DATA-INFORMED REGULARIZATION FOR INVERSE AND
IMAGING PROBLEMS*

JONATHAN WITTMER! AND TAN BUI-THANH?

1. Introduction. Regularization is a technique often employed to facilitate the
well-posedness of inverse (and imaging) problems. An inverse solution is thus a trade-
off between the data misfit and the regularization. Due to noise and limited avail-
ability, the data typically informs limited directions in the parameter space where
the inverse solution resides. A desired regularization, we argue, should minimally in-
terfere with these data-informed directions. However, most regularization techniques
regularize all parameter directions, including the data-informed ones, thus polluting
the resulting inverse solution. This chapter presents a new regularization method
for inverse and imaging problems, called data-informed regularization, that implicitly
avoids regularizing the data-informed directions. The DI method combines advan-
tages of the classical truncated SVD and Tikhonov regularization. In particular, it
does not pollute the data-informed modes with regularization, but regularizes only
the less data-informed ones.

Compared to existing approaches, our method has many distinct and advanta-
geous features: 1) it automatically determines the directions equally informed by the
data and any Tikhonov regularization while leaving the most informative directions
untouched. In fact, we will show that, similar to the balanced truncation idea in
control theory (see, e.g., [4, 1] and the references therein), this is done implicitly by
seeking directions in parameter space that balance the information from regulariza-
tion and data, and removing the regularization on them; 2) We will show that our
approach has an intuitive statistical interpretation, namely, it transforms both the
data distribution (i.e. the likelihood) and prior distribution (induced by Tikhonov
regularization) to the same Gaussian distribution whose covariance matrix is diag-
onal and the diagonal elements are exactly the singular values of a composition of
the prior covariance matrix, the forward map, and the noise covariance matrix. 3)
Though constructively derived and its insights obtained from the truncated Singular
Value Decomposition (SVD), the inverse solution resulting from our approach does
not necessarily require an SVD decomposition, which may not be feasible for large-
scale applications. Indeed, we will present a nested matrix-free approach to obtain
an approximate inverse solution. 4) By construction, features in our inverse solution
dictated by the data-informed directions are insensitive to the regularization param-
eter. For many inverse and imaging problems, these features dominate the solution
and thus the inverse solution resulting from our regularization technique is robust
with respect to regularization parameter values. These findings will be demonstrated
and supported by various numerical results from deblurring, denoising, and X-ray
tomography problems.
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2. A data-informed regularization (DI) approach.

2.1. Data-informed regularization derivation. In this section we review the
key ideas behind regularization by truncation using the Singular Value Decomposi-
tion (SVD). This provides the basic insights into the data-informed regularization
technique. A statistical interpretation of the data-informed inverse framework will
be discussed in Section 2.2. To begin, let us consider a linear inverse problem to
determine « € RP given

(2.1) y=Ax +e,

where A € R¥™*? e ~ N (0, )\2I), I ¢ R™ and y € R In the following, the identity
matrix I may have different size at different places and the actual size should be clear
from the context. The simplest approach to attempt to solve this inverse problem is
perhaps the least squares approach:

1 2
(2.2) min © Az — y|?,

z 2
where ||-|| denotes the standard Euclidean norm. The least-squares solution is given
by

®rLg = (ATA)A ATy,

Figure 1(a) plots the exact synthetic solution (black curve) against the least-squares
solution (red curve) for a deconvolution problem with d = p = 101 and A = 0.05.
As can be seen, the least-squares solution blows up (or is unstable), which is not
surprising since the inverse problem is ill-posed.
A standard Tikhonov regularization approach casts the above inverse problem
into 1
. 2 o 2
min _ || Az — y||” + 5 [|& — zol”,
z 2 2
where g is given. A Tikhonov solution is presented in Figure 1(b) for « = 1 and

xo = 0. Though this approach stabilizes the solution, it also smooths out the solution
everywhere.
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(a) Least-squares solution (b) Tikhonov solution

Fic. 1. Deconvolution using a) the least-squares approach, and b) a Tikhonov regularization
with reqularization parameter o = 1 and g = 0.
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Regularization by truncation does not require an explicit introduction of regular-
ization term as in Tikhonov regularization. For example, the truncated SVD starts
with the SVD decomposition of A and then truncates all the singular vectors U; and
V' ; corresponding to zero (or relatively small) singular values, i.e.,

A=UzV"
U, UlUn1 Uy
o1l I VlT
— onll [ | VT
0 I Vi
0 14
=U"s" (V)"
where U™ := [Uy,...,U,] (the first n columns of U corresponding to n nonzero
singular values or the range of the column space of A), X" := diago1,...,04,] (01 >

o9 > ... > 0p), n <min{d,p}, and V" := [V,...,V,] (the first n columns of V
corresponding to n nonzero singular values the row space of A).

The solution of the least-squares problem (2.2) using the truncated SVD together
with pseudo-inverse reads

wiv = (474) ATy = v () o Ty =Y

i=1

Uly

i

Vi7

and

T

- Uly
(2.3) Thyp =) Vi,

o
i=1 v

which is a truncated SVD solution using r largest singular values. Figure 2 applies
the truncated SVD approach to the deconvolution problem and compares the results
with the Tikhonov regularization. As can be seen, truncated SVD solutions are stable
and do not seem over-regularize the solution. However, as r increases, truncated SVD
solutions tend to be more oscillatory (more unstable) because more “high-frequency”
singular modes (corresponding to smaller singular values) are added to the truncated
solutions. In other words, the truncated SVD approach truncates the most unstable
modes out of the solution. Why are these high-frequency modes undesirable? The
answer lies on the fact that the jth column of A is the observational vector when the
parameter x is the jth canonical basis vector in RP. Thus the range space (column
space) of A is the observable subspace in R<. Within this observable subspace, the
subspace spanned by the singular vector U; corresponding to larger (largest) singular
value is more (most) observable whereas those corresponding to smaller (zero) singular
values are less (not) observable. The truncated solution (2.3) clearly shows that the
component of the data vector y in the less (or non-) observable subspace, i.e. the
product UjTy (due to noise or error in the measurements), is amplified by 1/0;, thus
promoting an oscillatory or unstable solution.
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F1G. 2. Deconvolution using a) a Tikhonov regularization with regularization parameter o = 1
and xg = 0; b) truncated SVD with r = 3; ¢) truncated SVD with r = 10; and d) truncated SVD
with r = 15.

In this chapter, we refer to row subspaces spanned by V ;, corresponding to the
observable subspaces spanned by U ;, as data-informed parameter subspaces. Sim-
ilarly, row subspaces spanned by V ;, corresponding to the least observable subspaces
spanned by U, as data-uninformed parameter subspaces. The truncated SVD so-
lution (2.3) clearly resides in the data-informed parameter subspaces for small 7.
The question is where to truncate so that the solution is data-informed?. The above
discussion suggests that one should take r neither too large nor too small. Popu-
lar methods for picking r include the Morozov discrepancy principle, L-curve, and
cross-validation, to name a few.

A closer look at the truncated SVD solution (2.3) shows that the truncated SVD
approach zeros out the data-uninformed modes V'; for j > r 4 1. We next show that
this is equivalent to infinitely regularizing data-uninformed directions. To see this,
let us now consider a regularziation scheme where the data-uninformed modes are
penalized infinitely, i.e.,

1 1
(24) min 3 | Az — y|* + 5 |1 (@ — o),



DATA-INFORMED REGULARIZATION 5

where
T
LTL = oo [I v (V?")T] = oo (VT)* ((V?‘)l)
_ r r\L 0 0 r L T
=[] | o]
and [I -V’ (VT)T} is the orthogonal projection into the data-uninformed subspace

spanned by {Vj}?:TH. The solution of (2.4) is given by

= A A (1 ) Ay
- {[VT’WT)L] ({ E(J)i 107 } + [ 8 ogI D [VT»(VT)l]T}lATy

= V() (VT ATy = V()T U y = by,

where (V")" is the orthogonal complement of V" in R? and D := diag [o,41, . . . ,Op)-
The second equality clearly shows that the regularization scheme adds infinity to all
singular values that correspond to data-uninformed modes. The last equality proves
that infinite regularization on data-uninformed parameter subspace is the same as the
truncated SVD approach.

The beauty of the truncated SVD approach is that it avoids putting any regu-
larization on data-informed parameter directions, and hence avoids polluting inverse
solutions in these directions, while annihilating data-uninformed directions. However,
it is often the case that there is no clear-cut (i.e. o = 0 for k > r + 1) between the
data-informed and data-uninformed ones, but gradual (sometimes exponential) decay
of singular values of A. In that case, completely removing less data-informed direc-
tions may not be ideal, as they may still contain valuable parameter directions seen
by the data. Then we may want to impose finite regularization in less data-informed
directions, i.e.,

1 1
(25) min 3 | Az — y|* + 5 | (@ — o),

where

ITL — o (I v (VT)T> —a (vt <(VT)L)T _ { 8 (EJI ] [VT, (VT)J_}T

Let us call this approach the data-informed (DI) regularization method. The
inverse solution in this case reads

zor = {ATA+a (T-v(v)T)} ATy
(o] (P < ) [Vr,(VT)L}T}lATy

-1
o el ([ 3]0 L0 [al0]Y fyr yrys)™) " ar
- {0 (B o o] - e ) o T} g
The last equality suggests that the DI approach is equivalent to first applying the

same’ (finite) reqularization for all parameter directions and then removing reqular-
izations in the data-informed directiions. A few observations are in order: 1) When

INote that o need not be the same for all directions.
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r = 0, DI becomes the standard Tikhonov regularization; 2) When o — oo DI ap-
proaches the truncated SVD; and 3) when a < o; for i < r, i.e. under-regularization,
Tikhonov is close to DI as the contribution of the regularization to data-informed
modes is small. These observations are clearly demonstrated in Figure 3 for a 1D
deconvolution with A = 0.05 with various combination of regularization parameter o
and the number of retained data-informed modes r. An important feature of the DI
technique that can be seen from this result is that for each r the DI solution is robust
with the regularization parameter, that is, the solution does not alter significantly,
especially for moderate-to-large regularization, while Tikhonov solution is damped
out as the regularization parameter increases. The last column of Figure 3 shows that
for 7 = 20 the DI solution retains high frequency modes which are not regularized
and thus oscillatory.
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F1G. 3. Deconvolution with noise level A\ = 5% using DI and Tikhonov regularization for various
values of regularization parameter and r.

In order to gain more insights into the behavior of DI regularization, we compute
the relative error between the solutions using the DI approach and the truth for a
wide range of regularization parameters and a few values of r. The result is shown
in Figure 4. As can be seen, when r = 1, DI is essentially Tikhonov, which is not
surprising as all modes in the DI solution are regularized exactly the same as Tikhonov
except for the first one (lowest frequency). For r = {5,10}, the DI solution behaves
the same as Tikhonov for the under-regularization regime (o < 0.01) as expected, and
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it outperforms Tikhonov for o > 0.01 as the retained data-informed modes, which
determine the quality of the deconvolution solution, are left untouched. For r = 20,
the retained modes now also include high frequency modes and hence the DI approach
is not as accurate as Tikhonov for @ < 1. For all cases with significant number of
modes retained, i.e. r > 5, the DI solution quality is insensitive to a large range of
the regularization parameter.
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Fi1G. 4. Deconvolution with noise level A\ = 5% wusing DI and Tikhonov regularizations for

a = [107%,10%] and r = {1, 5,10, 20}.

It may appear that we have to first construct the rank-r data-informed sub-
space V" before applying regularization in its orthogonal complement. However,
since V" (VT)T is the orthogonal projection into the row space of A when o; = 0

. . T
fori >r, ie. V" (V") = AT (AAT) A, we can rewrite the inverse (optimization)

problem (2.5) as
: 1 2 1 2
(26) minJ = < | Az~ yl* + 3 1L (@~ 20)|*,

where

LTL:=a (I _ AT (AAT)T A) .

In this form, the DI regularization approach (2.6) not only avoids using V" explicitly
but also brings us to a statistical data-informed inverse framework in the next section.
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2.2. A statistical data-informed (DI) inverse framework. The cost func-
tion in (2.6) can be rewritten as

2 2
exp (<1142 — y|*) x exp (=4 o — o)

exp (—g (Az — Azo)” (AAT)T (Azx — Am0)> .

exp (—J) =

From a Bayesian inverse perspective [6, 13, 3, 8, 7, 12, 10], the numerator is the
product of the likelihood

1
e o) x xp (3 14 - y1?)

from the observational model (2.1) with the noise e ~ N (O, I), and the Gaussian
prior

(0%
(27) 7Tprior (:13) X exp (_5 ||.’1} - .’130”2)

with mean &y and I/« covariance matrix. In other words, the numerator is a Bayesian
posterior with the aforementioned likelihood and Gaussian prior. The key difference
compared to the Bayesian approach is the denominator.

We now show that the denominator is nothing more than the pushforward of the
prior (2.7) via the forward map A. Indeed, let § := Ax be a random variable induced
by the forward map A. With & ~ N (zg,I/a), ¥ is also a Gaussian with mean g,
and covariance matrix C where

ﬂo = Ew [A:II] = Awo
C:=E, [(g — ) (G — gO)T} ~E, [A (z — z0) (& — o))" AT| = éAAT.

Note that it is necessary to use the pseudo-inverse for the inverse of the covariance C,

i
ie,C!l:=a (AAT) since A may not have full row rank and thus the pushforward

distribution can be a degenerate Gaussian.

Remark 2.1. The push-forward of the prior through the parameter-to-observable
map A depends on @. It is through this push-forward term that the data-informed (DI)
approach learns the data-informed parameter directions. Indeed, this new approach,
through the push-forward term, changes the original prior

exp <—% (z— UBO)TI (z— 330))

to the new one
i
exp (—; (x — o) [IAT (AAT> A] (x — mo)>

in such a way that the new prior leaves the data-informed directions, i.e. the row
space of A, untouched, and hence only regularizes data-uninformed directions. The
data-informed approach accomplishes this by the pushforward of the prior via the
parameter-to-observable map A.
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We can now define the DI posterior as

Tike (y|ﬂ?) X 7Tprior (m)
A4 Tprior ()

(28) DI (:]3|y) =

)

where A4 Tprior () denotes the pushforward of 7o, (@) via the parameter-to-observablel]
map A.

We have constructively derived the DI approach by modifying the truncated SVD
method and Gaussian prior with scaled-identity covariance matrix. In practice, the
prior can be more informative about the correlations among components of  and in
that case the covariance matrix is no longer an identity matrix. Let us denote by
Tprior (€) = N (29, T'/a) the Gaussian prior with covariance matrix I'/a. Let us also
consider a more general data distribution where, for a given parameter x, the data is
distributed by the Gaussian N (Az, A). In order to use most of the above results, let

us whiten both the parameter and observations. In particular, Aféy is the whitened
1
observations (inducing A~ 2 A as the new parameter-to-observable forward map) and

T 2z is the prior-whitened parameter. The pushforward of the prior via A2 A now
reads”

(2.9) A" ApTpsior () = N (A%Amo, 1A%AFATA%) ,
[0

The DI posterior (2.8) with whitened parameter, whitened observations, and induced
parameter-to-observable map now becomes

Tike (y‘x) X Tprior (:B)
1
A2 44;57/;’/Tp1r10r (:12)

2
exp <—§ HA_%ACB — A_%yH ) X exp <—3‘

(210) DI ((B‘y) =

1 1 2
I'2x — I‘_ECIJQH )

2 9
exp (-g HA*%A;U — A%AmOH(

1 1N\t
A*EAFATA*E) )

which, after writing the push-forward measure in terms of the whitened parameter,
reads

1 1 2 1 1 2
exp (—é HA_5A$ — A_§yH ) X exp (—’; 2z — 1"_5330H )

DI ($‘y) o8 9 )
1 1
ex —QHI‘fﬁm—I‘ffa: H
P ( 2 Ollpt arad (A’%AI‘ATA’%)TA’%AI‘%
or equivalently

1

1 1 1 2 1 1 2
(2.11)  —log (mpr1 (z]y)) x 3 HA_EAac — A_in +3 HL (I‘_2m — I‘_§w0> H ,

1
2Note that using the modified forward map A~ 2 A is not necessary as using the original map A
yields the same result.
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where
["L=a (I —T:ATA: (A—%AFATA—%)T A—%Ar%>
—a(I-vvT) —awnt ((V")l)T
(2.12) = v v [ 8 aOI ] [V”,(V")L}T,

where V" contains the first n right singular vectors of the following SVD
(2.13) A FAT: =USVT.

As can be seen, the push-forward measure seeks to find the first n columns of V'
associated with the n non-zero singular values. The DI method then avoids regulariz-
ing these “data-informed directions” V™. In other words, in the whitened parameter,
the induced regularization by the prior is identity and the DI approach removes reg-
ularization in the parameter subspace spanned by V™. From (2.13) it is clear that
V" now depends on both the prior covariance I' and the observational covariance
A in addition to A. So how do we understand the parameter subspace spanned by
V™, and hence the DI approach? To that end, let us define 32 to be the same as
3 except on the main the diagonal where 32 (i,1) = /X (4,4) = y/o; (note that 3
is nothing more than the square-root of 3 when 3 is a square matrix). Let ¥ be
the first n rows of £2 and ® be the first n columns of X2. Clearly, by definition
W (i,i) = ® (i,1) = \/o; for i <n.

Let us define the following maps

(2.14) z:=Tx, where T:=WVIT 3
(2.15) w:=Sy, where §:=&TUTA 2.

where z are the first n coordinates of  in V', after whitening via I 2 and then being
scaled by ¥. Similarly, w are the first n coordinates of y in U, after whitening via
A~ 2 and then being scaled by ®. The map T pushes forward the prior in « to the
prior in z as

I 5
(2.16) Tprior (2) ~ exp (-2;% (zi—zi)>7

where Z = T'xg. Similarly, given x (and hence z), the induced likelihood in terms of
w is given by

1 n
(2.17) Tlike (W|2) ~ exp (-2 > ot (wi— Wiﬁ) .

i=1

As can be seen from (2.16) and (2.17), the maps T" and S transform the orig-
inal parameter = and original data y to new parameter z and new data w. Two
observations are in order: 1) though in general the original parameter and data di-
mensions are different, the new parameter and data have the same dimension; and
2) the new data w and new parameter z, up to the difference in the mean, have the
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same distribution. In particular, both z and w are R™-vector of independent Gaus-
sian distributions with diagonal covariance matrix ® € R™*™ with @;; = ;. Both
z; and w;, up to the difference in the mean, are the same Gaussian distribution with
variance ;. Since o1 > 09 > ... > o, > 0, the independent random variable z; (and
hence w;) are ranked from the one with most variance to the one with least variance.

Let us call the ith column of U, namely U;, the ith important direction in the
data space, and the ith column of V| namely V;, the ¢th important direction in
the parameter space. Let us also rank the degree of importance of U; and V; by
the magnitude of ;. It follows that the transformations T' and S map the original
parameter x and data y into new parameter z and data w in which the corresponding
parameter z; and data w; are equally important. This is similar to the concept of
balanced transformation in control theory (see, e.g., [4, 1] and the references therein).
The new parameter z is thus equally data-informed and prior-informed. In particular
z; is equally less data-informed and prior-informed relatively to z; for j < i.

The DI method thus regularizes only the (equally) data-uninformed
and prior-uninformed parameters/directions.

2.3. Properties of the DI regularization approach.

2.3.1. Deterministic properties. It is easy to see the optimality condition of
the optimization problem maxlog (7p1 (z|y)) is given by
€T

(218) H:BDI = b,

where
1 1 1 T 1
H = {ATA‘1A+a {r—l —ATA? (A‘EAI‘ATA‘E) A“-’A} }
1 1 1 T 1
b= ATA 'y + a [rl ~ATA (A*EAI‘ATAT) AzA} <o

In order to solve the optimality condition (2.18) in practice, we can use the rank-r
approximation

(2.19) AAT: =U's" (V) ~Us (VT

1 1 T 1
for the push-forward matrix ATA 2 (A_fAI‘ATA_§> A" 2 A, where n is largest

index for which o, > 0. Thus rank-r approximations for H and y are given by
H = A"A7A+a (T —T73v (v)) 17 8)
b =TIV (UN) ATRy a0 TRV (V) T

Note that we don’t perform low rank approximation for the term ATA 'y in y as
it requires only a matrix-vector product. We also leave the first term in H" as is,
since we invert H" using the conjugate gradient (CG) method which requires only
matrix-vector products. In the numerical results section, section 3, we present a
nested optimization method that avoids the low rank approximation altogether. The
analysis of such method is, however, more technical and thus left for future work. The
rank-r approximation to the solution of the optimality condition (2.18) is defined as

(2.20) H'zj =b",
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which is solved approximately using the conjugate gradient (CG) method (see Section
3). For the following analysis, however, we compute the inverse of H" analytically.
To that end, we rewrite H" in terms of n singular vectors corresponding to the n
nonzero singular values as

H =l % [I +V"D" (V”)T] I3,

where D" is an n x n diagonal matrix with D" (i,i) = (07 — a) /a for ¢ < r and
D" (i,i) = 07 /o for r < i < n.

LEMMA 2.2. The DI solution with r data-informed modes reads
(2.21) @hri=THV"O" (U™ A by + [I- TV T (V) T4 a,

where ®" is an n x n diagonal matriz with O™ (i,i) = o; * for i <r and O™ (i,i) =
oif (0} +a) forr <i < n. Here, T" is an n x n diagonal matriz with T (i,i) = 1
fori<r andI" (i,i) = 02/ (07 + @) forr < i < n. Furthermore,

(2.22) Az, = AU (UM A 2y,
Proof. Using a Woodbury formula we have
— 1 - n,r
(2.23) (H")"' = =T |1-V"Dy; (V")T} T,

where D" is an n x n diagonal matrix with Dpy (4,7) = (07 — @) /o for i <r and

DLy (i,i) = 02/ (07 + @) for r < i < n. The computation of the product (H") 'y"
to arrive at the assertion is straightforward algebra manipulation and hence omitted.O

The result (2.22) shows that the image of the DI solution @p; through the
parameter-to-observable map is exactly the data if U™ (U ”)T =1 or A_%y resides
in the column space of U™. This happens, for example, when A has full row-rank
and the number of data is not more than the dimension of the parameter, i.e., d < p.
In this case, retaining all modes corresponding to non-zero singular values in the DI
solution makes the data misfit vanish, that is, the DI solution in this case would match
the noise, which is undesirable. As discussed in Section 2.1, r should be smaller than
n for the solution to be meaningful. Let us define

re:=max{i:1<i<nando; >e},
for some ¢ > 0, and
— 1
R.:=(H"™) " ATA 2.
THEOREM 2.3. For any e > 0 and o > 0, consider the inverse problem

2

b

]_ 1 1 2 ]_ 1
(2.24) min J = 5 HA_EAa:—A_fyH —|—§HL1"_§ (m—mo)‘
x

using the DI technique with rank-r. approrimation, where
"L=a <1 —T2ATAS (A—%AFATA—%)T A—%Ar%> .

The following hold:
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i) The inverse problem with rank r. DI technique is well-posed.
i1) Suppose that the nullspace of A is trivial, i.e. N (A) = {0}, then the DI
technique is a reqularization strategy in the following sense

lim 'REA_%A:B =z.
e—0

iii) If o = O (g) and N (A) = {0}, then the rank-r DI technique is an admissible
regularization method.

Proof. From Lemma 2.2 we see that the DI solution @5 is unique and furthermore

(14 Vr@) llzoll,
where k (T') denotes the condition number of T', 8 (¢, «) is a constant defined as

1

min,_ci<, {re,0i + a/o;}’

@5l < B (e,0) || ¥

-

B(e,a) =

which shows the the DI solution is stable, which in turn proves ¢). To see assertion
ii), we use the definition of R. and the SVD of A"Z AT to arrive at

1 —n,re _1
R.AT3A =T [I v"D (V")T] v (v T =
I 0
1 n 2 T ~—31
r:v Odl&g( . 7 > (V ) r 2,
0; +a re<i<n

which implies
lim RAZAz =T:V'I(V")' T iz ==z,
E—r

where we have used the fact that r. — n as e — 0, and that V™ (V™) = I since
N(A) ={0}.
For assertion 4i4), it is sufficient to show that
Sup{HREA_%y - wH : HA_% (Ax — y)H < 5} —0ase—0,
y

for any . We have

HRA nya:H<HRA 2Aa:me+HRA (Az —y H
0| 0
< |2V Odiag(

_1
) (V' T2 || (|2 + [Re|| e
re<<i<n

1
diag () ]
T3 i<re
1
2

o+

V(D) 2] + || r®

*024—04

0 diag (

2
+ a r5<z<n

)

where we have used the result from i), definition of R., and the orthonormality of
V and U. Using the assumption o = O (&) concludes the proof. 0
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Remark 2.4. Note that most of the above arguments are still valid for infinite
dimensional setting, i.e. p = oo, assuming that I is a trace class. Indeed, A" ZAT:
is then a compact operator and we can invoke the infinite dimensional singular value
decomposition [2] for A~ZATZ. Note that all the matrices are now interpreted as
operators, transpose operator (superscript T') as adjoint operator, and T2 as pseudo-
inverse if M (T') # {0}. We leave out the details for the sake of brevity.

2.3.2. Statistical properties. Now we discuss some probabilistic aspects of the
DI prior and the DI posterior. Since the regularization parameter o plays no role in
the following discussion, we absorb it into I'. We define the DI prior as

1 2
(2.25) DL prior () ~ exp {_2 L0 (@ — )| } .
From (2.12), the DI prior (pseudo-) inverse covariance is given by

(€ :=1"% [I ~TPATAE (A—%AFATA—%)TA—%AF%] T3

T_ 1
Iz,

W=

—T [I —13A” (AFAT)T Ar%] r:=r"%v")" ((V”)l)

where we have used the fact that A is invertible in the second equality. Thus A
actually contribute to neither the DI prior nor its rank-r version

1 mI\T 1
@€ =1 (v7)* ((v )L) r:.
The rank-r DI covariance thus reads
T
(2.26) =T (V) {(VT)L} I's =T (I —vr (VT)T) r>

which is clearly symmetric positive semidefinite in R?, though degenerate.® The DI-
prior (2.25) is not a well defined density in RP, that is, it is not absolutely continuous
with respect to the Lebesgue measure in RP. This is not surprising as we argue above
the the DI-prior is the prior on the less data-informed directions. Let us define

T
zt =T ez, where T+ := ((VT)J‘) r=.

THEOREM 2.5. The following hold true:
i) z and 2zt are distributed by the push-forward density of the prior through T

and T, respectively. In particular, z ~ N (Txo,I) and z+ ~ N (TJ‘aco, I).

i1) the DI-prior density is the density of 21, and hence is well-defined.
iit) The DI-prior density is the conditional density of © given z.

Proof. Assertion 7) is straightforward. To see the the second assertion, we note
that the density of z* can be written as

exp {—; = - T%Hz} — exp {—; (@) (T*) T" (@ - a:o)}

- exp{_; @ -2 T (v (v)H) T (o wo>},

3The nullspace of C™: N (C") := {m ‘TizeR (VT)}, where R (-) denotes the range space.
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which is exactly the DI prior (2.25). In other words, we have shown that the DI prior
is a well defined density on z». To see assertion 4ii) we observe that

Tprior (.’B) = Tprior (VTZ + (‘/FT)L zl) )
and thus

o (l2) = 2 e [ (= a0y 2 (V) (7)) T @ - e

which is exactly the DI prior since 7 (z) = N (T'xo, I) is exactly the push-forward
density of mpyior () via the map T. O

Remark 2.6. Note that the above decomposition of  into z and z*, through the
maps T and TJ‘, is still valid for infinite dimensional settings. However, z* would
be distributed by an infinite dimensional Gaussian measure with identity covariance
operator, which is not a valid Gaussian measure. A more general understanding of
the DI prior is through disintegration. Indeed, under mild conditions on the map T'
and its push-forward measure of the prior measure, the DI prior is nothing more than
a disintegration of the prior measure via the map T and this view is also valid for
infinite dimensional settings.

To quantify the uncertainty in the DI inverse solution (2.21), we can use the co-
variance matrix of the DI posterior (2.10). For linear inverse problems with Gaussian
prior and Gaussian noise—the problems considered in this chapter—the covariance
matrix is exactly the inverse of the Hessian. For rank-r DI approach, the DI posterior
covariance matrix CRY™ is given in (2.23), i.e.,

1 1 —
(2.27) Chr =T - a1“%V”D’]§’{” vmITs:
It is easy to see that the covariance matrix corresponding to the Tikhonov regular-
ization is given by

. 1 1 —
(2.28) Chix' = ~T — —T*V" Dy (V") T,
where both Dy and Dry. are diagonal matrices given in Table 1. Note that we
have used a as the magnitude of the regularization to study the robustness and
accuracy of all methods. If not needed, a can be straightforwardly absorbed into
T, and hence ¢?; in that case a is simply ‘replaced by 1 everywhere (including those

79

in Table 1) it appears. As can be seen, Dy (i,4) is always non-negative for all i,

‘ 1 <r ‘ r<i<n

—-—n,r 0'-2 — —-—=n,r 0'42

DI posterior Do (i,1) = = Dy (¢,4) = L
p DI(7> 01‘2 DI(») 01-2+a

Tikh terior | Doy (i, 7) o | (i, ) o

1khonov posterior g (2,1) = g (2,1) =
p Tik \ % 0_2_2 +a Tik \ % 0'1'2 +
TABLE 1

The difference between the DI and the Tikhonov Covariance matrices.

while Dy (i,i) is negative when o? < « for i < r. That is, while the Tikhonov
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posterior uncertainty, C2%' (Bayesian posterior with standard Gaussian prior), is
always smaller than the prior uncertainty I' no matter how much informed the data
is, the DI posterior uncertainty could be higher than the prior counterpart if the data
supports this. In other words, standard (or typical) Gaussian prior does not allow the
data to increase the uncertainty, and hence prone to producing over-confident results
(see Section 3). The DI prior, on the other hand, takes the parameter-to-observable
map (the proxy to the data) into account, and thus along parameter directions that
are more data-informed, i.e. 02-2 > «, the posterior uncertainty is reduced relative
to the prior uncertainty. Along parameter directions that is less data-informed, i.e.
af < «, the posterior uncertainty increases relative to the prior uncertainty.

3. Applications to Imaging Problems.

3.1. Image Deblurring. One typical inverse problem in imaging is image de-
blurring. Given some blurry image, we want to recover the true, sharp image. To
understand the deblurring process, we must first understand how an image becomes
blurred in the first place. A simple and effective mathematical model of the blurring
process is convolution of a sharp image with a blurring kernel. This blurring kernel is
often described mathematically as a point spread function (PSF). The PSF describes
how energy from a point source (ie. a single pixel) is smeared out among neighboring
pixels, resulting in a blur.

Since convolution is a linear operation, it can be expressed mathematically as

(3.1) AXtrue = B

where A is the blurring (convolution) operator acting on the true image X¢pye €
R™1*™2 regulting in the blurred image B € R™ *™2. By stacking (or vectorizing)
the columns of X¢yqye, we can write (3.1) as a linear algebraic equation. Let us denote
by @irue the vectorized true image and by y the vectorized blurred image, i.e.,

Tirue = VeC(Xipue) € R™™M2. y =vec(B) € R™™2

Also, since A is a linear operator acting on a vector, it has a matrix representation
denoted by A € R™™2*™1™2_ Finally, (3.1) becomes

(32) AZirye = Yy

Note that while this notation is convenient for manipulating mathematically, it is not
efficient to construct the two-dimensional convolution matrix. A is a large sparse
matrix, which, for large problems, cannot be stored in memory. Even on problems
small enough to fit in memory, it is computationally expensive to explicitly construct
this matrix. Fortunately, there are efficient methods for computing spectral decom-
positions of the matrices arising from convolution operators using the fast fourier
transform and discrete cosine transform. While interesting in their own right, these
implementation details are not necessary for the following discussion. For a detailed
treatment of image deblurring problems and algorithms, the interested reader is en-
couraged to consult [5].

For all examples considered in this chapter
A=X1I, andT =1,

where A is the noise level (the standard deviation).
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Since truncated SVD (TSVD) and Tikhonov are spectral filtering methods, the
regularized solution using these methods can be written using the following common
form

P T
U,

(3.3) Tpian =Y ¢ ZvyVm
K3

" ag
i=1

where ¢; is usually called the filter factor as it has the effect of filtering (damping)
when ¢; is close to 0. It can be shown that the filter factor for rank-r TSVD is given
by

b = 1, +<r
o 0, otherwise.

Likewise, the filter factor for Tikhonov regularization is given by

2
;

0?4+«

b =

As discussed in Section 2, the DI method with rank-r approximation removes
regularization on the first r directions V;, 1 < ¢ < r, while being the same as Tikhonov
on the other directions. For I' = I and xy = 0 the DI solution (see Lemma 2.2) can
be written in the filtered form as

1, 1 <r

5 , otherwise.
o7+«

Remark 3.1. It should be emphasized that the DI method also shares the same
spectral decomposition form in this case because I' = I and g = 0. When I # I,
singular vectors of A7 A donot necessarily diagonalize both A and I' simultaneously.
In other words, the filtered form (3.3) is not valid for the DI approach unless U and
V' are singular vectors of A2 AT? and xg = 0. When x( # 0, there is an additional
term contributed from xg as shown in the DI solution given in Lemma 2.2.

We can see here again that 1) when r — 0, DI approaches Tikhonov; 2) when
a < o; for i < r, Tikhonov is close to DI; and 3) when o — oo, DI converges to TSVD.
This can be clearly seen in Figure 5(a) for a deblurring problem in which we plot the
relative error between the deblurred images and the original ones for m; = my = 128,
A = 0.01, » = 400, and a wide range of a. For the under-regularization regime,
i.e. a < 1, which should be avoided, the regularization is not sufficient to suppress
the oscillations due to the high frequency modes for both Tikhonov and DI methods,
resulting in inaccurate reconstructions. For reasonable-to-over regularization regimes,
i,e. a > 1, DI is the best compared to both Tikhonov and TSVD method as it
combines the advantages from both sides. That is: 1) DI behaves similar to Tikhonov
for reasonable (but small) regularization and outperforms Tikhonov in reasonable-
to-over regularization regimes; and 2) Compared to TSVD, DI is more accurate for
reasonable regularization parameters as it maintains the benefits of keeping useful
information from all parameter directions while avoiding potential errors caused by
over-regularization. Consequently, the DI error is the smallest of the three methods
discussed for all o > 10% and DI is robust with respect to the regularization parameter.
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Truncated SVD
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(a) Relative error versus o (b) Deblurring results with a = 100

Truncated SVD

L4

Blurred Image Blurred Image Truncated SVD

-

Tikhonov

(c) Deblurring results with a = 1000 (d) Deblurring results with oo = 5000

Fi1Gc. 5. Deblurring results for mi1 = ma = 128, A = 0.01, r = 400. Top Left: relative error
between deblurred images and the truth for a range of regularization parameter o € [1, 104]. Top
Right: the DI deblurred image with o = 100. Bottom Left: the DI deblurred image with o = 1000.
Bottom Right: the DI deblurred image with a = 5000.

In Figure 5(b) are the deblurred images for & = 100 corresponding to the smallest
deblurring error for both DI and Tikhonov. As can be seen, Tikhonov result is similar
to the DI one, while truncated SVD result is blurry as it removes (putting infinite
regularization on) useful information in directions V; for ¢ > r. Figures 5(c) and (d)
show the deblurred images for e = 1000 and « = 5000, respectively, corresponding to
cases where DI outperforms both Tikhonov and TSVD (see Figure 5(a)). Indeed, the
DI deblurred image has higher quality.

In order to see if the DI method is sensitive to noise, we now consider the case
with A = 5% noise. Deblurring accuracy for this case (purple) is shown in Figure
6(a) together with the accuracy for the case of 1% noise (yellow). As can be seen, the
solution quality of the DI method does not degrade significantly due to the presence
of noise. Compare this to the difference seen in the Tikhonov method (red and
blue curves) with the increase in noise level, we can see that the solution quality
of the Tikhonov method degrades rapidly in the presence of noise. It can also be
seen that Tikhonov regularization becomes more sensitive to the choice of « as the
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noise increases. Since the DI method regularizes only the data-uninformed directions,
which also contain much of the noise, increasing the noise level has little effect on the
solution quality.

Blurred Image Truncated SVD

B "

DI Robustness to Noise

90+ [——Tik - 1% noise
——Tik - 5% noise

80 DI - 1% noise
X 79| |[——DI - 5% noise
o
S 60
e
v 50
2 40 Tikhonov
E 30

20

10

0

10° 10! 102 10° 10

Regularization Parameter, a
(a) Effect of noise on DI and Tikhonov solutions (b) Deblurring results with o = 1000

FiG. 6. Deblurring results for m1 = mg = 128, A = 0.05, » = 400. Left: relative error of DI
and Tikhonov solutions with respect to true solution for noise levels of 1% and 5% and o € [1, 104].
Right: the DI, Tikhonov, and TSVD deblurred images with o = 1000.

For the rest of this section, we consider the more challenging cases with A = 5%
noise. To make the problem even more challenging, we consider images with missing
pixels to simulate more interesting cases when images are damaged or incomplete.
Figure 7 show the deblurring results using DI, TSVD, and Tikhonov (Tik) regulariza-
tions for damaged images with m; = mo = 128, r = 400. First column contains four
scenarios with 10% random data, 25% random data, 50% random data, and 100%
data, all with noise. Note that we plot the damaged images by filling the missing
data with 0. The second column are the corresponding TSVD deblurring results.
The last four columns are the results from DI and Tikhonov with o = 10 and 20. As
can be observed, all methods are able to deblur and at the same time recover the true
image quite well even with only 10% data. Both DI and Tikhonov yield clearer im-
ages compared to TSVD. The Tikhonov results are ”darker”, especially with o = 20,
indicating over-regularization, while the DI images are insensitive to regularization
parameter as the data-informed modes are left untouched. Indeed, Figure 8 clearly
demonstrates these expected results for larger regularization parameters (o = 50 and
a = 100).

Recall the goal of sections 2.2 and 2.3.2 is to gain insights into statistical properties
of the DI prior. For linear parameter-to-observable maps—which are the cases for
this chapter—with Gaussian observational noise, the posterior is also a Gaussian. As
a result, the result at the end of section 2.3.2 also allows us to use the posterior
covariances (2.27) and (2.28) to estimate the uncertainty in the corresponding inverse
solutions. Since the posterior using either Tikhonov or DI prior is Gaussian, its
diagonal contains the marginal pixel-wise variances, which can be used as a measure
of uncertainty for each pixel. We now study the uncertainty estimation in the solution
of deblurring problems.

To begin, it is important to distinguish the following two cases:

e (ase I using only rank-r DI regularization in which rank-r approximation for
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DI, a=20
- '

50% Data 25% Data 10% Data

100% Data

Fic. 7. Deblurring results using DI, TSVD, and Tikhonov (Tik) regularizations for damaged
tmages with m1 = ma = 128, A = 0.05, » = 400. First column consists of four scenarios with 10%,
25%, 50%, and 100% data. The second column are the corresponding TSVD deblurring results. The
last four columns are the results from DI and Tikhonov with o = 10 and 20.

25% Data 10% Data

50% Data

100% Data

Fic. 8. Deblurring results using DI, TSVD, and Tikhonov (Tik) regularizations for damaged
images with m1 = mg = 128, A = 0.05, r = 400. First column consists of four scenarios with 10%,
25%, 50%, and 100% data. The second column are the corresponding TSVD deblurring results. The
last four columns are the results from DI and Tikhonov with e = 50 and 100.

i
the pseudo-inverse (A_%AI‘ATA_%) is done as we have presented. The DI

posterior covariance (2.27) thus involves second and third columns in Table
1 and a rank-n SVD (2.13) is needed.

e (Case II: performing rank-r low-rank approximation of the posterior covari-
ance in addition to rank-r DI regularization. This amounts to using only the
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second column of Table 1 for the DI posterior covariance in (2.27). This case

is typically more practical for large-scale problems as only rank-r SVD (2.19)

is needed.
In Figure 9(a) are the minimum pixel-wise variances for four scenarios with 10%
random data, 256% random data, 50% random data, and 100% random data for Case
1I. As can be seen, the uncertainty corresponding to the case of missing data is lower
than the uncertainty for full data case! We expect the opposite, that is, more available
(supposedly) informative data is expected to lead to lower uncertainty in the inverse
solution. The observation is twofold: first, care needs to be taken for Case II results
as rank-r approximation may not provide accurate uncertainty; second, for 10% data
case, when r > 500 the uncertainty is larger compared to the full data case. This
suggests that r needs to be sufficiently large for an accurate uncertainty estimation,
and this will be confirmed in the discussion below for Case I in which we use the full
rank (rank-n) decomposition (2.13). The criteria for estimating such a value of r is a
subject for future research.

We next discuss the results for Case I. Again, this requires a rank-n SVD decom-
position (2.13), where n is the rank of A, to compute (2.27) using Table 1. Figure
9(b) shows that the minimum uncertainty for any missing data case is higher than
the full data case regardless of any value of r in rank-r DI regularization. As also
expected, the uncertainty scales inversely with the amount of available data, i.e., the
more informative data we have the smaller the uncertainty in the inverse solution.
Note that the result and the conclusion for the largest pixel-wise variances are similar
and hence omitted here.

Minimum pixel-wise variance, rank-r Minimum pixel-wise variance, full-rank

o o1 ——10 % data w ——10 % data

o 0 o O 0.095 — 950

< 25 % data = 25 % data

2 0098 50 % data 2 50 % data

S 0.096 | ——Full data g ——Full data
0.09

[0 | (]

0 0.094 f| 2 -

3 0002 Y 3

I @ 0.085

X 0.00 X

o o

0 0.088 a)

c g 008

£ 0.086 5

£ 0084} £

£ £ o075

= 0.082 =~

0.08
0 100 200 300 400 500 0 100 200 300 400 500
r r
(a) Case IT (b) Case I

F1G. 9. Rank-r DI posterior pizel-wise uncertainty using rank-n SVD decomposition (Case I
with both second and third columns of Table 1) and using rank-r SVD decomposition (Case II with
only the second column of Table 1).

We now compare the DI and Tikhonov posterior uncertainty estimations. Since
Case I, though more expensive, provides more accurate uncertainty estimation, it is
used for computing DI posterior pixel-wise variances. To be fair, we also use the full
decomposition for Tikhonov regularization. In other words, the following comparison
is based on (2.27) and (2.28) and Table 1. As discussed above in Figure 6(a) and
Figure 7, a = 10 corresponds to a case in the region where DI and Tikhonov give

4At the moment of writing this chapter we have not yet found such a criteria.
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nearly the same reconstructions (in fact Tikhonov slightly over-regularizes), so let us
start with this case first. Figure 10 shows that the DI posterior has higher pixel-
wise variance than the Tikhonov posterior, this is consistent with the result and the
discussion of Table 1 and Figure 7, that is, the Tikhonov posterior is not only over-
regularing but also overconfident. For both methods, regions of higher uncertainty
are visually discernible where data is missing. In the case of 100% data, the result is
the same, namely, Tikhonov uncertainty estimation subjectively is less than the DI
uncertainty estimation. In this case, the uncertainty estimate is not very interesting:
both DI and Tikhonov have approximately uniform uncertainty everywhere as we
have data everywhere. We next consider the case with a = 1000 where Tikhonov
significantly over-regularizes (see Figure 6(b)). Figure 11, shows that while Tikhonov
is uniformly (very) overconfident, i.e., having small posterior uncertainty everywhere,
DI gives informative UQ results. The latter can be clearly seen for the case with 10%
data in which the uncertainty is higher for missing pixels. This implies that the DI
priors could provide more useful UQ results than the Tikhonov (standard Gaussian)
ones.

Tikhonov UQ DI UQ
L Ph "~ 5 | | {0008
bt P 0.096
0.094
0.092
0.09
0.088

10% Data

100% Data

0.075

F1c. 10. Visualization of pizel-wise variance estimates for the deblurring problem with A = 0.05,
r =400, and o = 10. In the left column are the noisy images with 10% data and 100% data. In the
second column are the Tikhonov uncertainty estimates for 10% data (top) and 100% data (bottom).
Likewise, the third column contains the DI uncertainty estimates for 10% data (top) and 100% data
(bottom,).

3.2. Image Denoising. We can extend the idea of data-informed (DI) regu-
larization to the image denoising problem. Since noise typically resides in the high
frequency portion of the image, denoising can be performed by applying spectral fil-
tering techniques directly to the noisy image. These noisy high-frequency modes are
also the less informative modes in the DI setting. Taking the SVD of the noisy image,
X noisy, we have

Xpoisy =USV" =Y oU; VY,
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Fic. 11. Visualization of pizel-wise variances for the deblurring problem with A = 0.05, r = 400,
and o = 1000. In the left column are the noisy images with 10% data and 100% data. In the second
column are the Tikhonov uncertainty estimates for 10% data (top) and 100% data (bottom). The
third column contains the DI uncertainty estimates for 10% data (top) and 100% data (bottom,).

The denoised image can be obtained by "filtering” the noise as

X g =USIVT =N " 0,U V],
i

where /% is the diagonal matrix with Eﬁlt = ¢;0;. The filter factors ¢; are the
same as those defined for the deblurring case. For a numerical demonstration, we
pick a noisy image [5] with 5% noise (see the top left sub-figure of Figure 12(a)).
Shown in Figure 12(a) are denoised results using DI with » = 20 and « = 100, TSVD
with » = 20, and Tikhonov with o = 100. Though the difference in the results is not
clearly visible, the DI has smaller error compared the other two methods. This can be
verified in Figure 12(b) where the relative error between the denoised image and the
true one for a wide range of "regularization parameter” o € [10_27 104] is presented.
Clearly, we would not choose o < 1 as these correspond to under-regularization. For
a > 1, DI is the best compared to both Tikhonov and TSVD method as it combines
the advantages from both methods. Indeed, the DI error is smallest for all « > 1 and
DI is robust with regularization parameter.

3.3. X-ray Tomography. In the previous two examples, we have been able
to implement spectral filtering methods directly by introducing filter factors which
effectively modified the singular values to minimize the impact of noise on the inversion
process.” Each method relied on computing a full factorization of A" 7 A and then
applying filters. While this is an effective and straightforward method to solve small-
to-moderate inverse problems that helps provide insight into each approach, it can
be cumbersome or even computationally infeasible to compute full factorizations for
large-scale problems. It is not uncommon that inverse problems arising in imaging
applications can lead to very large matrix operators. Indeed, we have seen even in

5Recall that the DI method also shares the same spectral decomposition form in this case because
I'=1and &g = 0.
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(a) Relative denoised error versus o (b) Denoised Results

Fi1c. 12. Denoising with DI, Tikhonov, and TSVD methods. Left: The relative error between
the denoised image and the true one for a wide range of ”regularization parameter” o € [10_2, 104] .
The DI error is smallest for all o > 1 (corresponding reasonable to over-regularization regimes).
Right: Denoised results using DI with r = 20 and o = 100, TSVD with r = 20, and Tikhonov with
a = 100.

the toy image deblurring problem in Section 3.1 that matrix size of 16384 x 16384 is
significantly large and we have employed more sophisticated methods to compute the
factorization of the convolution operator. For many problems, however, such efficient
factorizations may not exist or it is computationally prohibitive to compute a full
factorization.

One way to overcome the challenge of factorizing large matrices is to solve the
optimality condition (2.18) iteratively. Since H is symmetric positive definite, we
choose the conjugate gradient (CG) method (see, e.g, [11] and the references therein)
which requires only matrix-vector products, which in turn avoids forming any matrices
(including A or H) completely. We consider two variants: a) Using CG to solve for
(2.20), that is, we still require rank-r approximation of the DI regularization; and b)
Using CG to solve for (2.18), that is, a rank-r approximation of the DI regularization
is not required and in this case we use a least squares optimization method to compute

+
the pseudo-inverse (A_%AI‘ATA_%> acting on a vector for each CG iteration.

The detailed computational procedure for the a)-variant is given in Algorithm 3.1
To demonstrate the effectiveness of this approach for the DI method, we choose to
solve the inverse problem of reconstructing an image from X-ray measurements. The
forward model of generating X-ray measurements, A, is given by the Radon transform
and AT is given by the inverse Radon transform. A more detailed description of the
X-ray tomography inverse problem is given in [9] (and the references therein). We
use the MATLAB Image Processing Toolbox to compute the product of the Radon
transform A and and its inverse A7 with a vector. Results using Algorithm 3.1 for
a popular 256 x 256 phantom image are shown in Figure 13 for various values of the
regularization parameter « and the rank r. Each row contains the results for each
regularization parameter with different values of r. The corresponding values for «
and r can also be found in the rows and columns of Table 2. Note that below each
figure is the relative error of the corresponding reconstruction and the actual phantom



DATA-INFORMED REGULARIZATION 25

Algorithm 3.1 Data-informed Inversion Using Randomized Eigensolver and CG

Input: Data y, number of eigenvectors r, prior xg, prior covariance matrix I,
noise covariance matrix A, regularization parameter «

Define F := A~ 2 ATz,

Create functions to compute matrix-vector products Fa and F'x
Compute the first r eigenvectors of F¥ F using a randomized eigensolver
Solve linear equation (2.20), i.e.,

3 {FTF +a(l - V,,V,,T)}I"%m —T *F y+al *(I-V,V,")T %m,

using the conjugate gradient method

image. These relative errors are collected in Table 2 for clarity. Note that for the
last two images on the last row of Figure 13, CG does not converge and this issue is
still under investigation. Other than that the observations are similar to the previous
section. That is, compared to Tikhonov, DI is robust to the regularization parameter
and it is at least as good as Tikhonov regardless the values of regularization parameter
« and rank r.

a Relative Error, %
r=0(Tik) | r=10 | r=50 | =100 | »r =200 | r = 400
1 33.52 33.52 | 33.52 33.52 33.52 33.52
10 31.73 31.73 31.73 31.73 31.73 31.73
100 24.44 24.45 24.45 24.45 24.45 24.45
1000 29.81 29.80 29.72 29.66 29.51 29.09
107 58.76 58.52 | 56.93 55.92 54.03 50.43
10° 81.77 77.10 70.33 67.78 63.84 57.84
10° 96.09 81.29 | 72.44 69.50 81.80 299.73
TABLE 2

Comparison of the relative errors of the DI solution estimate for various regularization param-
eters a and various values for r. The noise level here is A = 1%.

Next we present the detailed computational procedure for the b)-variant in Al-
gorithm 3.2. In order to compare variant b) with variant a), we compute the relative
error of the reconstruction and the true image for various values of regularization
parameter o. From the results in Figure 13, we choose » = 200 to balance the ac-
curacy and the cost of the eigensolver. The result is in Figure 14, which shows that
the b)-variant (red curve) is at least as good as the a)-variant (blue curve) while not
requiring low rank approximations. Indeed, to demonstrate this, we pick o = 100 for
which Figure 14 shows that both variants give similar reconstruction quality, and the
reconstruction from both variants are shown in Figure 15. As can be seen, the result
from the b)-variant looks much clearer, which is expected in this case, as r = 200 is
not sufficient to capture all the data-informed modes for the a)-variant.

By using the pseudoinverse formulation, we can still get excellent results while
avoiding the computation of a large factorization.

4. Conclusions. We have presented a new regularization technique called data-
informed (DI) regularization that combines advantages of the classical truncated SVD



26 JONATHAN WITTMER AND TAN BUI-THANH

r =0 (Tik)

r= 100 r= 400

10"

Error: 33.52%

10t

Error: 31.73%

10?

Error: 24.45%

a=10%

Error: 29.81% Error: 29.8% Error: 29.72% Error: 29.66% Error: 29.51%

104

Error: 58.76% Error: 58.52% Error: 56.93% Error: 55.92% Error: 54.03% Error: 50.43%

10°

Error: 81.77% Error: 77.1% Error: 70.33% Error: 67.78% Error: 63.84% Error: 57.84%

10°

Error: 96.09% Error: 81.29% Error: 72.44% Error: 69.5% Error: 81.8% Error: 299.73%

Fi1G. 13. DI reconstructions for various values of the regularization parameter o and the rank
r. Each row contains the results for each regularization parameter with different values of r. The
corresponding values for o and r can be found in the rows and columns of Table 2. Below each
figure is the relative error of the corresponding reconstruction and the actual phantom image.

and Tikhonov regularization. In particular, the DI approach does not pollute the
data-informed modes, and regularizes only less data-informed ones. As a direct con-
sequence, the DI approach is at least as good as the Tikhonov method for any value of
the regularization parameter and it is more accurate than the TSVD (for reasonable
regularization parameter). Due to the blending of these two classical methods, DI is
expected to be robust with regularization parameter and this is verified numerically.
We have shown that our DI approach has an interesting statistical interpretation, that
is, it transforms both the data distribution (i.e. the likelihood) and prior distribution
(induced by Tikhonov regularization) to the same Gaussian distribution whose covari-
ance matrix is diagonal and the diagonal elements are exactly the singular values of
a composition of the prior covariance matrix, the forward map, and the noise covari-
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Algorithm 3.2 Data-informed Inversion Using Nested CG

Input: Data y, number of eigenvectors r, prior xg, prior covariance matrix I,
noise covariance matrix A, regularization parameter «

1: Define F = A~ 2 AT?
2: Create functions to compute matrix-vector products Fz and F’ x
3: Solve linear equation (2.18), i.e.,

14 [P Fa(I-F" (FF") F) |tz = T4 Pyl (1-F7 (FF) F)T o}

using the conjugate gradient method. For each CG iterations, compute the prod-
1
uct of FT(FFT) FT™2 with any vector « using matrix-free Algorithm 3.3.

Algorithm 3.3 Compute the product of FT(FFT)TFIH% with any vector using
optimization

Input: functions to compute Fz and F x, current estimate of &, prior covariance
matrix I

1: Compute b = FT 2
2: Using conjugate gradient method, solve linear equation

T
FF" z=b0.
T
3: Return F~ z
100
90 | |=— Computing V, V;" Directly
sl I— Computing Pseudoinverse

Relative Error, %

10

102 10° 102 10*
Regularization Parameter, o

Fic. 14. A comparison between variant b) (red curve) and variant a) with r = 200 (blue curve).

Here, we compute the relative error of the reconstruction and the truth image for various values of
regqularization parameter c.

ance matrix. In other words, DI finds the modes that are most equally data-informed
and prior-informed and leaves these modes untouched so that the inverse solution
receive the best possible (balanced) information from both prior and the data. We
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(a) X-ray tomography using a)-variant with (b) X-ray tomography using b)-variant
r = 200

Fi1G. 15. X-Ray tomography reconstruction with 1% noise and o = 100: (a) the result from the
a)-variant with r = 200, and (b) the result from the b)-variant.

have shown that DI is a regularization strategy. To demonstrate and to support our
findings, we have presented various results for popular computer vision and imaging
problems including deblurring, denosing, and X-ray tomography.

Acknowledgments. This work is inspired by an ongoing collaborative work
on data-consistent inverse framework with Tim Wildey and Brad Marvin, and the
authors would like to thank them for many fruitful discussions.

REFERENCES

[1] A. C. ANTOULAS, Approzimation of Large-Scale Systems, SIAM, Philadelphia, 2005.

[2] D. CoLtoN AND R. KRESS, Integral equation methods in scattering theory, John Wiley & Sons,
1983.

[3] J. N. FRANKLIN, Well-posed stochastic extensions of ill-posed linear problems, Journal of Math-
ematical Analysis and Applications, 31 (1970), pp. 682-716.

[4] S. GUGERCIN AND A. C. ANTOULAS, A survey of model reduction by balanced truncation and
some new results, International Journal of Control, 77 (2004), pp. 748-766.

[5] N. J. G. HANSEN, P. C. aAND D. P. O’LEARY, Deblurring Images: Matrices, Spectra, and
Filtering, SIAM, Philadelphia, 2006.

[6] J. Karpio AND E. SOMERSALO, Statistical and Computational Inverse Problems, vol. 160 of
Applied Mathematical Sciences, Springer-Verlag, New York, 2005.

[7] S. LASANEN, Discretizations of generalized random variables with applications to inverse prob-
lems, PhD thesis, University of Oulu, 2002.

[8] M. S. LEHTINEN, L. PAIVARINTA, AND E. SOMERSALO, Linear inverse problems for generalized
random variables, Inverse Problems, 5 (1989), pp. 599-612.

[9] S. S. MUELLER, J. L., Linear and Nonlinear Inverse Problems with Practical Applications,
SIAM, Philadelphia, 2012.

[10] P. PIROINEN, Statistical measurements, experiments, and applications, PhD thesis, Depart-
ment of Mathematics and Statistics, University of Helsinki, 2005.

[11] J. R. SHEWCHUK, An introduction of the conjugate gradient method without the agonizing pain,
(1994), https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf.

[12] A. M. STUART, Inverse problems: A Bayesian perspective, Acta Numerica, 19 (2010), pp. 451—
559, https://doi.org/doi:10.1017/50962492910000061.

[13] A. TARANTOLA, Inverse Problem Theory and Methods for Model Parameter Estimation, STAM,
Philadelphia, PA, 2005.


https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://doi.org/doi:10.1017/S0962492910000061



