World Conference (The Data Warehousing Institute, Renton, WA, 2002).

AU6462.indb 258 2/7/08 9:54:12 AM

259

Chapter 9

Metadata

Introduction
We all use Metadata daily (Figure 9.1). We may not be aware of it. But, we do use
Metadata throughout the day. For example:

The copyright date of this book tells us when this book was published.
The timestamps on e-mail tell us when an e-mail was sent, received, and
read.
“Flammable” signs on the side of a truck tell us to be careful, and why.

Typically, Metadata is the weakest aspect of a data warehouse, not because
Metadata itself is weak, but because we seldom associate metadata with, well,
Metadata.

To understand Metadata, let’s look at a few examples of the need for
Metadata.

On January 15, Fred ran a data warehouse profitability report, which showed
the profitability of his business unit in the fourth quarter of the previous
year was 12.7 percent. Fred’s boss was thrilled by this profitability and asked
Fred to drill down into the data to find the secret of their success. When
Fred began to drill into the data, it was January 23, and, to Fred’s shock and
dismay, the profitability of his business unit in the fourth quarter of the previ-
ous year had changed to 3.1 percent. What changed? Why were the numbers
different? If Fred’s data warehouse had a metadata solution, Fred would know

n
n

n

n

AU6462.indb 259 2/7/08 9:54:12 AM

260  n  Building and Maintaining a Data Warehouse

So
ur

ce
 D

at
a

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts

M
et

ad
at

a
Ap

pl
ic

at
io

n(
s)

D
at

a Q
ua

lit
y

D
at

ab
as

e
M

et
ad

at
a

D
at

ab
as

e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

RD
BM

S

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

O
LA

P

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

M

et
ad

at
a

Re
po

si
to

ry

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

D
at

ab
as

e
D

es
ig

n

So
ur

ce
 D

at
a

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts
M

et
ad

at
a

Ap
pl

ic
at

io
n(

s)

D
at

a Q
ua

lit
y

D
at

ab
as

e
M

et
ad

at
a

D
at

ab
as

e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

RD
BM

S

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

O
LA

P

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

M

et
ad

at
a

Re
po

si
to

ry

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

D
at

ab
as

e
D

es
ig

n

M
et

ad
at

a
Ap

pl
ic

at
io

n(
s)

M
et

ad
at

a
D

at
ab

as
e

M
et

ad
at

a
Re

po
si

to
ry

Fi
gu

re
 9

.1 

M
et

ad
at

a.

AU6462.indb 260 2/7/08 9:54:14 AM

Metadata  n  261

that fourth quarter labor payroll adjustments arrived in the data warehouse
on January 16, drastically increasing the labor expense of his business unit.
Susan was a new internal auditor for a mid-size corporation. She had been
assigned the task of auditing the Real Estate Department. The Real Estate
Department had been getting their performance ratios from the corporate
data warehouse. Susan, not knowing that she is expected to accept the data
warehouse performance ratios at face value, asked how the performance ratios
were derived. Without a metadata solution that explains this, the Real Estate
Department had to find a programmer to explain the Extract, Transform,
and Load (ETL) application and Business Intelligence (BI) Reporting appli-
cation, which together derive the performance ratios.
Alice, the sales manager of a retail franchise, was alarmed when she ran the
daily sales report from the data warehouse. The sales report showed a definite
downward trend in sales in franchise outlets in southern California. If Alice’s
data warehouse had a metadata solution, Alice would have known that three
of the franchise outlets in southern California were not able to send their sales
data to the warehouse. Once these three stores were able to send their sales
data, Alice was relieved. Had the data warehouse included a metadata solu-
tion, Alice would have been aware of the absence and arrival of the missing
sales data.

Data about data. That’s the textbook definition of Metadata. But, that doesn’t
really connote the ability to know what is and is not happening in a data ware-
house, and when. The examples of Fred, Susan, and Alice demonstrate the need
and application of insider knowledge of a data warehouse, of Metadata. Therefore,
having understood the need to know what the numbers inside a data warehouse
mean, when they didn’t arrive and when they did arrive, the first question that must
be answered is, “How?”

Types of Metadata
The answer to “how” begins by finding the answer to “what.” What is Metadata
and how can a data warehouse use it? The answer to what Metadata is begins with
the two types of Metadata: Static and Dynamic.

Static Metadata

Static Metadata is information that does not change. Static Metadata provides the
information about a data element that does not change. For all instances of a data
element, the information in Static Metadata is always true. If a data element holds
400 rows, the information in Static Metadata is equally true for all 400 rows.

n

n

AU6462.indb 261 2/7/08 9:54:14 AM

262  n  Building and Maintaining a Data Warehouse

When a data element changes state (e.g., reviewed to approved to closed), the
Static Metadata is specific to each state of a data element. The description of a Pur-
chase Order in its Reviewed state is different from a Purchase Order in its Approved
and Closed states. A single data element will have a Metadata description for each
of its states. So, Static Metadata is more than a description of a column in a table
or the table itself.

The audience of Static Metadata is the business side of the enterprise. Static
Metadata provides the business meaning of a data element. That data element can
be an entity in a Dimension table, an event in a Fact table, or a derived field in a
BI Report. The information captured in Static Metadata should provide enough
information about the business meaning and origin of a data element (i.e., entity,
event, transaction, derived data, etc.) to equip the business side of the enterprise to
use that data element. In the examples above, Fred, Susan, and Alice had data, but
they were not equipped to use that data correctly. A Metadata solution frames its
information in the language and context of the business, to equip members of the
business to use the data from a data warehouse.

Static Metadata is everywhere. The nutrition information on food labels equips
consumers with the information necessary to select and eat the food they want. The
octane information on a fuel pump equips consumers with the information neces-
sary to pump and burn the fuel they want. The table of contents of a book equips a
reader with the information necessary to know whether or not that book might be
of interest. Static Metadata equips data warehouse customers with the information
necessary to select and use the data from a data warehouse that satisfies the busi-
ness’ data needs.

Dynamic Metadata

Dynamic Metadata describes each individual instance of a data element (Fig-
ure 9.2). A common form of Dynamic Metadata is a Load Timestamp field on
each row of a table, which tells the moment, down to a subsecond, when each row
was inserted into a table. Had Fred, in the example above, been querying data ware-
house tables with Load Timestamp fields, he would have been able to isolate the
rows that he had seen on January 15, and Fred would have been able to isolate the
data that had arrived since that date. Without this simple Dynamic Metadata, Fred
was unable to isolate what changed between January 15 and January 23.

For a time-variant data warehouse, Dynamic Metadata is extremely helpful. As
entities change state, Dynamic Metadata includes:

The moment the ETL application extracted the change of state from the
source system.
The moment the ETL application loaded the change of state into the data
warehouse.

n

n

AU6462.indb 262 2/7/08 9:54:14 AM

Metadata  n  263

The job number, start time, end time, and duration of the ETL job that
extracted the change of state data.
The job number, start time, end time, and duration of the ETL job that trans-
formed the change of state data.
The job number, start time, end time, and duration of the ETL job that
loaded the change of state data.
The name, timestamp, and version of the BI Report that Fred delivered to
his boss.

n

n

n

n

Source Extract Stage Outbound
With DQ_ID

ETL EnvironmentSource System

Stage Inbound
with DQ_ID Transform Stage Outbound

with DQ_ID

ETL Environment

Metadata Metadata
Load

A

A

Metadata
Repository

System
Tables

Log
Files

Metadata Metadata
Load

B

Stage Inbound
with DQ_ID

Load

ETL Environment

B

Data
Warehouse

Metadata Metadata
Load

System
Tables

Log
Files

System
Tables

Log
Files

Figure 9.2  Metadata processes.

AU6462.indb 263 2/7/08 9:54:15 AM

264  n  Building and Maintaining a Data Warehouse

As events occur, Dynamic Metadata captures:

The moment the ETL application extracted the event from the source
system.
The moment the ETL application loaded the event into the data warehouse.
The job number, start time, end time, and duration of the ETL job that
extracted the event data.
The job number, start time, end time, and duration of the ETL job that trans-
formed the event data.
The job number, start time, end time, and duration of the ETL job that
loaded the event data.
The name, timestamp, and version of the BI Report that Fred delivered to
his boss.

These two sets of Dynamic Metadata look very similar for a good reason; both
sets of Dynamic Metadata are describing the same thing—an update of a data
warehouse. An update of a data warehouse is any action that changes any row in
any table of a data warehouse. Thus, an entity-changing state is an update to a data
warehouse, and an event record inserted into a data warehouse is also an update to
a data warehouse. Both the entity change of state and the insertion of a new event
row change the data warehouse. From the perspective of Dynamic Metadata, both
are events that can be described by information specific to each data warehouse
update event.

The dynamic part of a data warehouse is the ETL application because the ETL
application creates and performs all the updates to a data warehouse. ETL appli-
cations, therefore, have the responsibility of gathering Dynamic Metadata and
loading it into a Metadata Repository. The ETL application platform provides the
source for some Dynamic Metadata in the form of a system clock, system tables,
and log files. The ETL application will generate some Dynamic Metadata, prob-
ably the number of records inbound, rejected, and outbound, and others. Large
data warehouse Relational Database Management System (RDBMS) platforms
include system tables and log files that provide additional Dynamic Metadata.
These system tables and log files are sources of Dynamic Metadata. So, there is no
single source of Dynamic Metadata. The sources of Dynamic Metadata will change
for every Source, ETL, and Target configuration. ETL application design should
include functions necessary to retrieve Dynamic Metadata from available sources
of Dynamic Metadata.

Metadata Service Level Agreement (SLA)
Metadata requirements are captured and documented in a Metadata Service
Level Agreement (SLA). For Static Metadata, the Metadata SLA will indicate the

n

n
n

n

n

n

AU6462.indb 264 2/7/08 9:54:15 AM

Metadata  n  265

features and layout of a data dictionary. The Metadata SLA will also document the
methods by which data warehouse customers will be able to see the data in a data
dictionary.

For Dynamic Metadata, the Metadata Repository will capture and hold meta-
data as it becomes available. The data warehouse team and Data Stewards will use
the Metadata SLA as a place to document and agree on the Dynamic Metadata that
will be loaded into the Metadata Repository; in other words, the Metadata SLA
documents the metadata requirements. By including a Dynamic Metadata require-
ment in the Metadata SLA, the data warehouse team and Data Stewards agree:

The Dynamic Metadata is available.
An ETL application will retrieve the required Dynamic Metadata.
Dynamic Metadata will be available to the business member, or application,
that required the Dynamic Metadata in question.

Once the metadata requirements are identified and documented in a spread-
sheet, the data warehouse team will know what metadata to load into the Metadata
Repository.

Metadata Repository
Static Metadata describes each data element in a data warehouse and Dynamic
Metadata describes each instance of each data element. In the language of Dimen-
sional Data Modeling, Static Metadata is a Dimension and Dynamic Metadata
is a Fact of a Metadata Warehouse. A Metadata Warehouse is a data warehouse
that records the entities and events of a data warehouse, while the data warehouse
records the entities and events of the enterprise. A Metadata Warehouse usually
goes by the name Metadata Repository.1

Therefore, to go back to the original question, understanding the need to know
what the numbers inside a data warehouse mean, when they didn’t arrive and when
they did arrive, the first question that must be answered is “how.” The answer
to “how” is a two-part answer. First, Static Metadata describes the meaning and
being of data elements, and Dynamic Metadata describes the events (i.e., instances)
wherein these data elements are updated. Second, Static Metadata is recorded as
Dimensions and Dynamic Metadata as Facts in a Metadata Repository.

A Metadata Repository can exist in three forms. These three forms are not nec-
essarily mutually exclusive. Elements of each can be used in conjunction with ele-
ments from the others. However, for purpose of discussion, the three forms will be
presented as though they are mutually exclusive. When choosing a permutation of
the three Metadata Repository forms, the form that is chosen should be instituted
as a standard, to avoid confusion in subsequent and future data warehouse devel-
opment efforts. Unlike the data warehouse, which experiences some design inertia

n
n
n

AU6462.indb 265 2/7/08 9:54:15 AM

266  n  Building and Maintaining a Data Warehouse

force from the source system, a Metadata Repository does not experience any design
inertia. Future data warehouse designers, who design using the Metadata Reposi-
tory, will be tempted to interpret a Metadata Repository to their own preferences
(even in the presence of design standards). Thus, a Metadata Repository, once estab-
lished will benefit from the design inertia created by instituted design standards.

A Metadata Repository should include data elements, such as these listed
here.

Job number: The number assigned to a job by the application environment.
Start date and time: The date and time at which the application environment
began running the ETL application.
End date and time: The date and time at which the application environment
finished running the ETL application.
Batch_ID: A sequential identification number assigned to a group of data by
the ETL application.
Rows/Records extracted: The number of rows or records retrieved from the
source system by the Extract application.
Rows/Records transform inbound: The number of rows or records passed
from the Extract application to the Transform application.
Rows/Records transform outbound: The number of rows or records that are
allowed to leave the Transform application as load-ready data.
Rows/Records transform rejected: The number of rows or records that are not
allowed to leave the Transform application as load-ready data.
Rows/Records loaded: The number of rows that were loaded by the Load
application.
Rows/Records load rejected: The number of rows that were rejected by the
RDBMS during the Load application.

Central Metadata Repository: Dimensional Data Model

A centralized Metadata Repository can be designed as a Dimensional Data Model.
The Static Metadata are the Dimensions. The Dynamic Metadata are the Facts, the
events that update the data warehouse. The Dimensions in a Dimensional Meta-
data Repository are the:

Tables: Source System table, Data Warehouse tables, Stage tables, and Look-
up tables.
Columns: The vertical fields in each of the tables.
ETL Update Processes: Each individual process that updates a data
warehouse.
BI Report Processes: Each individual process that reads a data warehouse.

n

n

n

n

n

n

n

n

n

n

n

n

n

n

AU6462.indb 266 2/7/08 9:54:16 AM

Metadata  n  267

The Facts in a Dimensional Metadata Repository are the:

Inserts: The instance of an event that inserts data into a data.
Updates: The instance of an event that updates data in a data.
Deletes: The instance of an event that deletes data from a data.
BI Reports: The instance of a BI Report execution.

A data warehouse table is represented as a Metadata Dimension row. A data
warehouse process is also represented as a Metadata Dimension row. A Metadata
Fact row joins with the Metadata Dimension (table) and Metadata Dimension
(process), and a Metadata Fact row joins with a data warehouse row by the methods
discussed below (Figure 9.3).

A Central Metadata Repository uses a surrogate key (e.g., Batch_ID) to iden-
tify a group of rows. That surrogate key is placed as a foreign key in each row of
a data warehouse table. The ETL application that transforms and loads the data
warehouse, also calculates the next sequential surrogate key. That is the key that is
placed in the data warehouse rows. The same ETL process also inserts a row into a
Metadata Fact table. That Metadata Fact row should identify the data warehouse
table, group of rows in that data warehouse table, and the ETL process that trans-
formed and loaded them. A Batch_ID’s only purpose and value is that of a primary
key/foreign key, facilitating a join between a Metadata table and a data warehouse
table. So, a Batch_ID can be physically stored in the most compressed format pos-
sible. Any data warehouse customer who queries a Batch_ID will find a sequential

n
n
n
n

Fact
Table

Batch_ID
Batch_ID
Batch_ID Fact

Table
Table, Process, Batch_ID
Table, Process, Batch_ID

Data Warehouse Metadata Repository

Tables
Table, Hierarchy, Attribute, Property
Table, Hierarchy, Attribute, Property

Processes
Process, Source, Target, Transformation
Process, Source, Target, Transformation

Dimension
Table

Batch_ID
Batch_ID
Batch_ID

Figure 9.3  Dimensional Metadata.

AU6462.indb 267 2/7/08 9:54:16 AM

268  n  Building and Maintaining a Data Warehouse

number that has no meaning of its own. So, no concern should be given to the
data value that will be seen by data warehouse customers querying the Batch_ID.
Instead, the Batch_ID should be compressed to the smallest space possible, to
reduce the overhead it creates on every row in a data warehouse.

A Metadata Dimension table identifies the source of data, target data ware-
house table, and the transformation processes that created a batch of data. The
identification of transformation processes varies in importance from one data ware-
house to another. The formula by which financial figures (e.g., profitability, return
on investment [ROI], net present value, etc.) are calculated may change over time.
The identification of the exact formula that was used to calculate a number in the
data warehouse may be valuable Metadata. Formulas for productivity, throughput,
and customer queuing may also be valuable Metadata. The enterprise may need to
know the exact formula that was used to derive a number can be important and
valuable Metadata. For this reason, and other similar reasons, the identification of
the exact transformation process that created a row in a data warehouse may be
valuable enough to require its own Metadata. The identification of source data also
enhances the data in a data warehouse. The inclusion of source data as a Metadata
Dimension allows a data warehouse to directly associate data in a data warehouse
with its source.

In all forms of Metadata Repository, the ETL application that writes data to a
data warehouse table also writes data to Metadata Repository tables. An ETL appli-
cation can identify itself and its attributes through hard-coded values, parameter-
ized input variables, control tables, or any other mechanism by which self-defining
data (e.g., program name and version number, job name and version number, etc.)
can be fed into that ETL application. Once an ETL application knows its own
identity (e.g., program name and version number, job name and version number,
etc.), it can transform and load that information into a Metadata table.

An ETL application can also gather job statistics from generic platform tables.
Typically, application and RDBMS platforms provide generic performance data
(number of rows, central processing unit (CPU) cycles, inputs/outputs (I/Os), etc.).
An ETL application can gather data from these generic performance tables and
transform and load that data into a Metadata Repository. Job specific information
can be derived by the ETL application as it transforms data. Information that an
ETL application can gather or know about itself includes:

Self-identifying information: Information that an ETL application can
provide that defines and describes itself.

Program name: The name of the ETL application.
Program version: A sequence number that identifies a specific version of
an ETL application.
Job name: The name of the ETL job.
Job version: A sequence number that identifies a specific version of an
ETL job.

n

−
−

−
−

AU6462.indb 268 2/7/08 9:54:16 AM

Metadata  n  269

Job Information: Information that an ETL application can derive from
the application environment and the data passing through it. Job Infor-
mation can be gathered and recorded at three different levels of granular-
ity. At the most granular is every individual function or job. The second
level is all the individual functions or jobs that comprise the Extract
application grouped together as a collective Extract application (et al.,
for the Transform and Load applications). The least granular is the entire
ETL application, with all its functions and jobs summed up into one
statement of application activity.

Central Metadata Repository: Third Normal Form

A Third Normal Form Metadata Repository provides the same data as its Dimen-
sional counterpart. At the center of a Third Normal Form Metadata Repository is a
Fact table that captures the intersection of a data warehouse table, a group of rows
in the table, and the ETL process that transformed and loaded the data.

A Third Normal Form Metadata Repository, like its Dimensional counterpart,
is loaded in the same batch cycle that loads a data warehouse table. A Third Normal
Form Metadata Repository, unlike its Dimensional counterpart, affords additional
flexibility, which is the nature of Third Normal Form data models (Figure 9.4). A
single ETL Process can be associated with multiple Transformations without los-
ing its identity as a single ETL Process. A Dimensional Metadata Repository, by
denormalizing the ETL Process and Transformation into a single row treats each
permutation of ETL Process and Transformation as separate and distinct from
other permutations of ETL Process and Transformation, even though both permu-
tations may share the same ETL Process.

Both the Dimensional and Third Normal Form Metadata Repositories add
value only as truly time-variant data models, specifically, Type II time-variant data
models. The data in a Metadata Repository must provide the information necessary
to see past iterations of data warehouse activity in their historical context. The data
in a Metadata Repository references discreet events in a data warehouse.

Distributed Metadata Repository

A Distributed Metadata Repository (Figure 9.5) differs from a Centralized Metadata
Repository by embedding the join between a data warehouse row and its Metadata
Dimensions within each data warehouse row. Row-level Metadata using a Central-
ized Metadata Repository would effectively duplicate every data warehouse table
as Metadata tables. Rather than double the capacity of a data warehouse, foreign
keys that relate back to data warehouse Dimension tables are used in the Metadata
Repository.

−

AU6462.indb 269 2/7/08 9:54:17 AM

270  n  Building and Maintaining a Data Warehouse

A Distributed Metadata Repository based on a Third Normal Form data model
typically includes associative (i.e., join) tables that consolidate each Metadata sub-
ject area. The primary key of those associative (i.e., join) tables is embedded in a
data warehouse row. A data warehouse row could include foreign keys from each
Dimensional entity; however, this approach tends to expand the storage capacity
consumption of data warehouse tables. The primary key of associative (i.e., join)
tables is often a sufficient compromise.

A Distributed Metadata Repository (Figure 9.6) can also include a Dimensional
Metadata Repository. Each data warehouse row carries the primary key of a row
from the Metadata Repository. A primary key/foreign key relation between Meta-
data Repository rows and data warehouse rows works best with surrogate keys.

Row-level Metadata tends to be most helpful when used in an Operational Data
Store (ODS). The currency of the data in an ODS tends to make each row more
immediate, focusing attention on the current activity of the enterprise. Row-level
Metadata also works well if the volatility of rows in a table is relatively low, afford-
ing each individual row increased focus and attention.

Fact
Table

Batch_ID
Batch_ID
Batch_ID Fact

Table
Table, Process, Batch_ID
Table, Process, Batch_ID

Data
Warehouse

Metadata Repository

Attribute

Hierarchy Property

Target

Transformation

Source

Tables
Table
Table

Processes
Process
Process

Dimension
Table

Batch_ID
Batch_ID
Batch_ID

Figure 9.4  Third Normal Form Metadata.

AU6462.indb 270 2/7/08 9:54:17 AM

Metadata  n  271

Data Warehouse Table
Row_ID, Table, Process

Data Warehouse Metadata Repository

Attribute

Hierarchy Property

Target

Transformation

Source

Tables
Table

Processes
Process

Figure 9.5  Distributed Metadata Repository.

Data Warehouse Table
Row_ID, Table, Process

Data Warehouse Metadata Repository

Tables
Table, Hierarchy, Attribute, Property

Processes
Process, Source, Target, Transformation

Figure 9.6  Distributed Dimensional Metadata Repository.

AU6462.indb 271 2/7/08 9:54:18 AM

272  n  Building and Maintaining a Data Warehouse

Real-Time Metadata

Real-Time ETL applications extract, transform, and load data into a data ware-
house at the maximum throughput that can be reasonably maintained. The num-
ber of rows/records loaded at any one moment, therefore, is much lower than the
number of rows/records loaded by a batch application that loads 24 hours of data in
one job iteration. So, the challenge of capturing real-time Metadata is time.

If the true cycle of a real-time ETL application is six seconds (an iteration of
ETL application every 6 seconds), then the Metadata might record 14,400 indi-
vidual iterations of ETL application in a single day (10 6-second ETL iterations ×
60 minutes in an hour × 24 hours in a day). Metadata requirements may indicate
this level of granularity should indeed be recorded as Metadata.

The application environment may support continuous throughput without
stopping and starting. ETL applications may use the continuous throughput infra-
structure, which is real-time ETL. Metadata requirements must be very clear and
precise in the presence of real-time ETL. Unless stipulated otherwise, data ware-
house customers will expect real-time ETL to be recorded by real-time Metadata.
If real-time Metadata is a true requirement such that the data warehouse custom-
ers can use real-time Metadata, the Metadata Repository and its applications can
record the continuous throughput of ETL applications in real-time.

Data warehouse customers may not be able to use or leverage real-time Meta-
data. In that case, the Metadata Repository will superimpose a surrogate Batch_ID
that will identify data warehouse rows received during a range of time (e.g., five sec-
onds, five minutes, one hour) or other systemic event (e.g., Trade Cycle, Purchase
Order, Activity Quota). The assignment of a surrogate Batch_ID must support the
business in its needs to access data warehouse rows that were received via a real-time
ETL application. Otherwise, data warehouse customers are left to search for a row
of data like a needle in a haystack.

Data Quality as Metadata

The information derived by a Data Quality application is Metadata. Multiple Data
Quality measurements can be applied to a single row/record of inbound data as it
travels through an ETL application. Therefore, a one-to-one relationship cannot be
implied for a row/record of data. Even more so, a one-to-one relationship cannot be
implied for a batch of data. Thus, within the Metadata Repository, a Data Quality
identifier (DQ_ID) can identify the permutation of Data Quality measurements
and results that describes a batch of data.2

Data Quality Metadata can be captured in a Dimensional Data Model (Fig-
ure 9.7). Each individual row represents an individual permutation of Data Quality
measurements, results, and meaning that should be interpreted by data warehouse

AU6462.indb 272 2/7/08 9:54:18 AM

Metadata  n  273

customers. The DQ_ID is embedded in the Metadata Fact table, which joins with
the data warehouse table.

A data warehouse customer can find the level of Data Quality by joining the
data warehouse table to the Metadata Fact table, and then joining to the Data
Quality Confidence table. This level of information increases the data warehouse
customer’s ability to discern whether or not data from a data warehouse table should
be trusted and, therefore, used to make decisions.

Data Quality Metadata that is captured in a Third Normal Form data model
adds an additional level of granular flexibility (Figure 9.8). At its least granular,
a Third Normal Form Data Quality table can be a normalization of the Dimen-
sional Data Quality table. The tables that relate to the central Data Quality table
can identify each individual Data Quality measurement and result, so that at its
most granular a Third Normal Form Data Quality table resembles a Fact table
chronicling every Data Quality measurement, result, and meaning that should be
interpreted by data warehouse customers.

The end result of Data Quality Metadata is informed data warehouse custom-
ers. Not all data is perfect. Considering the volume of data passing through an ETL
application into a data warehouse, inevitably some of that data will have imperfec-
tions. An ETL application cannot alter this reality. But, an ETL application can
identify the instances when this reality occurs. In the examples at the beginning of
this chapter, had Fred and Alice known the data in the data warehouse was incom-
plete, they might have calmed down and waited for the complete data to arrive. For
them, and all data warehouse customers, Data Quality Metadata is a key compo-
nent of the data warehouse.

Data
Warehouse

Table
Batch_ID
Batch_ID
Batch_ID

Fact
Table

Table, Process, DQ_ID, Batch_ID

Data
Warehouse

Metadata Repository

Tables
Table, Hierarchy, Attribute, Property

Processes
Process, Source, Target, Transformation

Data Quality Confidence
DQ_ID, DQ_Confidence, DQ_Level

Figure 9.7  Data Quality Dimensional Metadata.

AU6462.indb 273 2/7/08 9:54:19 AM

274  n  Building and Maintaining a Data Warehouse

Make or Buy a Metadata Repository

The data warehousing marketplace includes a significant offering of Metadata
Repositories. For new data warehouse development, these off-the-shelf applications
deserve at least a review. These applications reflect years of experience, research,
and development in Metadata Repositories. Since Metadata is usually the weakest
element of a data warehouse, a review of Metadata Repository applications can only
help.

On the one hand, a review of Metadata Repository applications can reveal
the functions and features that have been deemed valuable enough to be included
in a Metadata Repository. By understanding the meaning and purpose of these
functions and features, a data warehouse designer can strengthen the Metadata
design of the data warehouse under design. By taking this information back to the
drawing board, a data warehouse designer can strengthen his or her own Metadata
Repository design.

On the other hand, a review of Metadata Repository applications can reveal the
scope and effort of a Metadata Repository. Considering the budgetary and timeline
constraints of a data warehouse development effort, the purchase of a Metadata

Data
Warehouse

Table
Batch_ID
Batch_ID
Batch_ID

Fact
Table

Table, Process, DQ_ID, Batch_ID

Data
Warehouse

Metadata Repository

Attribute

Hierarchy Property

Target

Transformation

Source

Tables
Table

Processes
Process

Data Quality
DQ_ID

Data Quality Confidence
DQ_Confidence

Data Quality Level
DQ_Level

Figure 9.8  Data Quality Third Normal Form Metadata.

AU6462.indb 274 2/7/08 9:54:20 AM

Metadata  n  275

Repository may be the optimal compromise. Delivering an off-the-shelf Metadata
Repository is better than delivering no Metadata Repository, or a weak Metadata
Repository.

Closing Remarks
Data about data. That is the textbook definition of Metadata. Yet, Metadata is so
much more than that. Metadata is the information that provides the context and
meaning of data. Metadata is also the least understood and most under-imple-
mented aspect of data warehouses. By understanding the plight of Fred, Susan, and
Alice, a data warehouse designer can understand how little information is available
in the data of a data warehouse. For example:

Sales = $54,234,293.23
Manufactured Units = 43,524
ROI = 14.4 percent

What do these numbers really mean? Can these numbers be trusted? When a
data warehouse presents data such as this without a Data Dictionary to explain the
numbers, without a context for these numbers, and without a confidence rating of
the numbers, that data warehouse is not answering these questions.

Unfortunately, data warehouse designers and customers tend to think the mean-
ing of the numbers corresponds to their personal interpretation of the name of the
data field, and the context of the numbers is a perfect world where nothing goes
wrong. These assumptions create risks for the data warehouse and the enterprise.
These risks are significantly mitigated by a Metadata Repository solution.

References
	 1.	 Adrienne Tannenbaum, Metadata Solutions: Using Metamodels, Repositories, XML,

and Enterprise Portals to Generate Information on Demand (Boston: Addison-Wesley,
2002).

	 2.	 David Marco, Building and Managing the Meta Data Repository: A Full Lifecycle Guide
(New York: John Wiley & Sons, 2000).

n
n
n

AU6462.indb 275 2/7/08 9:54:20 AM

AU6462.indb 276 2/7/08 9:54:20 AM

277

Chapter 10

Data Warehouse
Customers

Introduction
A data warehouse is like a highway. Both require significant investment. Both have
a return on investment (ROI) that is so diverse as to prevent its quantification. Both
have an almost infinite capacity to allow their cargo to pass through and yet a finite
throughput. And, both will be used by a countless number of customers, most of who
are currently unaware of the existence of either the highway or data warehouse. This
is the challenge of a data warehouse, to meet the needs of myriad customers (Figure
10.1). Some do not yet know they need a data warehouse. Meanwhile, some have firm
and concrete expectations of a data warehouse.

Back in the day, Decision Support Systems were small local databases with a
single user interface. Joey from the second floor would bring a diskette up to the
fourth floor to update the database. With that information and the ability to smell
a shift in customer buying patterns, a manager would make the strategic and tac-
tical decisions necessary to keep the business afloat. Since then, information has
become a strategic weapon. The precision with which information is sliced and
diced by all members of the enterprise has reached an art and science never seen by
Joey from the second floor. The expansive use of information, shared with manag-
ers and workers on the line, has pervaded the enterprise to an extent not seen by
Joey’s manager. This new world of information was partially created by Decision

AU6462.indb 277 2/7/08 9:54:20 AM

278  n  Building and Maintaining a Data Warehouse

So
ur

ce
 D

at
a

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts

M
et

ad
at

a
Ap

pl
ic

at
io

n(
s)

D
at

a Q
ua

lit
y

D
at

ab
as

e
M

et
ad

at
a

D
at

ab
as

e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

RD
BM

S

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

O
LA

P

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

M

et
ad

at
a

Re
po

si
to

ry

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

D
at

ab
as

e
D

es
ig

n

So
ur

ce
 D

at
a

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

O
pe

ra
tio

na
l

Ap
pl

ic
at

io
n

D
at

a Q
ua

lit
y

M
ea

su
re

m
en

ts
M

et
ad

at
a

Ap
pl

ic
at

io
n(

s)

D
at

a Q
ua

lit
y

D
at

ab
as

e
M

et
ad

at
a

D
at

ab
as

e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

Re
la

tio
na

l
D

at
ab

as
e

RD
BM

S

BI
 R

ep
or

tin
g

Pr
ed

efi
ne

d
Re

po
rt

s

In
te

ra
ct

iv
e

Re
po

rt
s

O
LA

P

D
at

a
Q

ua
lit

y
Re

po
si

to
ry

M

et
ad

at
a

Re
po

si
to

ry

EL
T

ET
L

D
at

a
A

cq
ui

si
tio

n
an

d
In

te
gr

at
io

n

D
at

ab
as

e
D

es
ig

n

Fi
gu

re
 1

0.
1 

D
at

a
W

ar
eh

ou
se

 C
us

to
m

er
s.

AU6462.indb 278 2/7/08 9:54:22 AM

Data Warehouse Customers  n  279

Support Systems, growing and integrating, growing and integrating, until some of
them became a warehouse holding the data of the enterprise.

This growth of information from Decision Support Systems on the fourth floor
to Data Warehouses used 24/7 around the globe is the context of Data Warehous-
ing today. Today customers use a data warehouse through various interfaces, for
multiple reasons, and all expect the same thing—subsecond response time. This
expectation has been created by the information infrastructures that surround us
today. Twenty years ago, everyone had to wait until the bank opened to find out
whether or not a check had cleared; the delay was tolerated because it was expected.
Ten years ago, a Web site without graphics required two minutes to load on a
personal computer; the delay was tolerated because it was expected. Today, if an
Internet-enabled cell phone experiences any delay downloading an online bank
account, we feel unnecessarily inconvenienced. And then, we query a data ware-
house and our expectations are framed in the twenty-first century. We expect sub-
second response time, all 1,531 of us who just submitted a query.

For these reasons, a data warehouse team must profile the users of a data ware-
house. The data warehouse team may never associate a name or face with a query.
But, a data warehouse team can associate groups of people, groups of purposes,
groups of usage patterns, and groups of expectations. A data warehouse team must
at least try to profile the customers using the data warehouse. Like the highway, a
data warehouse team may not know all the people using the data warehouse, but
a highway engineer can estimate that 2.5 million cars and 1.4 million trucks and
500 military vehicles will use the highway in a year. Based on that sort of informa-
tion—How many lanes? How wide will the lanes be? How much curvature and
slope should the highway have? How steep can the highway incline? What speed
limit? So, let’s take a look at some of the customers of the data warehouse to see how
they will use the data warehouse.

Strategic Decision Makers
These customers have the longest and strongest history with Decision Support Sys-
tems. Local Strategic Decision Makers want to see the trends and anomalies sur-
rounding the enterprise. These customers have traditionally consumed historical
data because all of history is leading to tomorrow, and they use historical data in
their effort to be the first to see tomorrow.

To achieve this level of analysis, they need historical data using Type II Dimen-
sions. They need to see historical data in its historical context. Their data warehouse,
therefore, must be able to join Fact rows to their historical Type II Dimension rows.
Since these customers are going to look for large and long-running trends, they will
join the Fact tables with the data of greatest duration with the historical Type II
Dimensions. In other words, they are going to join large Fact tables to large Dimen-
sion tables.

AU6462.indb 279 2/7/08 9:54:22 AM

280  n  Building and Maintaining a Data Warehouse

These customers will not use detailed granular data to see long-running trends.
Instead, typically Fact data summarized to a less granular, less detailed form will
provide the long-range information they need. This is fortunate because Summary
tables perform better than Fact tables.

These customers are few, usually only the immediate subordinates of strategic-
level executives. They understand their queries require a lot of churning. Therefore,
fortunately these customers do not expect subsecond response time. They do, how-
ever, expect consistent response time within a tolerable (a few hours?) time frame. If
they feel the data warehouse is not responding to their queries, these are the custom-
ers who can make their displeasure known.

These are not the customers who will sit and stare at an hourglass waiting for
a query to return an answer set. Knowing their queries will churn a lot of data,
these customers expect to submit a query, walk away, and come back after lunch
(or maybe tomorrow) to the answer set. Given the toolset, strategic decision mak-
ers will submit their queries overnight so they don’t have to watch an hourglass all
day.

The bottom line is that these customers will join large Summary tables to Type
II Dimension tables in large data volumes. But, they do not expect these queries
to return a subsecond response time. In fact, these customers will wait until after
lunch, or until tomorrow, to get their answer set back.

Tactical Decision Makers
Tactical Decision Makers have a history that rivals that of the Strategic Decision
Makers. These customers began as the manager on the fourth floor with a single
database with a single interface. They need the detailed data of their business area.
They compile that detailed data into information. In the parable of “seeing the for-
est for the trees,” data is the trees and information is the forest. These customers
have always recognized the need for both data and information. They will do what-
ever is necessary to get the data and information they need. If the data warehouse
does not provide the data and information they need, they will get it somewhere
else.

Typically, these customers are not interested in the long-term trends of the
Strategic Decision Makers. Also, they are not interested in the historical Type II
Dimension or the entire enterprise. They are interested in the state of their business
unit now. Their managers have given them tactical goals and objectives that will
lead to achievement of a strategic plan. The tactical decisions these customers make
require Type I Dimensions, which show the enterprise as it is now because that is
where they operate—now.

Depending on each individual task, these customers may use detailed granular
Fact tables or less-detailed and less-granular Summary tables. Fortunately, these
customers will understand that Summary tables perform better and, therefore, will

AU6462.indb 280 2/7/08 9:54:22 AM

Data Warehouse Customers  n  281

use Summary tables if detailed granular data is not required. But, when the task
requires data sliced in a peculiar way (e.g., productivity by time of day, vendor
delivery time minus scheduled time, throughput by machinist, etc.), these custom-
ers will not hesitate to use the large Fact tables to find what they need.

An enterprise will have many more Tactical Decision Makers. So, while their
queries will have a relatively well-defined scope, more people will submit these
queries. These customers need the data and information from the data warehouse
within their business cycle. The window of opportunity to use the data and infor-
mation from each query is short. So, their use of a data warehouse throughout the
day consists of numerous focused queries in a rapid sequence, all within their busi-
ness day.

The bottom line is that these customers will join large Fact and Summary
tables to Type I Dimension tables in both large and small data volumes. They need
these queries to return a subsecond response time, but will tolerate a subminute
response time. These customers will submit numerous queries in a seemingly rapid
sequence.

Knowledge Workers
Knowledge Workers are a relatively recent addition to the list of data warehouse
customers. These customers have emerged as a logical progression in the world of
Decision Support Systems, which began as a consolidated and consistent source of
data. Data is the raw facts and figures of the business: How many, when, where?
The raw facts and figures in Data provide a mostly objective view of the business,
but only the business. Next, Decision Support Systems began to juxtapose and
calculate Data to derive Information. Information is the set of observations and
conclusions that can be drawn from the data. Today, Knowledge is the next frontier
of Decision Support Systems. The search for Knowledge is the search for the science
behind the Information. Science cannot always tell us why the universe works the
way it does, but science can tell us how the universe works the way it does.

In the enterprise, Knowledge Workers are the explorers. They understand the
enterprise and its business and they understand the data. Some would call them the
Power Users. Within the business of the enterprise, these are the people to whom
the business people turn for help understanding the data of their business. Knowl-
edge Workers will use the data warehouse to maximize their ability to expand the
knowledge base of the enterprise. Thus, these customers will use every feature and
function within a data warehouse with no consistent pattern.

Knowledge Workers will occasionally need the data of the data warehouse
reformatted to allow them to derive knowledge from the data warehouse. They may
need data expressed in time intervals not included in the data warehouse. They
may need data summarized by odd sets of attributes. They may need a Data Mart

AU6462.indb 281 2/7/08 9:54:22 AM

282  n  Building and Maintaining a Data Warehouse

constructed specifically to answer a single question. Or, they may need a flat file of
time series data for a Data Mining exercise.

Fortunately, Knowledge Workers understand that their potential to answer
questions is directly linked to the data warehouse’s ability to help them. The only
way to make a symbiotic relationship succeed, such as this one, is by cooperation.
For that reason, Knowledge Workers also understand how to cooperate with the
data warehouse. These are the customers who know the members of the data ware-
house team and their phone extensions. These are the customers who know which
data warehouse team member to call in any given situation dealing with the data
warehouse.

The bottom line is that Knowledge Workers will consume all aspects of a data
warehouse with no consistent usage pattern. An enterprise usually has only a few
Knowledge Workers. They expect a higher level of personal cooperation and they
get it because Knowledge Workers are among the best allies for a data warehouse.

Operational Applications
The marriage of Data Warehouses and Operational Applications was driven more
by politics and ROI than data. Considering that much of what happens in an
enterprise is driven by politics and ROI, this marriage of Data Warehouses and
Operational Applications is not surprising, and not all bad or all good.

The advantages of Operational Applications as customers are significant and
real.

A data warehouse team can point to their Operational Application customers
as a real and tangible ROI for the enterprise.
Leveraging the Extract, Transform, and Load (ETL) infrastructures of a data
warehouse, the enterprise can increase the speed to market of new applica-
tions and decrease the infrastructure costs of new applications.
A data warehouse team can point to its operational customers as a justifica-
tion for continued and expanded investment in the data warehouse, which
will benefit all the customers of the data warehouse.
An Operational Application can cause a data warehouse team to increase the
discipline and rigor of the data warehouse. By enforcing Data Quality Service
Level Agreements (SLA), an operational customer can force a data warehouse
team to achieve data quality service levels (e.g., latency, completeness, meta-
data, data quality, etc.) that had previously been lacking.

The disadvantage of an Operational customer is the syndrome of sitting with
an elephant. Where does an elephant sit? Anywhere it wants. If an Operational
Application has more clout, prestige, or ROI than the data warehouse, the mem-
bers of the operational team will likely try to dictate how data will be stored in and

n

n

n

n

AU6462.indb 282 2/7/08 9:54:23 AM

Data Warehouse Customers  n  283

reported from the data warehouse. At that point, the data warehouse is sitting with
an elephant.

Unfortunately, this becomes a political discussion in the context of a Decision
Support System. In these situations, the Data Warehousing Philosophy provides
the guiding principles. A data warehouse is a nonvolatile, time-variant, long-term
investment for the enterprise. The Operational Application will be replaced in five
years (a normal application life cycle).

For these reasons, the marriage of Data Warehouses and Operational Applica-
tions best occurs in a Data Mart. The Operational Application can have their data
in any form they want. The other data warehouse customers (Strategic, Tactical,
and Knowledge) are buffered from the activity of the Operational Application.
Without a buffer between Operational Applications and data warehouse customers,
the Operational Applications will eventually gain the lion’s share of design deci-
sions and performance. When that happens, the value of the data warehouse to the
enterprise has diminished.

The bottom line is that Operational Applications as customers can increase
the ROI and visibility of a data warehouse causing a data warehouse to increase its
rigor and discipline. Simultaneously, an Operational Application customer can be
an elephant in the parlor. A data warehouse team must be careful not to allow an
Operational Application to overwhelm the data warehouse.

External Partners
An enterprise will normally agree to share data with other enterprises or organiza-
tions. This data sharing can include marketing, productivity, or demographic data.
Since a data warehouse has already gathered and integrated this data, a data ware-
house is an obvious source of data for sharing with External Partners.

External Partners are the easiest of data warehouse customers. Their require-
ments are known and documented. The data they need can probably be generated
by a batch job and distributed by another batch job. Any additional requests for
data, because they come from outside the enterprise, must first be negotiated by
enterprise management. This negotiation usually filters out frivolous requests.

Typically, External Partners are interested in the state of the enterprise as it
is now. This means their queries will probably use the Type I Dimension tables,
which consumes fewer resources than the Type II historical Dimensional tables.
Also, External Partners are not given access to the detailed granular data of the
enterprise. So, rather than querying the fine grain Fact tables, their queries will use
Summary tables, which also consume fewer resources.

The bottom line is that External Partners are the easiest of customers. Their
queries are predefined, optimized, and scheduled in batch jobs. This allows a data
warehouse team to plan the queries for External Partners at a time and condition
that has the least impact on other data warehouse customers.

AU6462.indb 283 2/7/08 9:54:23 AM

284  n  Building and Maintaining a Data Warehouse

Electronic Data Interchange (EDI) Partners
Electronic Data Interchange (EDI) Partners receive data from the enterprise on
either a near real-time, or at least frequent batch, basis. Typically, EDI Partners are
the suppliers and vendors in the critical path of a supply chain. EDI Partnerships
streamline the speed to market and low overhead of Just In Time (JIT) manufac-
turing and distribution. Rather than wait until the enterprise needs 500,000 bolts,
the enterprise periodically shares its consumption and balance on hand of bolts
with an EDI Partner. On the other side of this data sharing, the EDI Partner agrees
to monitor EDI data so the EDI Partner can deliver 500,000 bolts at the precise
moment the 500,000th bolt has been consumed by the enterprise, rendering an
empty bolt bin.

A data warehouse may be tasked with the responsibility of sharing data with
EDI Partners. That assignment includes two functions. First, the data warehouse
must be able to extract operational data from the source system at a frequency equal
to, or faster than, the frequency of the EDI data sharing. If data is gathered every
hour, sharing that data every 15 minutes makes no sense. Conversely, if the data is
gathered every 5 minutes, then sharing that data every 15 minutes does make sense.
Second, the data warehouse must be able to return an EDI query and distribute
the result set at a frequency equal to, or faster than, the frequency of the EDI data
sharing.

EDI Partners have precise and documented data requirements. Their queries are
known, optimized, and scheduled. These render EDI Partners relatively easy cus-
tomers. On the flip side, however, if a runaway query is allowed to consume the data
warehouse Relational Database Management System (RDBMS), the EDI Partner
will not receive the required data on schedule, which will defeat the whole JIT sup-
ply chain concept. That sort of visibility does not bode well for a data warehouse.

The bottom line is that EDI Partners can be a wonderful customer for a data
warehouse. Their data needs are known, documented, and optimized. Their queries
run on a schedule that is probably more frequent than any other customer. But, if
a data warehouse is not able to support the required frequency then the data ware-
house would be hindering, rather than helping, the enterprise achieve its business
goals.

Data Warehouse Plan
A data warehouse does not exist for its own existence. A data warehouse exists to
provide data information to the enterprise, its members, and partners. A data ware-
house designer, therefore, must incorporate a plan to meet the data and information
needs of the enterprise from the beginning of the data warehouse design, and carry
that focus all the way through to the implementation of the data warehouse. A data
warehouse comprised of 25 years of Type II time-variant Third Normal Form data

AU6462.indb 284 2/7/08 9:54:23 AM

Data Warehouse Customers  n  285

is a truly magnificent testament to relational technology and design—and futile. In
data warehousing, bigger is not better; rather, closer (to the customers’ data needs) is
better. Bigger is easier, but not better. In carpentry, this called “hitting a nail with a
sledgehammer.”

Strategic Decision Makers
These customers will join large Summary tables to Type II Dimension tables in
large data volumes. But, they do not expect these queries to return a subsecond
response time. In fact, these customers will wait until after lunch, or until tomor-
row, to get their answer set back.

Strategic Decision Makers need Type II Dimension history data, going as far
back in time as possible. They also need Fact and Summary tables that join well
with the Type II Dimension history tables. The useful history goes only as far back
as the shallowest table because the Strategic Decision Makers will switch back and
forth between Summary and Fact tables as they investigate cause and nature of the
trends and patterns they find.

For the Strategic Decision Makers, bigger is better because they are looking at
the bigger picture. The ability to join Type II Dimension history tables will be key
to their success.

Tactical Decision Makers
These customers will join large Fact and Summary tables to Type I Dimension
tables in both large and small data volumes. They need these queries to return a
subsecond response time, but will tolerate a subminute response time. These cus-
tomers will submit numerous queries in a seemingly rapid sequence.

These customers don’t need the overhead of a large Type II time-variant data
warehouse. They need the speed and agility of a smaller Type I Dimensional Opera-
tional Data Store (ODS). By giving them a smaller, faster architecture, they will be
able to answer the tactical questions they are asking. They are not asking strategic
questions, and do not need strategic data to answer the strategic questions they are
not asking. By segregating tactical data and tactical queries, they will not interfere
with those who are asking the big strategic questions.

The ETL application feeding their Type I Dimensional ODS should operate in
either real-time or near real-time (i.e., very frequent batch jobs). The smaller size of
the ODS will make the frequent update cycle feasible. The frequent updates will
provide the most current data possible.

Knowledge Workers
Knowledge Workers will consume all aspects of a data warehouse with no consis-
tent usage pattern. An enterprise usually has only a few Knowledge Workers. They

AU6462.indb 285 2/7/08 9:54:23 AM

286  n  Building and Maintaining a Data Warehouse

expect a higher level of personal cooperation and they get it because Knowledge
Workers are among the best allies for a data warehouse.

Knowledge Workers need Type II Dimension history and granular detailed
Fact tables. Knowledge Workers will use these tables directly for some of their
analysis, but, for other analysis, they will use these tables to create Data Marts or
datasets specifically for Data Mining efforts. This will allow them to create attri-
butes and entities that don’t yet exist from those that do exist. When helping them
set up these Data Marts and Data Mining datasets, the important skill is listening,
not so much to what they are saying they want, but the meaning of what they want.
At that level of analysis, where few members of the enterprise are able to venture,
even the Knowledge Workers can get one or two of the data elements wrong.

Operational Applications

Operational Applications as customers can increase the ROI and visibility of a data
warehouse causing a data warehouse to increase its rigor and discipline. Simulta-
neously, an Operational Application customer can be an elephant in the parlor. A
data warehouse team must be careful not to allow an Operational Application to
overwhelm the data warehouse.

For Operational Applications, the keys to success are Data Quality and RDBMS
performance. Unfortunately, an Operational Application is not going to respond
to Data Quality confidence levels. So, the data warehouse team should diligently
identify and repair any processes that are out of control. As processes are found to
be out of control and repaired, the data warehouse team should communicate these
developments with the operational team.

The required RDBMS performance is usually best achieved by an ODS or Data
Mart. For each situation, the distinction is the data required by the Operational
Application. If the ODS can meet the needs of the Operational Application, then
a Data Mart is not required. If, however, the ODS cannot meet the needs of the
Operational Application, then a Data Mart is required.

External Partners

External Partners are the easiest of customers. Their queries are predefined, opti-
mized, and scheduled in batch jobs. This allows a data warehouse team to plan the
queries for External Partners at a time and condition that has the least impact to
other data warehouse customers.

Data for External Partners is usually provided via a batch job. The only chal-
lenge is to make sure the batch job that creates and delivers the data completes it by
the required date and time.

AU6462.indb 286 2/7/08 9:54:23 AM

Data Warehouse Customers  n  287

Electronic Data Interchange (EDI) Partners
EDI Partners can be a wonderful customer for a data warehouse. Their data needs are
known, documented, and optimized. Their queries run on a schedule that is prob-
ably more frequent than any other customer. But, if a data warehouse is not able to
support the required frequency, then the data warehouse would be hindering, rather
than helping, the enterprise achieve its business goals.

EDI Partners typically require the most current and up-to-the-minute data pos-
sible. The business cycles typically associated with EDI require that the data move
very quickly. For these customers, the ODS is the only choice. An ODS has the
current and up-to-the-minute data, and an ODS is able to return queries of simple
to moderate complexity quickly.

Closing Remarks
All of these group profiles and data needs are based on a normal enterprise. Your
enterprise may have some or none of these groups. Your enterprise may have all
these groups, and more. The point is to plan for the groups of customers in your
enterprise.

What is their business function?
What data and information do they need?
How do they need that data and information delivered?
What are the points of failure and success?
How can the data warehouse avoid the points of failure while achieving the
points of success?

Understanding the data warehouse customers in this way enables a data ware-
house team to plan to meet the customers’ needs and success points. All too often,
data warehouse teams work diligently to build a data warehouse without account-
ing for the needs of the customers. In the twenty-first century, we can no longer get
away with building a large database, expecting that if we build it, they will come.
Instead, we have to build a Decision Support solution that is simultaneously close
to the needs of the customers and close to the Data Warehousing Philosophy.

n
n
n
n
n

AU6462.indb 287 2/7/08 9:54:23 AM

AU6462.indb 288 2/7/08 9:54:24 AM

289

Chapter 11

Future of Data
Warehousing: An Epilogue
Introduction
For years, Data Warehousing was the future of Decision Support. Now, as Data
Warehousing enters its adolescence, we consider the future of Data Warehousing.
Fortunately, Data Warehousing has proven itself scalable and flexible enough to
have a future. Very few technologies pass their 10th birthday without rendering
themselves obsolete. Data Warehousing has demonstrated the ability to maintain
its core competence and support an ever-increasing Decision Support audience.

Scalability and Performance
The vendors who create Relational Database Management System (RDBMS) plat-
forms for Data Warehousing continue to extend the possible data volumes, without
a loss in query performance, in every budget range. Companies that can afford to
invest multiple millions of dollars in RDBMS hardware will always be able to scale
their data warehouse. But, for enterprises with lesser budgets, the ability to scale
their data warehouse is more feasible every year. As scalability and performance
improve annually, the feasibility of building and expanding a data warehouse in
small- to mid-size companies continues to grow. As this trend continues, the infor-
mation and knowledge available via Data Warehousing will become available to
those same small- to mid-size companies.

AU6462.indb 289 2/7/08 9:54:24 AM

290  n  Building and Maintaining a Data Warehouse

Real-Time Data Warehousing
RDBMS and Asynchronous Transfer Mode (ATM) technologies now include the
capacity to support a continuous stream of data for extended periods of time. With
that capacity, RDBMS vendors give a lot of attention to Real-Time Data Warehous-
ing. They advertise the ability to have up-to-the-moment real-time data in a data
warehouse. For Real-Time Data Warehousing, the weak link is Extract, Transform,
and Load (ETL). ETL applications are now catching up with RDBMS and ATM
technologies. As the ETL applications catch up, the quality of real-time data will
improve. For now, real-time ETL applications focus so much on the mechanics of
moving a stream of data that they forget the basics and principles learned in batch
ETL jobs. This gap is closing rapidly as real-time ETL incorporates more and more
of the rigor and discipline of batch ETL.

When Real-Time Data Warehousing is seen as a peer among equal-yet-different
Data Warehousing methodologies, data warehouse teams will be better equipped to
weigh the cost, benefit, and return on investment (ROI) of Real-Time Data Warehous-
ing. When that happens, data warehouse teams will be as confident assessing the need to
not use real-time as they are assessing the need to use Real-Time Data Warehousing.

Increased Corporate Presence
Success begets success. Data Warehousing will become, to some extent, a victim
of its own success. Data Warehousing has proven to be a stable and value-adding
source of enterprise data. Thus, operational systems have begun, and will continue,
to leverage the data in a data warehouse. This development saves the operational
system from the overhead of gathering and integrating its own data. But, it foists
onto the data warehouse the Service Level Agreements (SLA) promised by the oper-
ational system. And, it foists onto the operational system the gaps in data quality
from the data warehouse.

Both environments, Operational and Data Warehousing, will realize this is
not a short-term trend. Rather, this is the way of the future. They will learn how
to mutually resolve their constraints. Data Warehousing will learn how to absorb
the SLAs promised by the operational system. Operational systems will learn how
to respond to Data Quality confidence levels and data remediation (e.g., delivery
of missing data, repair of corrupted data, etc.). As they learn how to work together,
Operational applications will be able to continue being operational, and Data
Warehouses will be able to continue being informational.

AU6462.indb 290 2/7/08 9:54:24 AM

Future of Data Warehousing  n  291

Back to the Basics
While RDBMS vendors advertise their ability to scale a data warehouse ever larger,
Data Warehouses continue to grow larger. The size and scale of Data Warehouses
will continue to grow until they expand beyond their ability to meet the needs of the
Tactical, Operational Application, and EDI customers. When that happens, data
warehouse teams will go back to the basics, by reincorporating smaller Operational
Data Store (ODS) and Data Mart solutions in their Data Warehouse. This will pro-
vide a solution to the Tactical, Operational Application, and EDI customers with-
out impeding the improvements in Data Warehouse scale, size, and performance.

Data Quality
Data Quality is the next frontier in data warehousing. For the past decade, advances
in technology have influenced the progression of data warehousing. Large data vol-
umes, continuous throughput, complex application logic, and Web-based processes
have expanded the scope and boundaries of data warehouses, which also increases
the exposure to risks. The data warehousing community has done very well to
assimilate technology changes.

In the coming years, the data warehousing community will strive to master
the technology changes as they affect the quality of data in a data warehouse.
When Structured COBOL and Customer Information Control System (CICS)
screens were first introduced, they required an initial adjustment to assimilate their
functions and features. Then, a subsequent adjustment occurred as programmers
mastered Structured COBOL and CICS screens, which increased the quality and
robustness of the resulting data. Likewise, the data warehousing community has
begun to master the effects and impacts of recent technology changes. Soon, data
warehouses will be able warranty the quality of all data, regardless of its source or
the technology by which the source data arrived.

AU6462.indb 291 2/7/08 9:54:24 AM

AU6462.indb 292 2/7/08 9:54:24 AM

293

Bibliography

Agosta, Louis. The Essential Guide to Data Warehousing. Upper Saddle River, NJ: Prentice
Hall PTR, 2000.

Barbusinski, Les, Chuck Kelley, and Joe Oates. What does granularity mean in the context
of a data warehouse and what are the various levels of granularity? DM Review (2002).

Berson, Alex, and Stephen J. Smith. Data Warehousing, Data Mining, and OLAP, McGraw-Hill
Series on Data Warehousing and Data Management. New York: McGraw-Hill, 1997.

Beyer, Mark. Personal communication, 2002.
Bisconti, Ken. “Integrating BI tools into the enterprise portal. DM Review (2005).
Deming, W. Edwards. Out of the Crisis. Cambridge, MA: Massachusetts Institute of Tech-

nology Center for Advanced Engineering Study, 1986.
Eckerson, Wayne W. The real value of BI search. TDWI (2007).
Elder, John F., and Dean W. Abbott. A comparison of leading data mining tools. Fourth

International Conference on Knowledge Discovery and Data Mining, New York, August
1998, http://www.datamininglab.com/pubs/kdd98_elder_abbott_nopics_bw.pdf.

English, Larry. Data Stewardship: Accountability for the Information Resource, TDWI World
Conference: The Data Warehousing Institute, Renton, WA, 2002.

English, Larry P. Improving Data Warehouse and Business Information Quality: Methods for
Reducing Costs and Increasing Profits. New York: John Wiley & Sons, 1999.

Esteves, Bruno Miguel Craveiro, and Ricardo Miguel Bento Mateus. Data mining under-
stand, model and learn—An approach to the management of data mining projects.
DM Review (2004).

Harkins, Susan. Relational databases: The untold story. ZDNet Australia (2003).
Hay, David C. Data Model Patterns: A Metadata Map, Morgan Kaufmann Series in Data

Management Systems. Amsterdam, Boston: Elsevier–Morgan Kaufmann, 2006.
Imhoff, Claudia, Nicholas Galemmo, and Jonathan G. Geiger. Mastering Data Warehouse

Design: Relational and Dimensional Techniques. Indianapolis, IN: John Wiley &
Sons, 2003.

Information Discovery, Inc. A characterization of data mining technologies and processes
by Information Discovery, Inc. DM Review (2004).

Information Discovery, Inc. OLAP and data mining: Bridging the gap. DM Review (1999).
Information Discovery, Inc. The sandwich paradigm for data warehousing and mining.

DM Review (1999).
Information Discovery, Inc. The top 10 data mining questions. DM Review (1999).

AU6462.indb 293 2/7/08 9:54:24 AM

294  n  Bibliography

Inmon, William H. Building the Data Warehouse, 2nd ed. New York: John Wiley &
Sons, 1996.

Inmon, William H. Building the Operational Data Store, 2nd ed. New York: John Wiley
& Sons, 1999.

Inmon, William H., and Richard D. Hackathorn. Using the Data Warehouse. New York:
John Wiley & Sons, 1994.

Inmon, William H., Claudia Imhoff, and Ryan Sousa. Corporate Information Factory. New
York: John Wiley & Sons, 1998.

Inmon, William H., R. H. Terdeman, and Claudia Imhoff. Exploration Warehousing: Turning
Business Information into Business Opportunity. New York: John Wiley & Sons, 2000.

Kimball, Ralph. The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Devel-
oping, and Deploying Data Warehouses. New York: John Wiley & Sons, 1998.

Kimball, Ralph. A dimensional modeling manifesto—Drawing the line between dimen-
sional modeling and ER modeling techniques. DBMS (1997).

Kimball, Ralph, and Joe Caserta. The Data Warehouse ETL Toolkit: Practical Techniques for
Extracting, Cleaning, Conforming, and Delivering Data. Indianapolis, IN: John Wiley
& Sons, 2004.

Lange, Kathy. Differences between statistics and data mining. DM Review (2006).
Lucado, Brandon. Aligning your BI environment with SOX internal controls. DM

Review (2007).
Marco, David. Building and Managing the Meta Data Repository: A Full Lifecycle Guide.

New York: John Wiley & Sons, 2000.
Marco, David. Top 10 Questions to Ask/Mistakes to Avoid When Building a Data Warehouse

or a Meta Data Repository. Palos Hills, IL: Enterprise Warehousing Solutions, 2001.
Nisbet, Robert A. Data mining tools: Which one is best for CRM? Part 1. DM Review (2006).
Okell, Janine. Neural networks versus CHAID. DM Review (1999).
Olson, Jack E. Data Quality: The Accuracy Dimension. San Francisco: Morgan

Kaufmann, 2003.
Parsaye, Kamran. Data mines for data warehouses. DM Review (1999).
Peco, Mark. TDWI Data Warehousing Concepts and Principles: An Introduction to the Field

of Data Warehousing, TDWI World Conference: The Data Warehousing Institute,
Renton, WA, 2004.

Pyle, Dorian. Business Modeling and Data Mining. Amsterdam, Boston: Morgan Kaufmann
Publishers, 2003.

Reeves, Laura. Dimensional Modeling Beyond the Basics: Intermediate and Advanced Techniques,
TDWI World Conference: The Data Warehousing Institute, Renton, WA, 2002.

Russom, Philip. TDWI: BI search and text analytics: Best practices in search. DM
Review (2007).

Scofield, Michael. Understanding and Reconciling Source Data for ETL and Data Warehousing
Design, TDWI World Conference: The Data Warehouse Institute, Renton, WA, 2002.

Silvers, Fon. Deming, data quality and ETL, Part 1: Point 3—Cease dependence on Inspec-
tion.” DM Review (2006).

Silvers, Fon. Deming, data quality and ETL, Part 2: Point 5—Constant improvement. DM
Review (2006).

Silvers, Fon. Deming, data quality and ETL: Statistical process control. dataWarehouse.
com (2006).

AU6462.indb 294 2/7/08 9:54:25 AM

Bibliography  n  295

Silverston, Len. The Data Model Resource Book, Vol. 1. Rev. ed. Vol. 1. New York: John
Wiley & Sons, 2001.

Silverston, Len. The Data Model Resource Book, Vol. 2. Rev. ed. Vol. 2. New York: John
Wiley & Sons, 2001.

StatSoft, Inc. CHAID analysis. StatSoft, Inc., http://www.statsoft.com/textbook/stchaid.html.
StatSoft, Inc. Data mining techniques. http://www.statsoft.com/textbook/stdatmin.html.
Tannenbaum, Adrienne. Metadata Solutions: Using Metamodels, Repositories, Xml, and Enter-

prise Portals to Generate Information on Demand. Boston: Addison-Wesley, 2002.
TDWI Data Acquisition: Techniques for Extracting, Transforming and Loading Data. The

Data Warehouse Institute, Renton, WA, 2001.
Thousand, Cindy. Logical data modeling concepts. ed. Information Resource Management

Unit of WisDOT: http://enterprise.state.wi.us, 2002.
Weik, Martin H. The ENIAC story—The world’s first electronic digital computer was

developed by army ordnance to compute World War II ballistic firing tables. (1961).

AU6462.indb 295 2/7/08 9:54:25 AM

AU6462.indb 296 2/7/08 9:54:25 AM

297

A

Accuracy, 231, 240
Algorithm, 219–221
Analysis, 207
Associative Tables, see Data Model, Third

Normal Form, Associative Tables
Assumptions, 158–161
Asynchronous messaging, 180, 290
Attribute, see Data Model, Logical, Attribute
Attribute, see Data Model, Physical, Attribute

B

Begin Conditions, 161–163
Bell Curve, 219
Benchmarks, 216
Binary Decision Box, 227
BI Reporting, see Business Intelligence

Reporting
Bridge Dimension, see Data Model,

Dimensional, Bridge Dimension
Bridge Table, see Data Model, Dimensional,

Bridge Dimension
Business Entity, 56, 59, 60, 66
Business Intelligence Reporting, 7, 55, 142,

199, 200, 234, 245–256
	 Application, 207
		 Architecture, 208
	 Connectivity, 208
	 Methods, 209
		 Archive, 213
		 Interactive Reports, 209–211
		 Internet, 203, 214, 291
		 Predefined Reports, 209

Index

		 Print, 213
		 Pull, 213
		 Push, 213
		 Real-time, 214
	 Operational Reporting, 214
	 Report Searching, 217
	 Reporting Around the Event, 216
	 Success Factors, 199
		 Ability to Answer Questions, 203
		 Ad Hoc Processes, 206, 209, 210,

212
		 Alignment with the Data Model,

202–203
		 Analysis, 207
		 Availability, 204
		 Data, 206
		 Flexibility, 203–204
		 Information, 207
		 Mobility, 203
		 Performance, 201
		 Predefined Processes, 206, 209
		 Presentation of the Data Architecture,

202
		 Proactive Processes, 205
		 Reactive Processes, 205
		 User Interface, 201–202
Business Metrics, 216
Business Process, 56–58, 66
Business Rules, 40, 149, 190, 195, 223, 244
	 Cross Dataset, 41, 244
	 Cross-table, 151
	 Intra-dataset, 41, 244
	 Intra-record, 41, 244
	 Intra-row, 150
	 Intra-table, 151

AU6462.indb 297 2/7/08 9:54:25 AM

298  n  Index

C

Capacity, see Relational database, Data volume
Capacity, see Relational database, Throughput
Cardinality, 63–67
Categorical Question, 227–230
Categorical Variable, 224
Change, 203–204
COBOL, 45
Codd, Dr. E. F., 45–46
Communication, 246, 247, 252, 253
Compare Candidate to Universe, 189–190
Compare Universe to Universe, 189–190
Competitive Advantage, 217, 225
Completeness, 240, 243, 244
Compound Variable, 223
Computer, history of, 1
Conceptual Data Model, see Data Model,

Conceptual
Confidence, 225
Conformed Dimensions, see Data Model,

Dimensional, Conformed
Dimensions

Conformed Dimensions, see Data Model,
Third Normal Form, Conformed
Dimensions

Connectivity, see Relational database,
Connectivity

Corporate Information Factory, 2
Correlation, 230, 231
Cost of Ownership, 73, 84, 96, 172, 251–253
Coverage, 231
CRM, see Customer Relationship Management
Cube, 210–211
Customer Education, 245
Customer Relationship Management, 215, 258

D

Data, 7, 206–207, 281–282
	 Anomalies, 174–176, 194–196
	 Automated Programmatic Inspection,

174–176
	 Automated Programmatic Update, 176
	 Changes in State, 262, 264
	 Control, 174, 176, 177, 185, 186
	 Creation, 173–177
	 Flat File, 179
	 Incomplete, 194–195
	 Load, 190–191
		 Control Mechanism, 190–191

	 Misstated, 195
	 Names, 171–172, 183–185
	 Obsolete, 195
	 Outliers, 222
	 Owning, 172–173
	 Preparation, 222
	 Redundant, 195
	 Relational table, 179
	 Sample Bias, 222–223
	 Sharing, 172–173
	 Unrecorded, 196
	 Update, 182–186
	 XML, 179
Data Architecture, 55, 126, 142
	 Aggregate, 134, 182, 193
	 Data Mart, 128–130, 141, 202, 283, 286,

291
		 Physical, 130
		 Views, 130
	 Enterprise Data Warehouse, 126–129, 141,

202, 234, 285, 291
	 Operational Data Store, 5, 130–132, 141,

181, 202, 214, 234, 270, 285, 287,
291

	 Summary, 134, 182, 193
Data Definition, 18
Data Definition Language, 56
Data Flow Diagram, 37–39, 141
Data Integration, 7, 13–14, 69–70, 74, 90, 99,

116, 127, 131
	 Form, 2, 14, 70–71
	 Function, 2, 14, 70–71
	 Grain, 2, 15, 17, 29-30, 70-71, 76, 86, 93,

115, 141, 187, 188, 189, 192, 193,
280, 281

Data Mapping, 148–151, 244
Data Mart, see Data Architecture, Data Mart
Data Mining, 217, 223–224, 234, 286
	 Activities, 222
		 Data Cleansing, 222
		 Data Inspection, 223
	 Algorithm, 225, 226, 230
	 CHAID, 228–230
	 Confirmatory Analysis, 217, 225
	 Decision Tree, 227–228
	 Exploratory Analysis, 217, 225
	 Genetic Algorithm, 231–233
	 Nearest Neighbor, 230–231
	 Neural Network, 226–227
		 Learn, 226
	 Rule Induction, 231

AU6462.indb 298 2/7/08 9:54:26 AM

Index  n  299

	 Tool, 221
		 Criteria, 221
Data Model, 53, 56, 126, 142, 242, 245
	 Conceptual, 55–60, 61, 66, 67, 68, 69
	 Dimensional, 2, 4 74, 84, 88–91, 95, 125,

135
		 Bridge Dimension, 86
		 Conformed Dimensions, 84, 90
		 Dimensions, 74–78, 83, 84, 86, 88, 90,

91
		 Fact Result Set, 86–87
		 Factless Fact, 87
		 Facts, 74–77, 83, 84, 86, 91, 95
		 Junk Dimensions, 85–86
		 Snowflake Schema, 88
		 Star Schema, 75
	 Logical, 55–56, 60–68, 69, 74, 147, 202,

203
		 Attribute, 62, 67
		 Entity, 62–63, 65
		 Justification, 68
		 Key, 61–63, 65, 187–189
	 Methodology, 55–62
	 Physical, 56, 61, 69, 71, 73, 74, 147, 202,

203, 204
		 Key, 61, 187–189
	 Recursive, 116–125, 135
	 Symbols, 63, 64, 69
	 Third Normal Form, 4, 90–101, 115, 125,

135
		 Associative Tables, 97, 98, 102–114
		 Dimension Attributes, 97, 99, 102–114
		 Dimensions, 91, 95–97, 102–116
		 Facts, 91, 93–97, 102–116
Data Modeler, 68
Data Profile, 33, 37–40, 141, 147, 148, 169, 223
	 Data Model of the Target System, 147
	 Inventory of Data Elements, 34, 147
		 Domain, 34
		 Format, 34
		 Frequency, 34–35
		 Name, 34
		 Range, 34
	 Inventory of Data Entities, 35, 147
		 Combined Entity, 36
		 Core Entity, 35
		 Logical Entity, 36
	 Inventory of Data Stores, 33, 34
		 Databases, 33
		 Directories, 33
		 Files, 33

		 Partitions, 33
		 Servers, 33
Data Quality, 9, 41, 164, 170, 237, 258, 286,

290, 291
Data Quality Measurement, 256–258
Data Quality Reporting, 256
Data Quality Repository, 238, 253, 254
	 Conformed Dimensions, 254, 255
	 Data Retention, 253
	 Fact Table, 254, 255
	 Problem Determination, 253, 254
Data Quality Service Level Agreement, 144,

145, 149, 151, 157, 175, 176, 240,
241, 246, 282

Data Segregation, 128
Data Sharing, 215
Data State Diagram, 37, 38, 40, 141, 148
Data Stewardship, 247, 258
Data Storage, 4, 29, 43, 96, 166, 167
Data Warehouse Architecture, 19
Data Warehouse Concepts, see Data Warehouse

Philosophy
Data Warehouse Customers, 12–16, 18, 41, 42,

47, 48, 53, 55, 72, 126, 128, 130,
134, 135, 142, 143, 144–148, 181,
193, 198, 201–213, 237, 239, 247,
248, 249, 250, 251, 252, 253, 262,
272, 273, 275, 277–287, 290, 291

Data Warehouse Design, 12, 142, 144
Data Warehouse Education, 245
Data Warehouse Lifecycle, 19
Data Warehouse Philosophy, 11, 69, 74, 283
Data Warehouse Plan, 284–285
Data Warehouse Principles, see Data Warehouse

Philosophy
Data Warehousing community, 4
Database Design, 53, 55
Dates, see Entity Data, Dates
Dates, see Metadata, Dates
DDL, see Data Definition Language
Decision Box, 228
Decision Making, 216
Decision Support Systems, history of, 1, 2, 90,

133, 152, 216, 277, 279, 280, 281,
289

Decision Tree, 228–230
Default Value, 248, 249
Deming, W. Edwards, 219, 237, 239, 241, 256
Dependent Variable, 218, 220, 221, 223, 225,

227, 228, 229, 230, 231, 233
Detail, Level of, 29

AU6462.indb 299 2/7/08 9:54:26 AM

300  n  Index

Dimensional Data Model, see Data Model,
Dimensional

Dimensions, 17, 71, 81, 82, 83, 97, 113, 114,
122, 269, 279, 280, 281, 283, 284,
285, 286

	 Type 1, 17, 71, 81, 82, 83, 97, 113, 114, 122,
280, 281, 283, 284, 285

	 Type 2	, 17, 71, 81, 82, 113, 114, 122, 269,
279, 285, 286

	 Type 3	, 17, 71, 83, 114, 125
Dimension Table, see Data Model,

Dimensional, Dimensions
Dimension Table, see Data Model, Third

Normal Form, Dimensions
Direct Requirements, see Requirements, Direct
Distribution, 224
Domain, 243–244
Drill Down, 9
Drill Up, 9
Drilling, 212–213
Dynamic Environment, 203, 204

E

EDI, see Electronic Data Interchange
EDW, see Data Architecture, Enterprise Data

Warehouse
Electronic Data Interchange, 215, 284, 287
Electronic Numerical Integrator and Computer,

43
ELT, see Extract, Load and Transform
End Conditions, 164
ENIAC, see Electronic Numerical Integrator

and Computer
Enterprise, 11, 12, 15, 18, 19, 21, 23, 70, 71, 85,

86, 205, 216
Enterprise Data, 12–13
Enterprise Data Warehouse, see Data

Architecture, Enterprise Data
Warehouse

Entity, see Data Model, Logical, Entity
Entity, see Data Model, Physical, Entity
Entity Data, 25, 71, 72, 74, 141, 224
	 Absolute Arithmetic, 26, 28
	 Alphanumeric, 27, 29, 141
	 Arithmetic, 26, 27, 141
	 Dates, 80
	 Grain, 29
	 Latency, 30, 141
	 Logical, 26
	 Numeric Non-Arithmetic, 27, 28, 29, 141

	 Physical, 25, 26
	 Relative Arithmetic, 27, 28
Event Data, see Transaction Data
Expectations, 239, 240, 241, 242
Explicit Requirements, see Requirements,

Direct
Extensibility, see Relational database,

Extensibility
External Partners, 283, 286
Extract, Load and Transform, 152, 155, 156
	 Advantages, 155
	 Architecture, 156
	 Disadvantages, 155
	 Physical Design, 152, 155
Extract, Transform and Load, 7, 39, 131, 133,

139, 140, 141, 197, 198, 242, 243,
244, 245, 246, 247, 248, 250, 251,
252,253, 255, 256, 258, 264, 265,
268, 269, 273, 282

	 Architecture, 152, 153, 154
	 Design Principles, 155
	 Functions, 179
		 Changed Data Capture, 185–190
		 Data Warehouse-Level Transformation,

184–185
		 Dataset-Level Transformation, 182
		 Dimension Aggregation, 193
		 Extract Data from a Contiguous

Dataset, 179–180
		 Extract Data from a Data Flow,

180–182, 290
		 Load Data from a Data Flow, 190–191,

290
		 Load Data from a Stable and

Contiguous Dataset, 190
		 Look-Up, 185
		 Row-Level Transformation, 182
		 Surrogate Key Generation: Intra-Data

Warehouse, 185
		 Surrogate Key Generation: Intradataset,

183–184
		 Transaction Summary, 191–193
	 Key, 147, 187, 188, 189
	 Physical Design, 149, 152, 153
	 Process Principles, 169 -170
		 Principle 01: One Thing at a Time,

157–161, 169
		 Principle 02: Know When to Begin,

161–169
		 Principle 03: Know When to End,

163–164, 170

AU6462.indb 300 2/7/08 9:54:26 AM

Index  n  301

		 Principle 04: Large to Medium to Small,
164–166, 170

		 Principle 05: Stage Data Integrity,
166–167, 170

		 Principle 06: Know What You Have,
168–170

	 Real-time, 180–181, 272, 290, 291
	 Staging Principles, 170–171, 178
		 Principle 07: Name the Data, 171–172,

179
		 Principle 08: Own the Data, 172–173,

179
		 Principle 09: Build the Data, 173–174,

179
		 Principle 10: Type the Data, 174–175,

176, 179
		 Principle 11: Land the Data,

176–179

F

Fact Result Set Table, see Data Model,
Dimensional, Fact Result Set

Fact Table, see Data Model, Dimensional,
Facts

Fact Table, see Data Model, Third Normal
Form, Facts

Factless Fact, see Data Model, Dimensional,
Factless Fact

Features, 237, 239
Flat File Format, 43, 45
Flexibility, 73, 74, 93, 97, 209, 210, 212

G

Government Information Factory, 2
Granular Data Names, 171, 172
GUI, see Relational database, Graphical User

Interface

H

Hierarchical Database, 45
Hierarchical Depth, 29
Histogram, 223, 224
Historical Data, see Time Variance
HOLAP, see Hybrid Online Analysical

Process
Hybrid Online Analysical Process, 212
Hypothesis, 221, 225

I

Implicit Requirements, see Requirements,
Indirect

Independent Variable, 218, 220, 221, 223, 225,
227, 228, 229, 230, 231, 233

Indirect Requirements, see Requirements,
Indirect

Information, 7, 207, 281, 282
Inmon, Bill, 2, 4, 11
Interactive Reports, 7
Iterative Development, 56

J

Junk Dimensions, see Data Model,
Dimensional, Junk Dimensions

Justification, see Data Model, Logical,
Justification

K

Key Performance Indicators, 216
Kimball, Ralph, 2, 4, 11, 17, 46, 85, 90, 91
Knowledge Workers, 281, 282, 285, 286

L

Lag Variable, 223, 224
Latency, 240, 243, 244
Logical Data Model, see Data Model, Logical
Logical Primary Key, see Data Model, Logical,

Key
Long-Term Investment, 4, 7, 19, 48, 73, 74,

90, 116

M

Management, 250, 251, 252, 253
Mathematical Center, 224
Measurement, 224
Measurement Precision, 29
Metadata, 9, 164, 168, 170, 190, 191, 259, 261,

275
	 Conformed Dimensions, 272
	 Data Quality, 272–273
	 Dates, 78–79, 115
	 Dynamic, 262, 264, 265
	 Fact Table, 273
	 Real-time, 272
	 Row-Level, 270

AU6462.indb 301 2/7/08 9:54:26 AM

302  n  Index

	 Static, 262, 265
Metadata Processes, 263–264
Metadata Repository, 254, 260, 265, 266, 275
	 Central Dimensional, 266–269
	 Central Third Normal Form, 269
	 Conformed Dimensions, 254–255
	 Dimension Table, 267–268
	 Distributed, 269–270
	 Fact Table, 267–268
	 Make or Buy, 274
	 Off-the-shelf Applications, 274
Metadata Service Level Agreement, 144, 145,

149, 157, 168, 175, 176, 264, 265,
282

Missing Values, 222
MOLAP, see Multidimensional Online

Analysical Process
Multidimensional Online Analytical Process,

212
Multiple Results, see Data Model, Dimensional,

Fact Result Set
Multiplicative Effect, see Primary Key / Foreign

Key Relation, Multiplicative Effect
Mutation, 231

N

Neuron, 226
Node, 226–227
Nonvolatility, 2, 7, 15, 18, 71, 74, 79, 90, 116,

133
Normalization, 46, 73, 74, 88, 91, 93, 95, 96,

115, 116
Notation, see Data Model, Symbols
Numeric Variable, 224, 228

O

ODS, see Data Architecture, Operational Data
Store

OLAP, see Online Analysical Process
Online Analysical Process, 7, 210, 211, 234
Operating System, 49
Operational Applications, 282, 283, 286
Operational Data, 13
Operational Data Store, see Data Architecture,

Operational Data Store
Operational Dates, 190
Operational Source Data, 161, 162, 163, 186,

187, 188, 189

Operational Source System, 161, 162, 163, 194,
195, 196, 256, 257, 290

Operational Transaction Log, 190
Overfitting, 233

P

Partnerships, 215
Pattern, 231
Permutation, 228, 231
Personal Name, 187, 188, 189
Physical Data Model, see Data Model, Physical
Physical Design, see Extract, Transform and

Load, Physical Design
Post-Load Audit, 247, 248
Predefined Reports, 7
Predict the future, 218
Primary Key, see Data Model, Logical, Key
Primary Key, see Data Model, Physical, Key
Primary Key / Foreign Key Relation, 62, 63, 65,

66, 68, 75, 76, 77, 82, 83, 97, 114,
115, 270

	 Multiplicative Effect, 97
Problem Determination, 176, 177
Process Control, 256, 257, 258
Process Measurement, 242, 243, 244, 245, 246

Q

Quality, 237, 239, 240
Quantitative Measurement, 237, 240, 241, 256,

257, 258
Query Response Time, 192, 193

R

RAID, see Relational database, Reliability
Random Error, 218, 219, 220, 233
Range, 243, 244
RDBMS, see Relational Database Management

System
Reasonable, 240
Recursion Relation, 116–125
Recursive Data Model, see Data Model,

Recursive
Recycle the Data, 250–253
	 In Place, 250–251
	 Recycle Wheel, 252–253
Reject a Dataset, 249–250
Reject a Record, 249

AU6462.indb 302 2/7/08 9:54:27 AM

Index  n  303

Relational Database, 46
	 Connectivity, 49, 208
	 Data volume, 46, 47, 55, 127, 192, 193, 201,

204, 212, 270, 272, 280, 282, 284,
286, 289

	 Extensibility, 49
	 Graphical User Interface, 48
	 Online Analytical Process, 48
	 Performance, 289, 291
	 Price, 46, 47, 49
	 Procedural Language, 48
	 Reliability, 48
	 Scalability, 289, 291
	 Security, 48
	 Throughput, 46, 47, 48, 55, 127, 192, 193,

201, 204, 212, 270, 272, 280, 282,
284, 286, 289

Relational Database Management System, 43,
49, 126, 135, 142, 208, 289, 290

Relational Integrity, 243, 244
Relational Online Analytical Process, 212
Relational Set Theory, 43, 45, 46
Requirements, 11, 41, 142, 143, 146, 147, 148,

149, 150, 151
	 Direct, 143–145, 149, 196, 283, 284
	 Indirect, 143–145, 149, 196, 265, 272
Residual Costs, 48, 49
	 Extensibility, 49
	 License, 49
	 Support and Maintenance, 49
Result Set Table, see Data Model, Dimensional,

Fact Result Set
Return on Investment, 19, 48, 73, 96, 193, 203,

215, 245, 277, 282, 283, 286, 290
ROI, see Return on Investment
ROLAP, see Relational Online Analysical

Process
Rule, 231, 233
Rule Testing, 233
Rule Validation, 233

S

Sarbanes-Oxley, 217
Significance, 227
Simultaneous actions, 158, 159, 160, 161
SME, see Subject Matter Expert
Snapshot Data, 32, 102, 141
SNK, see Source Native Key
Snowflake Schema, see Data Model,

Dimensional, Snowflake Schema

Social Security Number, 187, 188, 189
Source Native Key, 77, 78, 81, 82, 97, 98, 99,

101
Source System Control Mechanism, 181
Source System Analysis, 21, 23, 25, 29, 32, 33,

53, 68, 139, 141, 142, 147, 242, 246
	 Logical Data Model, 36
	 Methods, 23, 24
	 Physical Data Model, 36
	 Principles, 23, 24
SOX, see Sarbanes-Oxley
SQL, 46, 157, 158, 159, 160, 209, 210, 247
Star Schema, see Data Model, Dimensional,

Star Schema
Statistical Function, 221
Statistical Methods, 221
Statistical Principles, 221
Statistical Process Control, 241, 242
Statistical Significance, 220, 221
Statistics, 218
Strategic Decision Makers, 279, 280, 285
Subject Areas, 56, 57, 58, 126, 127, 130
Subject Matter Expert, 23
Subject Orientation, 2, 13, 15, 69, 74, 90, 116,

126, 127, 131
Subtype, 65, 67
Summary Data, 102, 191, 192, 193
Super Type, 65, 67
Surrogate Key, 77, 81, 82, 83, 99, 100, 114, 183,

184, 185, 267, 270
Symbols, see Data Model, Symbols
System of Record, 24, 25, 38, 39, 40, 131, 141

T

Tactical Decision Makers, 280, 281, 285
Target System Analysis, 142–150, 242, 246
Termination Point, 227, 230
Third Normal Form Data Model, see Data

Model, Third Normal Form
Time Series Function, 221
Time Variance, 4, 7, 16–19, 71, 72, 74, 77, 79,

80, 90, 99, 102–116, 172, 173, 262,
269

	 Point and Range / Range and Point, 72, 99,
102–113

	 Time Key, 72, 73
Transaction Data, 30, 31, 71, 72, 74, 141
	 Action, 31
	 Manufacturing, 31
	 Sales, 30, 31

AU6462.indb 303 2/7/08 9:54:27 AM

304  n  Index

	 Service, 31
	 What, 31, 32
	 When, 32
	 Where, 32
	 Who, 31
	 Why, 32
Truth, One version of, 4, 7, 18, 71, 74, 90, 116

U

Unit of Measurement, 15, 27
UPC, 187, 188, 189

V

Version Key, 77, 83
Volatility, 133

W

Weight, 227

X

XML, 181–182

AU6462.indb 304 2/7/08 9:54:27 AM

	Front cover
	Dedication
	Contents
	Preface
	Acknowledgments
	The Author
	Introduction
	Chapter 1. The Big Picture: An Introduction to Data Warehousing
	Chapter 2. Data Warehouse Philosophy
	Chapter 3. Source System Analysis
	Chapter 4. Relational Database Management System (RDBMS)
	Chapter 5. Database Design
	Chapter 6. Data Acquisition and Integration
	Chapter 7. Business Intelligence Reporting
	Chapter 8. Data Quality
	Chapter 9. Metadata
	Chapter 10. Data Warehouse Customers
	Chapter 11. Future of Data Warehousing: An Epilogue
	Bibliography
	Index
	Back cover

