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Abstract Numerical computation of the Karhunen–
Loève expansion is computationally challenging in terms

of both memory requirements and computing time. We
compare two state-of-the-art methods that claim to ef-
ficiently solve for the K–L expansion: (1) the matrix-

free isogeometric Galerkin method using interpolation
based quadrature proposed by the authors in [1] and
(2) our new matrix-free implementation of the isogeo-
metric collocation method proposed in [2]. Two three-

dimensional benchmark problems indicate that the Gal-
erkin method performs significantly better for smooth
covariance kernels, while the collocation method per-

forms slightly better for rough covariance kernels.

Keywords Karhunen–Loève expansion · Galerkin ·
collocation · matrix-free · isogeometric analysis

1 Introduction
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René R. Hiemstra
E-mail: rene.hiemstra@ibnm.uni-hannover.de

Dominik Schillinger
E-mail: schillinger@ibnm.uni-hannover.de
Institute of Mechanics and Computational Mechanics
Leibniz University Hannover
Appelstr. 9a, 30167 Hannover, Germany

Thomas J.R. Hughes
E-mail: hughes@oden.utexas.edu
Oden Institute for Computational Engineering and Science
The University of Texas at Austin
201 East 24th Street, C0200, Austin, TX 78712-1229 USA

started his academic career. In 1998, he returned to
IBNM, directing the institute until 2008. Michal Mika,

René Hiemstra and Dominik Schillinger are part of the
young generation of researchers in computational en-
gineering and sciences at IBNM. Schillinger arrived in

2019 as a junior faculty member in computational me-
chanics and scientific computing. His vision for the fu-
ture is borne by the legacy of excellent research, teach-

ing, mentorship and service that Peter Wriggers and
the many colleagues he attracted to Hannover have
built and maintained over the past 25 years. Mika is
one of the many outstanding graduates of the educa-

tional programs in computational methods in engineer-
ing initiated by Peter Wriggers in Hannover. It was also
Wriggers who established the contact to Tom Hughes

at UT Austin, when Mika was looking for an interna-
tional partner to work with on his M.Sc. thesis. It was
there, where the foundations for this work were laid.

The Karhunen–Loève (K–L) expansion decomposes
a random field into an infinite linear combination of L2

orthogonal functions with decreasing energy content.
Truncated representations have applications in stochas-
tic finite element analysis (SFEM) [3,4,5], proper or-
thogonal decomposition (POD) [6,7] and in image pro-
cessing where the technique is known as principal com-
ponent analysis (PCA) [8]. All these techniques are
closely related and widely used in practice [9].

Numerical approximation of the K–L expansion by
means of the Galerkin or collocation method leads to a

generalized eigenvalue problem: Find (vhk , λ
h
k) ∈ RN ×

R+ such that

Avh = λhkZvh for k = 1, 2, . . . ,M. (1)

This matrix problem is computationally challenging for

the following reasons: (1) the matrix A is dense and thus
memory intensive to store explicitly; (2) every iteration
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of an iterative eigenvalue solver requires a backsolve
of a factorization of Z; and (3) the assembly of A is
computationally expensive1.

In this paper, we investigate and compare two state-
of-the-art methods that were recently proposed to effi-
ciently solve for the K–L expansion. The first method
is the matrix-free isogeometric Galerkin method pro-
posed by the authors in [1], which uses an advanced
quadrature technique to gain high performance that is
scalable with polynomial order. The second method is
our new matrix-free implementation of the isogeomet-
ric collocation method proposed in [2]. As a collocation
method it requires far fewer quadrature points than a
standard Galerkin method such that the assembly of
the collocation equations is simple and efficient.

This paper is structured as follows. In Section 2,
we briefly review the basic aspects of the K–L expan-
sion in the context of random field represenations. In
Section 3, we concisely present the two matrix-free so-
lution methods and assess their algorithmic complex-
ity. Three-dimensional numerical benchmark problems

with comparisons in terms of accuracy and solution
time are provided in Section 4. We summarize our con-
clusions in Section 5 and discuss future work.

2 Karhunen–Loève expansion of random fields

Consider a complete probability space (Θ,Σ,P) where

Θ denotes a sample set of random events and P is a
probability measure P : Σ → [0, 1]. Let α(·, θ) : Θ 7→
L2(D) denote a random field on a bounded domain
D ∈ Rd with mean µ(x) ∈ L2(D) and covariance func-

tion Γ (x, x′) ∈ L2(D × D). The K–L expansion of the
random field α(·, θ) requires the solution of an integral
eigenvalue problem. Consider the self-adjoint positive
semi-definite linear operator T : L2(D) 7→ L2(D),

(Tφ) (x) :=

∫
D
Γ (x, x′)φ(x′) dx′. (2)

The eigenfunctions {φi}i∈N of T are defined by the ho-
mogeneous Fredholm integral eigenvalue problem of the
second kind,

Tφi = λiφi, φi ∈ L2(D) for i ∈ N. (3)

The eigenfunctions φi are orthonormal in L2(D) and
the corresponding eigenvalues form a non-increasing se-
quence λ1 ≥ λ2 ≥ · · · ≥ 0. The K–L expansion of the

1 Formation and assembly costs for a standard Galerkin
method scale O(N2

e · (p+ 1)3d)), where Ne is the number of
finite elements, p is the polynomial degree and d is the spatial
dimension.

random field α(·, θ) is given as

α(x, θ) = µ(x) +
∞∑
i=1

√
λiφi(x)ξi(θ) (4)

where

ξi(θ) :=
1√
λi

∫
D

(α(x, θ)− µ(x))φi(x) dx. (5)

Truncating the series in (4) after M terms leads to an
approximation of α denoted by αM . For practical com-
putations in the context of stochastic finite element
methods [3,4,5], the truncation order M is typically
chosen between 20 and 30 terms [10,4]. Each term in the
expansion introduces one stochastic dimension, which is
an example for the curse of dimensionality.

3 Numerical methods

In this section we briefly review the matrix-free Ga-

lerkin method proposed in [1] and introduce our matrix-
free implementation of the isogeometric collocation me-
thod proposed in [2]. We include an analysis of the algo-
rithmic complexity in terms of the polynomial degree p

and number of elements Ne of the d-dimensional spatial
domain D.

In both approaches the generalized algebraic eigen-
value problem is first reformulated as a standard alge-
braic eigenvalue problem using standard linear algebra

techniques [11]: Find (vhk , λ
h
k) ∈ RN × R+ s.t.{

A′v′k = λhkv′k
vhk = Cv′k

for k = 1, 2, . . . ,M. (6)

Here C is an invertible mapping that depends on Z and
A′ can be written in terms of A and Z.

3.1 Matrix-free isogeometric Galerkin method

A variational treatment of (3) leads to the following
problem: Find (φ, λ) ∈ L2(D)× R+ s.t. ∀ψ ∈ L2(D)∫
D

(∫
D
Γ (x, x′)φ(x′) dx′ − λφ(x)

)
ψ(x) dx = 0. (7)

From equation (7), the Galerkin method is obtained
by replacing φ, ψ ∈ L2(D) by finite dimensional repre-
sentations φh, ψh ∈ Sh ⊂ L2(D). Being posed in the
variational setting, Galerkin methods inherit several ad-
vantageous properties such as exact L2 orthogonality of
the numerical eigenvectors and monotonic convergence
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of the numerical eigenvalues [12,13]. Furthermore, pow-
erful tools exist in the variational setting to study the
stability and convergence of the method2.

With a trial space Sh := span {Ni(x)}i=1,...,N the
Galerkin method leads to the eigenvalue problem de-
fined in (1) with the system matrices

Aij :=

∫
D
Ni(x)

∫
D
Γ (x, x′)Nj(x

′) dx′ dx (8a)

Zij :=

∫
D
Ni(x)Nj(x) dx (8b)

Alternatively, the eigenvalue problem can be solved in
the standard form introduced in equation (6) where
A′ := L−1AL−> and C := L−>. The matrix L is de-
fined by the lower triangular matrix in the Cholesky
decomposition of Z = LL>.

Typically, the space Sh is spanned by piecewise C0-
continuous polynomial functions on quadrilateral, he-
xagonal or simplicial elements [13]. Recently, non-uni-
form rational B-splines (NURBS) have been applied in

the context of an isogeometric Galerkin method [14].
These methods commonly evaluate the integrals in (8)
using standard numerical quadrature rules. A Gauss–

Legendre numerical quadrature rule leads, however, to
an algorithmic complexity of O(N2

e ·(p+1)3d) [1], which
becomes excessively expensive with the number of ele-

ments Ne, polynomial degree p and spatial dimension d.
Furthermore, as mentioned in the introduction, the ma-
trix A is dense and requires O(8 ·N2) bytes of storage
in double precision arithmetic, where N is the number

of degrees of freedom in the trial space.
To overcome these limitations, the matrix-free Ga-

lerkin method proposed in [1] avoids storing the main

system matrix A and achieves computational efficiency
by utilizing a non-standard trial space in combination
with a specialized quadrature technique, called interpo-
lation based quadrature. This approach requires a min-
imum number of quadrature points and enables appli-
cation of global sum factorization techniques [15]. We
sketch the main ideas of the method and refer to [1] for
further details.

Let {Bi(x̂)}i=1,...,N and {B̃j(x̂)}j=1,...,Ñ denote two
sets of tensor product B-splines of, for simplicity, uni-
form polynomial degree p. The first set is used in the
definition of the trial space, whereas the second set is
used in a projection of the kernel Γ (x, x′) and is a part
of the interpolation based quadrature. Let F : D̂ → D
be the geometric mapping from the reference domain
to the physical domain. The trial space is defined as

Sh := span
{
Bi(x̂)/

√
det DF (x̂)

}
i=1,...,N.

(9)

2 In general the stability and convergence analysis are chal-
lenging in the context of collocation methods.

The advantage of this particular choice of the trial space
is that the mass matrix in (8b) has a Kronecker struc-
ture and can be factored as Z = Zd ⊗ · · · ⊗ Z2 ⊗ Z1,
where {Zk}k=1,2,...,d are univariate mass matrices. By
leveraging this factorization the matrix-vector products
of Kronecker matrices can be evaluated in nearly linear
time complexity. This also holds for the matrix L in
the Cholesky factorization of Z, which is factored as
L = Ld⊗· · ·⊗L2⊗L1 from which the respective inverse
follows as L−1 = L−1d ⊗ · · · ⊗ L−12 ⊗ L−11 .

The interpolation based quadrature in combination
with the choice of the trial space in (9) leads to a fac-
torization of the matrix A as

A = M>B̃−1JΓJB̃−>M. (10)

Here Γ := Γ (xi, xj) ∈ RÑ×Ñ is the covariance ker-

nel evaluated at the Greville abscissae, J ∈ RÑ×Ñ is
the square root of a diagonal matrix of determinants

of the Jacobian of the mapping at these points and
the matrices B̃ = B̃d ⊗ · · · ⊗ B̃2 ⊗ B̃1 ∈ RÑ×Ñ and
M = Md⊗ · · ·M2⊗M1 ∈ RÑ×N are Kronecker product

matrices. In fact B̃k and Mk, k = 1, 2, . . . , d, are univari-
ate collocation and mass matrices, respectively, which
are introduced by the interpolation based quadrature.
The computation of the eigenvalues and eigenvectors re-

quires evaluation of matrix-vector products v′ 7→ A′v′.
This leads to a nine step algorithm presented in [1]. The
matrix-vector products with the Kronecker structured

matrices L−>, M, B−> and the diagonal matrix J as
well as all the respective transpose operations are per-
formed in linear or nearly linear time complexity. The

matrix-vector products with the matrix Γ are performed
in quadratic time complexity. Hence, our matrix-free al-
gorithm scales quadratically with the dimension of the
interpolation space Ñ . We note that in this algorithm,

the matrix rows of Γ are computed on the fly, which
saves memory by not explicitly storing the dense ma-
trix Γ. Memory requirements for the remaining matrices
are negligible, since they are either diagonal or Kro-
necker product matrices. For additional details about
the matrix-free method, interpolation based quadrature
and Kronecker products, we refer to [1].

3.2 Matrix-free isogeometric collocation method

In contrast to a Galerkin method, a collocation method
does not treat the integral equation (3) in a variational
manner. Instead, we require the discretized residual

rh(x) :=

∫
D
Γ (x, x′)φh(x′) dx′ − λhφh(x) (11)
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to vanish at distinct points x ∈ D. In [2], the geometry
and trial spaces are discretized in terms of NURBS basis
functions

Sh := {Ri(x)}i=1,...,N (12)

in the sense of the isoparametric approach of isogeomet-
ric analysis. In this study, we choose to collocate (11)
at the Greville abscissae {xi}i=1,...,N . The method is
expressed concisely in matrix form (1) where the corre-
sponding system matrices are given by

Aij :=

∫
D
Γ (xi, x

′)Rj(x
′) dx′, Zij := Rj(xi). (13)

In primal form (6), this means that A′ = Z−1A and C
is the identity matrix. The matrices A and Z are square
and, in general, not symmetric. In contrast to varia-
tional methods, where the system matrices are symmet-
ric and positive (semi)-definite by construction, colloca-

tion methods do not ensure a real-valued eigensolution
for any element size h > 0. For an in-depth exposition of
the collocation method, we refer the reader to [12], and
to [16,17] for details on the isogeometric formulation.

The matrix-free version of the collocation method is

derived analogously to the matrix-free Galerkin method
described above. Due to the properties of the system
matrix Z, instead of the Cholesky decomposition em-

ployed in the Galerkin method, we use the pivoted LU
decomposition, PZQ = LU, to arrive at the standard
matrix form. We observed that without pivoting the

matrix-free collocation method suffers from numerical
instabilities at polynomial orders p > 3. We use the piv-
oted LU decomposition of Z to apply the inverse of Z
to the matrix A and thus obtain A′. The standard al-
gebraic eigenvalue problem is then given by

A′v′ = λv′ where A′ := QU−1L−1PA (14)

Following [1], we choose a row-wise evaluation of the
coefficient vector in the standard matrix-vector product
v′ 7→ A′v′. The optimal evaluation order and further
details for each step are given in Algorithm 1.

Algorithm 1 Matrix-free evaluation of the matrix-
vector product v′ 7→ A′v′ emerging from collocation

Input: vj ∈ RN , Rjk ∈ RN×(Ne·Nq), Pij , Qij , Uij , Lij ∈
RN×N , Jk ∈ RNe·Nq , Wk ∈ RNe·Nq

Output: v′i ∈ RN

1: yk ← Rjkvj . Interpolation at quadrature points
2: y′k ← yk � Jk �Wk . Scaling at quadrature points
3: zl ← Γlky′k . Kernel evaluation one row at a time

4: v′i ← QitU
−1
tr L−1

rs Pslzl . Backsolve using LU of Z

3.3 Algorithmic complexity

Matrix-free Galerkin method Under the assumption of
Ñ ∝ N , the formation and assembly costs are negligi-
ble compared to the matrix-vector products that scale
independently of p as O(Ñ2) [1]. The total cost of the
method scales as O(Niter · Ñ2), where Niter is the num-
ber of iterations of the eigenvalue solver.

Matrix-free collocation method We are interested in the
algorithmic complexity of an element-wise assembly pro-
cedure for the system matrices that arise from the col-
location method. We assume that (1) D̂ has Ne ele-
ments; (2) the products on every d-dimensional ele-
ment �d in D̂ are integrated with a quadrature rule
Q(f) :=

∑Nq

k=1 wkf(xk) with 1 ≤ Nq ≤ (p+1)d quadra-
ture points; and (3) the number of collocation points Nc

is equal to the number of degrees of freedom N . The
leading term in the total cost of formation and assembly
arises from the cost of forming the element matrices,

Ae
ij =

∫
�d

Γ (x̂i, x̂
′)Rj(x̂

′) dx̂′

≈
Nq∑
k=1

wkΓ (x̂i, x̂
′
k)Bj(x̂

′
k) = CikDkj

where Cik = wkΓ (x̂i, x̂
′
k) and Dkj = Rj(x̂

′
k)

with i = 1, . . . , N and j = 1, . . . , (p+1)d. The formation
cost of C and D is negligible. The matrix-matrix product

cost is of O
(
NcNq(p+ 1)d

)
and the cost for summation

over all Ne is of O
(
NeNcNq(p+ 1)d

)
. Now, assuming

a Gauss–Legendre quadrature rule with Nq := (p+ 1)d

quadrature points and the proportionality relationship
Ne ∝ N , a collocation method with Nc = N has a
leading cost of O

(
N2(p+ 1)2d

)
.

The algorithmic complexity in the matrix-free for-
mulation is driven by the most expensive steps in Al-
gorithm 1. In a single iteration of the eigenvalue solver,
steps 1 and 3 have a complexity O(N · Ne · Nq). The
element-wise multiplication in step 2 scales linearly with
the number of quadrature points, O(Ne ·Nq). The last
step scales as O(N2). Evidently, steps 1 and 3 depend
on the number of quadrature points. Since Ne ·Nq ≥ N ,
they determine the overall cost of the method. Assum-
ing a Gauss-Legendre quadrature rule with Nq := (p+
1)d quadrature points in each element and Ne ∝ N ,
the leading cost of a single iteration of the eigenvalue
solver is O(N2(p + 1)d). Hence, the total cost of the
matrix-free isogeometric collocation method scales as
O(Niter · N2(p + 1)d), where Niter is the number of it-
erations of the eigenvalue solver.
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R
r

H

b = 0.5
L = 10

r = 8 
R = 10
H = 15

Fig. 1: Benchmark geometry of a half-cylinder. The cor-
relation length bL = 5 is used throughout all cases.

Comparison Compared to the matrix-free Galerkin me-
thod with interpolation based quadrature, the colloca-
tion method scales unfavourably with the polynomial

degree. Furthermore, due to the lack of Kronecker struc-
ture, it is necessary to compute the pivoted LU decom-
position of the full matrix Z. The computational cost of

this factorization increases with N as well as p, which
is due to an increasing bandwidth of the matrix Z.

Remark 1 If the trial space in the collocation method is
based on tensor product B-splines instead of NURBS,
then the matrix Z is also a Kronecker product matrix,

alleviating the disadvantage at large N and p.

4 Numerical examples

In this section, we compare the accuracy and efficiency
of the matrix-free isogeometric Galerkin and colloca-
tion methods. In [1], it was shown that the proposed
Galerkin method performed especially well in the case
of a smooth covariance kernel. For rough kernels, such
as the C0 exponential kernel, the interpolation based

quadrature performed suboptimally.
In our study, we benchmark both methods for two

kernels of different smoothness and appropriate refine-
ment strategies of the spaces involved: (1) the expo-
nential kernel together with h-refinement and (2) the
Gaussian kernel and k-refinement. In both variants, the
solution space is equal for the Galerkin and collocation

methods. The interpolation space used in the Galerkin
method is defined on the same mesh as the solution
space, but its continuity is adapted in accordance with
the remarks made in [1]. All computations are per-
formed sequentially on a laptop machine with an In-
tel(R) Core(TM) i7-9750H CPU @ 2.60GHz as well as
2x16 GB of DDR4 2666MHz RAM. Our reference so-
lution is the standard isogeometric Galerkin solution

computed on the finest possible mesh with a runtime
of roughly 17 hours, tabulated in [1].

4.1 Exponential covariance kernel

In Example 1, we compare the performance with re-
spect to h-refinement assuming an exponential kernel
on the half-cylindrical domain shown in Figure 1. The
polynomial order in each parametric direction is p = 2.
We choose a tensor product Gauss–Legendre quadra-
ture rule with (p + 1)3 points per element of the do-
main in the collocation method. In accordance with re-
marks made in [1] the continuity of the interpolation
space of the Galerkin method at the element interfaces
is reduced to C0. Furthermore, at element interfaces
where the geometry is C0, the interpolation space of
the Galerkin method is set to C−1.

Our comparative investigation is based on five dif-

ferent resolution cases with respect to the characteris-
tic size h of the solution and interpolation mesh. Our
specific choices of mesh size and number of degrees of

freedom in the interpolation and solution spaces are
summarized in Table 1.

Table 1: Mesh, solution space and interpolation space
details in Example 1.

Case 1 Case 2 Case 3 Case 4 Case 5

h 2.857 1.719 1.556 1.423 1.142
N 1050 2108 2800 3772 5625

Ñ 1980 8990 12210 16770 28294

h mesh size in the solution and interpolation mesh
N number of degrees of freedom (dof) in the solution space

Ñ number of dof in the interpolation space (IBQ-Galerkin only)

For Case 1, we visualize the first, second, fourth and
sixth eigenfunctions computed by both methods, plot-

ted in Figure 2 on the half-cylinder domain. Figure 3
illustrates that already for the coarsest resolution, both
methods produce results that are practically indistin-
guishable from each other when plotted along a selected
cut line.

For a quantitative comparison, let us introduce a

relative eigenvalue error εi with respect to the reference
solution as

εi := ε(λrefi , λhi ) :=
|λrefi − λhi |

λrefi

(15)

as well as a mean relative eigenvalue error ε given by

ε :=
1

M

M∑
i=1

εi =
1

M

M∑
i=1

|λrefi − λhi |
λrefi

. (16)
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 –18 180

1st mode 2nd mode

Galerkin Collocation Galerkin Collocation

6th mode4th mode

Galerkin Collocation Galerkin Collocation

Fig. 2: First, second, fourth and sixth eigenfunctions
(Example 1, Case 1).

Fig. 3: Line plot in the circumferential direction at the
mid-planes of eigenfunctions in Figure 2. Line-width
decreases with increasing mode number.

To enable a concise illustration with respect to the
five cases defined in Table 1, we define the color cod-
ing shown in Table 2. Blue indicates results obtained

with the Galerkin method, red indicates results ob-
tained with the collocation method. The change in shad-
ing from light to full color indicates the increasing mesh
resolution from Case 1 to Case 5.

Figure 4 depicts relative accuracy versus compu-

tational time of the iterative eigensolver for the first
twenty eigenvalues measured against the reference solu-

Table 2: Color-coding to differentiate between five dif-
ferent cases and two different methods.

Galerkin
Collocation

Case 1 Case 2 Case 3 Case 4 Case 5

tion. We observe that the collocation method performs
roughly twice as fast at the same level of accuracy.

In Figure 5, we present a detailed assessment of the
accuracy of the first five eigenvalues. In addition, we
provide an alternative visualization of the timings and
the error in the first twenty eigenvalues.

Fig. 4: Mean relative eigenvalue error computed with
the first 20 eigenvalues versus the eigensolver time (Ex-
ample 1, exponential kernel).
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Fig. 5: Error of the first five eigenvalues plotted for
Cases 1–3 and corresponding timings and accuracy over
the first 20 eigenvalues (Example 1, exponential kernel).
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4.2 Gaussian covariance kernel

In Example 2, we compare both methods for a smooth
Gaussian covariance kernel. Since the integrand is
smooth, we expect that optimally smooth approxima-
tion spaces work best. Therefore, we fix the polynomial
order p and refine the approximation spaces with Cp−1

continuity between elements until a target mesh size of
2.857 is reached (k-refinement). The resulting five dif-
ferent cases are summarized in Table 3.

Table 3: Mesh, solution space and interpolation space
details in Example 2.

Case 1 Case 2 Case 3 Case 4 Case 5

p 2 3 4 5 6
N 1050 1628 2340 3198 4214

Ñ 1080 1672 2400 3276 4312

p polynomial order of the solution and interpolation space
N number of degrees of freedom (dof) in the solution space

Ñ number of dof in the interpolation space (IBQ-Galerkin only)

Comparing Case 1 in Example 1 with Case 1 in Ex-
ample 2, we find that the number of degrees of freedom
in the interpolation space is smaller. This is due to the

increased continuity at element interfaces of the inter-
polation space of the Galerkin method. This trend is
also characteristic for k -refinement and is observable in

the remaining Cases 2–5.
We resort again to the color coding of Table 2 to

concisely differentiate between the five different reso-
lutions and the two methods. Figure 6 plots the mean

relative accuracy of the first twenty eigenvalues versus
the eigensolver timings. It is evident that for the smooth
Gaussian kernel, the Galerkin method outperforms the
collocation method by more than one order of magni-
tude. Furthermore, in line with the complexity analysis
presented in Section 3.3, we observe that the perfor-
mance gap increases with increasing polynomial order.
Following the scheme of Figure 5, we provide a more
detailed account of the approximation accuracy of the
first five eigenvalues in Figure 7.

5 Conclusions

In this paper, we compared accuracy versus the com-
putational time of two state-of-the-art isogeometric dis-

cretization methods for the numerical approximation
of the truncated Karhunen–Loève expansion. The first
method is the matrix-free isogeometric Galerkin method
proposed by the authors in [1]. It achieves its compu-
tational efficiency by combining a non-standard trial

Fig. 6: Mean relative eigenvalue error computed with
the first 20 eigenvalues versus the eigensolver time (Ex-
ample 2, smooth Gaussian kernel).
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Fig. 7: Error of the first five eigenvalues plotted for
Cases 1–3 and corresponding timings and accuracy over
the first 20 eigenvalues (Example 1, smooth Gaussian
kernel).

space with a specialized quadrature technique called
interpolation based quadrature. This method requires a
minimum of quadrature points and relies heavily on
global sum factorization. The second method is our
new matrix-free version of the isogeometric collocation
method proposed in [2]. This method achieves its com-

putational performance by virtue of a low number of
point evaluations at collocation points.

On the one hand, our comparative study showed
that for a C0-continuous exponential kernel, the matrix-

free collocation method was about twice as fast at the
same level of accuracy as the Galerkin method. On
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the other hand, our comparative study showed that
for a smooth Gaussian kernel, the matrix-free Galerkin
method was roughly one order of magnitude faster than
the collocation method at the same level of accuracy.
Furthermore, the computational advantage of the Galer-
kin method over the collocation method increases with
increasing polynomial degree. These results are not sur-
prising, since it was already shown in [1] that interpola-
tion based quadrature scales virtually independently of
the polynomial degree. In our study, we also illustrated
via complexity analysis that the matrix-free collocation
method scales unfavorably with polynomial order. The
suboptimal accuracy of the interpolation based quadra-
ture for rough kernels is also known and was already
discussed by the authors in [1]. Besides the aspect of
computational performance, we also showed that both
methods are highly memory efficient by virtue of their
matrix-free formulation.

As for future work, the advantageous properties in-
herited by the Galerkin method such as symmetric, pos-
itive (semi-)definite system matrices, monotonic con-

vergence of the solution and availability of established
mathematical framework for stability and convergence
deserve a more detailed theoretical discussion with re-

gard to the interpolation based quadrature method. A
generalized accuracy study and more numerical bench-
marks with existing methods are desirable as well.
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Karhunen–Loève approximation of random fields. Com-
puter Methods in Applied Mechanics and Engineering,
338:533–561, August 2018.

15. A. Bressan and S. Takacs. Sum factorization techniques
in Isogeometric Analysis. Computer Methods in Applied
Mechanics and Engineering, 352:437–460, August 2019.

16. F. Auricchio, L. Beirão Da Veiga, T. J. R. Hughes, A. Re-
ali, and G. Sangalli. Isogeometric collocation methods.
Mathematical Models and Methods in Applied Sciences,
20(11):2075–2107, November 2010.

17. D. Schillinger, J.A. Evans, A. Reali, M.A. Scott, and
T.J.R. Hughes. Isogeometric collocation: Cost compari-
son with Galerkin methods and extension to adaptive hi-
erarchical NURBS discretizations. Computer Methods in
Applied Mechanics and Engineering, 267:170–232, 2013.


