CSEM Area A-CAM Preliminary Exam (CSE 386C-D)

May 30, 2017, 9:00 a.m. - 12:00 noon

Work any 5 of the following 6 problems.

1. Let X be a NLS. Suppose $x \in X,\left\{x_{n}\right\}_{n=0}^{\infty}$ is a sequence in X, and $M \subset X^{\prime}$ is such that its span is dense in X^{\prime}. Prove that $x_{n} \rightharpoonup x$ in X if and only if
(i) the sequence $\left\{\left\|x_{n}\right\|\right\}_{n=0}^{\infty}$ is bounded, and
(ii) for every $f \in M \subset X^{\prime}, f\left(x_{n}\right) \rightarrow f(x)$.
2. Up to a constant multiple, the Legendre polynomial of degree n is

$$
P_{n}(x)=\frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

The Weierstrauss approximation theorem says that for any function $g \in C^{0}([-1,1])$ and $\epsilon>0$, there is a polynomial p such that $|g(x)-p(x)| \leq \epsilon$ for any $x \in[-1,1]$.
(a) Show that P_{n} has exact degree n.
(b) Show that the Legendre polynomials form an orthogonal base for $L^{2}((-1,1))$. [Hint: For orthogonality, show that P_{n} is orthogonal to x^{m} for $m<n$ using integration by parts.]
3. Let X be a Banach space and consider $G L(X, X)$, the set of all isomorphisms from X to X. Show that $G L(X, X)$ is an open set of $B(X, X)$. [Hint: Recall that $(1+x)^{-1}=\sum_{n=0}^{\infty}(-x)^{n}$.]
4. Consider the boundary value problem:

$$
\begin{aligned}
-u_{x x}+(1+y) u & =f, & & \text { for }(x, y) \in(0,1)^{2}, \\
u(0, y)=0, \quad u(1, y) & =\cos (y), & & \text { for } y \in(0,1) .
\end{aligned}
$$

(a) Find the associated variational problem. In which space should f lie?
(b) Show that there exists a unique solution to this problem.
5. Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a contraction with contraction constant $\theta \in[0,1)$ and fixed point $x \in X$. Suppose that $S: X \rightarrow X$ is an approximation to T in the sense that for some $\epsilon>0$,

$$
d(T(z), S(z)) \leq \epsilon \quad \text { for all } z \in X
$$

For fixed $x_{0}=y_{0} \in X$ and integer $m \geq 1$, let $x_{m}=T\left(x_{m-1}\right)$ and $y_{m}=S\left(y_{m-1}\right)$.
(a) Use induction to show that

$$
d\left(x_{m}, y_{m}\right) \leq \epsilon \frac{1-\theta^{m}}{1-\theta}
$$

(b) We know that $d\left(x_{m}, x\right) \leq \frac{\theta^{m}}{1-\theta} d\left(x_{0}, x_{1}\right)$. Use this fact to prove that

$$
d\left(y_{m}, x\right) \leq \frac{1}{1-\theta}\left(\epsilon+\theta^{m} d\left(y_{0}, y_{1}\right)\right)
$$

6. Fix $g \in L^{2}\left(\mathbb{R}^{d}\right)$. For any $u \in H^{1}\left(\mathbb{R}^{d}\right)$, we define

$$
J(u)=\int_{\mathbb{R}^{d}}\left(|\nabla u|^{2}+|u|^{2}-g u\right) d x
$$

(a) Find the Euler-Lagrange equation associated to J.
(b) Find all the critical points of J [Hint: You may use the Fourier transform.]
(c) Are those critical points maxima or minima of J ?

Area A-CAM

1. X NLS, $x \in X,\left\{x_{n}\right\} \subseteq X, M \subseteq X^{\prime}, \overline{\operatorname{span}(M)}=x^{\prime}$
$x_{n} \longrightarrow x \Longleftrightarrow$ (i) $\left\|x_{n}\right\|$ banded
(ii) $f\left(x_{n}\right) \rightarrow f(x) \quad \forall f \in M$.
(\Rightarrow) If $x_{n} \rightarrow x$, we know that
$f\left(x_{n}\right) \rightarrow f(x) \quad \forall f \in X^{\prime}$, so (ii) holds.
Now for a fixed $f \in X^{\prime}$,
$\left|f\left(x_{n}\right)\right|$ is bounded '(since $f\left(x_{n}\right)$ connors)
So $\left|f\left(x_{n}\right)\right|=\left|E_{x_{n}}(f)\right| \leqslant C_{f} \quad \forall f \in X^{\prime}$
By UBP,
That is, $\quad\left\|E_{x_{n}}\right\|=\left\|x_{n}\right\|$ bounded.
(2) Let $g \in X^{\prime}, \varepsilon>0$ and choose $n, \alpha_{i} \in \mathbb{F}$, $f_{i} \in M$ for $i=1,2, \ldots, n$ s.t.

Thin

$$
\left\|g-\sum_{i=1}^{n} \alpha_{i} f_{i}\right\| \leq \varepsilon
$$

$$
\begin{aligned}
& g\left(x_{n}\right)-g(x)=g\left(x_{n}-x\right) \\
&=(g-h)\left(x_{n}-x\right)+h\left(x_{n}-x\right) \\
& \Rightarrow \\
&\left|g\left(x_{n}-x\right)\right| \leqslant\|g-h\|\left(\left\|x_{n}\right\|+\|x\|\right)+\left|h\left(x_{n}-x\right)\right| \\
& \leqslant \varepsilon \quad(M+\|x\|)+\left|h\left(x_{n}-x\right)\right| \\
& \longrightarrow 0 \text { as } \varepsilon \rightarrow 0, n \rightarrow \infty .
\end{aligned}
$$

Area A-CAM
May 2017
2. $P_{n}^{\text {Solutions }}=\frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$

$$
g \in c^{0}, \varepsilon>0 \Rightarrow \exists p \text { st }|g(x)-p(x)| \leqslant \varepsilon \quad \forall x \in[-1,1]
$$

(a) $\left(x^{2}-1\right)^{n} \in \mathbb{P}^{2 n} \Rightarrow P_{n} \in \mathbb{P}^{n}$

Leading term of $\left(x^{2}-1\right)^{n}$ is $x^{2 n}$
\Rightarrow leading term of P_{n} is $\frac{(2 n)!}{n!} x^{n}$
(b) The set is clearly lin. indep.

For \perp, ETS \perp of P_{n} to $x^{m}, m<n$.

$$
\begin{aligned}
& \int_{-1}^{1} P_{n} x^{m}=\int_{-1}^{1} D^{n}\left(x^{2}-1\right)^{n} x^{m} \\
& \quad=\left.D^{n-1}\left(x^{2}-1\right)^{n} x^{m}\right|_{-1} ^{1}-m \int_{-1}^{1} D^{n-1}\left(x^{2}-1\right)^{n} x^{m-1}
\end{aligned}
$$

all terms have

$$
\left(x^{2}-1\right) \Rightarrow \text { term }
$$

$$
= \pm \int_{-1}^{1} D\left(x^{n-m+1}\right)^{n} \cdot 0=0 .
$$

For density, note for $f \in L^{2}, \exists g \in L^{2}$ s. $x^{\text {. }}$ $\|f-g\| \leqslant \varepsilon$. Weiratrunsa gives $p \approx g$.
Now $p \in \operatorname{span}\left\{P_{1, \ldots}, P_{n}\right\}$ for some $n<00$, so

$$
\begin{aligned}
& \|f-p\| \leqslant\|f-g\|+\|g-p\| \\
& \leqslant \varepsilon+2 \varepsilon=3 \varepsilon \rightarrow 0
\end{aligned}
$$

Thus we have an 1 bose.

Area A-CAM
May 2017
Solutions
3. X Banach. $G L(X, X) \subseteq B(X, X)$

Let $A \in G L(X, X)$
For ε to be determine, consider

$$
B_{\varepsilon}(A)=\{T \in B(x, X):\|T-A\|<\varepsilon\}
$$

Now

$$
\begin{aligned}
T & =T-A+A \\
& =A\left(I+A^{-1}(T-A)\right)
\end{aligned}
$$

This is the composition of 2 invertible maps if (claim) $\left\|A^{-1}(T-A)\right\|<1$
which is true if $\|T-A\|<\frac{1}{\left\|A^{-1}\right\|} \equiv \varepsilon$.
To prove the claim $[$ ie., $I+R$ inv. if $\|R\|<1]$

$$
\Rightarrow \quad S_{N}=\sum_{n=0}^{N}(-R)^{n}=I-R+R^{2}-\cdots+(-1)^{N} R^{N} .
$$

Now $\left\|R^{N+1}\right\| \leqslant\|R\|^{N+\|} \rightarrow 0$ as $N \rightarrow \infty$
Thus $\quad S_{N}$ is Cauchy $\Rightarrow S_{N} \rightarrow S \in B(X, X)$
So $S_{N} \rightarrow(I+R)^{-1}$.
4. $\left\{\begin{array}{l}-u_{x x}+(1+y) u=f \quad(x, y) \in(0,1)^{2} \\ u(0, y)=0, u(1, y)=\cos y\end{array}\right.$
(a) Let

$$
\begin{aligned}
& H=\left\{v \in L^{2}\left((0,1)^{2}\right): V_{x} \in L^{2}\left((0,1)^{2}\right)\right\} \\
& H_{0}=\left\{v \in H: v(0, y)=v(1, y)=0 \quad \forall^{\prime} y\right\}
\end{aligned}
$$

The trace at $x=0,1$ exists because for are. $y, v(; y) \in H^{\prime}(0,1)$.

Find $u \in H_{0}+x \cos y$ s.t.

$$
\left(u_{x}, v_{x}\right)^{\sigma^{L^{2}\left((0,1)^{2}\right)}+\left((1+y) u_{0} v\right)=(f, v) \quad \forall v \in H_{0} . \quad . \quad .}
$$

We want $f \in\left(H_{0}\right)^{\prime}$
(b) Let $a(u, v)=\left(u_{x}, v_{x}\right)+((1-y) u, v)$

Note: H is Hilbert with IP

$$
\langle y v\rangle=\left(u_{x}, v_{x}\right)+(u, v)
$$

Completers follows from the completeness of $L^{2}: u_{n}$ Cauchy $\Rightarrow u_{n} \xrightarrow{L^{2}} u, u_{n} \stackrel{L^{2}}{\longrightarrow} V$ But $\left\langle u_{n}, x, \varphi\right\rangle=-\left\langle u_{n}, \varphi_{x}\right\rangle \rightarrow\left\langle\left\langle u_{,} \varphi_{x}^{x}\right\rangle\right.$ $=\left\langle u_{x}, \varphi\right\rangle$

$$
\Rightarrow v=u_{x} \text {. Thus } u_{n} \xrightarrow{H} u \text {. }
$$

Now $\quad|a(u, v)| \leqslant\left\|u_{x}\right\|\left\|v_{x}\right\|+2\|u\|\|v\| \leqslant 3\|u\|_{H}\left\|_{v}\right\|_{,}$ and $\quad a(u, u)=\left\|u_{x}\right\|^{2}+((1+n) u, u) \geqslant\left\|u_{x}\right\|^{2}+\|u\|^{2}$
x Poincare $\Rightarrow \| u_{x}\left(\cdot y\|\geqslant \gamma\| u(0, y)\left\|\quad \forall^{\prime} y \Rightarrow\right\| u_{x}\|\geq \gamma\| u \|\right.$ Thus $a(u, u) \geqslant \frac{1}{2} \min \left(1, r^{2}\right)\|u\|_{H}^{2}$

Lax-Milgrum $\Rightarrow \exists!$ solin.

Area A-CAM
May 2017
Solutions
5. $(x, d) T: x \rightarrow x$ contraction, $\theta, T x=x$

$$
\begin{aligned}
& S: x \rightarrow x, \quad d(T(z), S(z)) \leqslant \varepsilon \quad \forall z \in X . \\
& x_{0}=y_{0}, x_{m}=T\left(x_{m-1}\right), y_{m}=S\left(y_{m-1}\right)
\end{aligned}
$$

(a) We have that

$$
d(T(x), T(y)) \leqslant \theta d(x, y)
$$

Now
(1) $d\left(x_{0}, y_{0}\right)=0 \leqslant \varepsilon \frac{1-\theta^{0}}{1-\theta}=0$.
(2) Suppan

$$
\begin{aligned}
& \text { suppore } \\
& d\left(x_{m, y}\right) \leqslant \varepsilon \frac{1-\theta^{m}}{1-\theta}
\end{aligned}
$$

consider

$$
\begin{aligned}
& d\left(x_{m+1}, y_{m+1}\right)=d\left(T_{m}, S y_{m}\right) \\
& \quad \leqslant d\left(T_{m}, T y_{m}\right)+d\left(T y_{m}, S y_{m}\right) \\
& \quad \leqslant \theta d\left(x_{m}, y_{m}\right)+\varepsilon \\
& \quad \leqslant \varepsilon\left(\theta \frac{1-\theta m}{1-\theta}+1\right)=\varepsilon \frac{1-\theta^{m+1}}{1-\theta}
\end{aligned}
$$

(b) $d\left(x_{m}, x\right) \leqslant \frac{\theta^{m}}{1-\theta} d\left(x_{0}, x_{1}\right)$

$$
\begin{aligned}
& d\left(y_{m}, x\right) \leqslant d\left(y_{m}, x_{m}\right)+d\left(x_{m}, x\right) \\
& \quad \leqslant \varepsilon \frac{1-\theta^{m}}{1-\theta}+\frac{\theta^{m}}{1-\theta} d\left(x_{0}^{\left(y_{0}\right.} x_{1}\right) \\
& \quad=\frac{1}{1-\theta}[\varepsilon\left(1-\theta^{m}\right)+\theta^{m}(d\left(y_{0}, y_{1}\right)+\underbrace{\left.d\left(y_{1}, x_{1}\right)\right)}_{\leqslant \varepsilon}] \\
& \quad \leqslant \frac{1}{1-\theta}\left(\varepsilon+\theta^{m} d\left(y_{0}, y_{1}\right)\right)
\end{aligned}
$$

Area A-CAM
6. $g \in L^{2}, u \in H^{\prime}, J(u)=\int_{\mathbb{R}^{d}}\left(|\nabla u|^{2}+|u|^{2}-g u\right) d x$
(a)

$$
\text { a) } \begin{aligned}
& F(u)=|\nabla u|^{2}+|u|^{2}-g u \\
& \frac{\partial}{\partial u} F-\frac{\partial}{\partial x_{j}}\left(\frac{\partial F}{\partial u_{x_{j}}}\right)=0 \\
\Rightarrow & 2 u-g-2 \sum_{j} u_{x_{j}, x_{j}}=0 \\
\Rightarrow & -\Delta u+u=\frac{1}{2} g
\end{aligned}
$$

(b) $\left(1+|\xi|^{2}\right) \hat{u}=\frac{1}{2} \hat{g}$

$$
\begin{aligned}
& \Rightarrow \hat{u}=\frac{1}{2} \frac{\hat{g}}{1+|\xi|^{2}} \Rightarrow u=\frac{1}{2}\left(\frac{\hat{g}}{1+|\xi|^{2}}\right)^{v} \\
& \Rightarrow u=\frac{1}{2}(2 \pi)^{-2 / 2}\left(\frac{1}{1+|\xi|^{2}}\right)^{v} * g
\end{aligned}
$$

(c) Since

$$
\begin{aligned}
& J(u+\varepsilon v)-J(u)=\int\left(|\nabla(u+v)|^{2}+|u+v|^{2}-g(u \mid v v)\right) d x \\
& \quad-\int\left(|\nabla u|^{2}+|u|^{2}-g u\right) d x \\
& =\varepsilon \int(2 \nabla v \cdot \nabla u+2 u v-g v)+\varepsilon^{2} \int\left(|\nabla v|^{2}+|v|^{2}\right) d x \\
& \geqslant 0 \quad=0 \text { minima. }
\end{aligned}
$$

CSEM Area A-CAM Preliminary Exam (CSE 386C-D)

May 31, 2018, 9:00 a.m. - 12:00 noon

Work any 5 of the following 6 problems.

1. The set \mathcal{X} of all sequences $\left\{x_{n}\right\}_{n=1}^{\infty}$ of complex numbers is a vector space. Let $0<p<1$ and let $X \subset \mathcal{X}$ be the set of all sequences $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}<\infty$.
(a) Show that X is a vector space. [Hint: Show that $|x+y|^{p} \leq 2^{p-1}\left(|x|^{p}+|y|^{p}\right)$.]
(b) Show that the map taking $\left\{x_{n}\right\}_{n=1}^{\infty} \in X$ to $\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p}$ is not a norm on X.
(c) Show that the map $d: X \times X \rightarrow \mathbb{R}$ defined by $d\left(\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty}\right)=\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{p}$ is a metric on X.
2. Open Mapping Theorem.
(a) State the Open Mapping Theorem.
(b) Suppose that $\|\cdot\|$ and $\|\cdot\|^{\prime}$ are two norms on a vector space X. Suppose that both $(X,\|\cdot\|)$ and $\left(X,\|\cdot\|^{\prime}\right)$ are complete and there is a constant $C>0$ such that

$$
\|x\| \leq C\|x\|^{\prime} \quad \text { for all } x \in X
$$

From the Open Mapping Theorem, show that the two norms are equivalent.
3. Let $\Omega=[a, b], p, q \in(1, \infty)$, and $\frac{1}{p}+\frac{1}{q}=1$. Let $v \in L^{q}(\Omega)$. For every $u \in L^{p}(\Omega)$ define a function $A u$ by setting

$$
(A u)(t)=\int_{a}^{t} v(s) u(s) d s \quad \text { for all } t \in \Omega
$$

(a) Show that A maps $L^{p}(\Omega)$ into $L^{p}(\Omega)$ and is continuous.
(b) Explain why $A: L^{p}(\Omega) \rightarrow L^{p}(\Omega)$ is compact.
4. Suppose $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are metric spaces, Y is complete, $A \subset X$ is dense, and $T: A \rightarrow Y$ is uniformly continuous. Prove that there is a unique extension $\tilde{T}: X \rightarrow Y$ which is uniformly continuous.
5. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain, $f \in L^{2}(\Omega)$, and $\epsilon>0$. Suppose u_{ϵ} satisfies

$$
\begin{array}{rll}
-\epsilon \Delta u_{\epsilon}+u_{\epsilon} & =f & \text { in } \Omega \\
u_{\epsilon} & =0 & \\
\text { on } \partial \Omega .
\end{array}
$$

Show $u_{\epsilon} \rightarrow f$ in $L^{2}(\Omega)$ as $\epsilon \rightarrow 0$. [Hint: Bound appropriate norms of u_{ϵ} and $\sqrt{\epsilon} u_{\epsilon}$.]
6. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain with a smooth boundary and outer unit normal ν. Let \boldsymbol{b} a constant vector and $f \in L^{2}(\Omega)$. Consider the fourth order problem

$$
\begin{aligned}
u+\Delta^{2} u+b \cdot \nabla u=f & \text { in } \Omega, \\
u=0 \quad \text { and } \quad \nabla u \cdot \nu=0 & \text { on } \partial \Omega .
\end{aligned}
$$

(a) State the Lax-Milgram Theorem for a real Hilbert space.
(b) Develop a suitable variational form for the problem. [Be careful to handle the boundary values and define the Hilbert spaces you use.]
(c) Give a hypothesis on $|\boldsymbol{b}|$ so that the Lax-Milgram theorem provides a unique solution to your variational problem. [Hint: Garding's inequality gives a $C_{G}>0$ such that $\|v\|_{H^{2}}^{2} \leq C_{G}\left\{\|u\|^{2}+\|\Delta u\|^{2}\right\}$ for all $\left.v \in H_{0}^{2}.\right]$

Area A-CAM
May 2018
Solutions

CSEM. AreaA-CAM Prelim May 2018 Solutions
$1.0<p<1 \quad,\left.\left\{x_{n}\right\} \quad \sum\left|x_{n}\right|\right|^{\dagger}<\infty$
(a)

$$
\begin{aligned}
& \text { (i) }\left\{x_{n}\right\}+\left\{y_{n}\right\}=\left\{x_{n}+y_{n}\right\} \\
& \quad f\left(\frac{x+y}{2}\right)<\frac{1}{2}(f(x)+f(y)) \\
& \Rightarrow \frac{|x+y|^{p}}{2^{p}}<\frac{1}{2}\left(|x|^{p}+|y|^{p}\right) \\
& \Rightarrow \sum\left|x_{n}+y_{n}\right|^{p} \leqslant 2^{p-1}\left(\sum x_{n}^{p}+\sum y_{n}^{p}\right)<a 0
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \alpha\left\{x_{n}\right\}=\left\{\alpha x_{n}\right\} \\
& \sum\left|\alpha x_{n}\right|^{P}=\alpha^{p} \sum\left|x_{n}\right|^{P}<\infty .
\end{aligned}
$$

(b) Consider the Δ inez. for

$$
\begin{aligned}
& \quad x=(1,0,0, \ldots) \text { and } y=(0,1,0,0, \ldots) \\
& \Rightarrow\left(\sum\left|(x+y)^{1}\right|^{p}\right)^{1 / P}=2^{1 / p}>2 \\
& \leqslant\left(\sum\left|x_{n}\right|^{p}\right)^{1 / p}+\left(\sum\left|y_{n}\right|^{p}\right)^{1 / p}=1+1=2 \\
& \text { But } 2^{1 / p}>2 \text {, so not a norm. }
\end{aligned}
$$

(c) $d(x, y)=\sum\left|x_{n}-y_{n}\right|^{p}$
(i) $d(x, y) \geqslant 0, \quad d(x, y)=0 \Leftrightarrow x_{n}=y_{n} \quad \forall n$
(ii) $d(x, y)=d(y, x)$
(iii) $d(x, y) \stackrel{?}{\geqq} \underset{p}{\geqq} d(x, z)+d(z, y)$

$$
\begin{aligned}
& \left|x_{n}-y_{n}\right|^{P}=\mid\left(x_{n}-z_{n}\right)+\left(z_{n}-\left.\left.y_{n}\right|^{P}\right|^{p}(\sec (a))\right. \\
& \leqslant 2^{p-1}\left(\left|x_{n}-z_{n}\right|^{P}+\left|z_{n}-y_{n}\right|^{p}\right)\left(x^{p}(<0)\right. \\
& \leqslant\left|x_{n}-z_{n}\right|^{P}+\left|z_{n}-y_{n}\right|^{p}\left(x_{n}-1<\left.z_{n}\right|^{p}+\sum\left|z_{n}-y_{n}\right|^{P}\right.
\end{aligned}
$$

2. Open Mopping
(a) Let X, Y ba Banach

If $T: X \rightarrow Y$ is bounded, linear, swriective
Then T is open (maps open els to apenset).
(b) $\|\cdot\|,\|\cdot\|^{\prime},(x,\|\cdot\|)$ \& $\left(x,\|\cdot\|^{\prime}\right)$ complete.

$$
\|x\| \leq c\|x\|^{\prime} \quad \forall x \in X
$$

Consider
$i:(x,\|\cdot\|) \rightarrow(x,\|\cdot\|) \quad$ identity
Note i is bounded, surjective (and linear), so i is pour \Rightarrow

$$
\text { i: } B_{1}^{\prime} \xrightarrow{++0} Q \subseteq x \text { open }
$$

Now $\exists \varepsilon>0$ st. $B_{\varepsilon} \subseteq Q$
Give $x \in X$,

$$
\begin{aligned}
& \frac{\varepsilon}{2} \frac{x}{\|x\|} \in B_{\varepsilon} \cap B_{1}^{\prime} \\
\Rightarrow \quad & \frac{\varepsilon}{2}\left\|\frac{x}{\|x\|}\right\|^{\prime} \leqslant 1 \Rightarrow\|x\|^{\prime} \leqslant \frac{2}{\varepsilon}\|x\|_{1}
\end{aligned}
$$

Thus the norms an equivalent.

$$
\begin{aligned}
& \text { 3. } \Omega=[a, b], p, q \in(1, \infty), \quad \frac{1}{p}+\frac{1}{q}=1 \text {. } \\
& v \in L^{8}(\Omega) \text {. } \quad A: L^{P}(\Omega) \rightarrow \text { cons. } \\
& (A u)(t)=\int_{a}^{t} V(s) U(0) d \theta \quad \forall t \in \Omega \\
& \text { (a) } A: \longrightarrow L^{P}(\Omega) \\
& \left.\int_{a}^{b}\left|(A u)(t)^{P}=\int_{o}^{b}\right| \int_{a}^{t} v(s) u(s) d t\right|^{P} d t \\
& \leqslant \int_{a}^{b}\left(\|v\|_{L g}\|w\|_{P}\right)^{P} d t \\
& \leqslant(b-a)\|V\|_{L^{p}}^{P}\|u\|_{p}^{P} \\
& \Rightarrow \\
& \|A u\|_{p} \leqslant(b-a)^{1 / p}\|v\|_{L^{8}}\|\omega\|_{L} p
\end{aligned}
$$

So A maps into L^{P} and is continuous.
(b)

$$
A u(t)=\int_{a}^{b} \underbrace{v(s) X_{[\sigma b]}(s)}_{\in L^{g}(\Omega, \Omega)} u(s) d s
$$

Wa density of $C(\Omega)$ in L^{p}, L^{B}

$$
\begin{aligned}
& v_{j} \xrightarrow{L b} v, u_{k} \xrightarrow{L /} u \\
& A_{j} u=\frac{\operatorname{lin}}{k} A_{j} u_{k}, \quad A_{j}: C(\Omega) \rightarrow C(\Omega)
\end{aligned}
$$

is compass by Asoli-Arzcla $A_{j}: L^{P} \rightarrow L^{P}$ compact by density. $A_{j} \rightarrow A$ is also compact.
4. X, Y metric, Y complete, $A \subseteq X$ dense
$T: A \rightarrow Y$ unif. cont. (on A).

$$
\begin{aligned}
& \forall \varepsilon>0 \quad \exists \delta_{c}>0 \text { sit. } \quad \forall x, y \in A, \\
& d_{y}\left(T_{x}, T_{y}\right)<\varepsilon \quad \text { whenews } d_{x}(x, y)<\delta_{\varepsilon}
\end{aligned}
$$

Let $x \in X$ and $x_{n} \rightarrow x, x_{n} \in A$
Claim: $\left\{T_{x}\right\}$ Cauchy.

$$
\begin{gathered}
\left\{x_{n}\right\} \text { Carny } \Rightarrow \exists N>0 \text { st } d\left(x_{n}, x_{n}\right)<S_{\varepsilon} \\
\forall n, m>N \Rightarrow \\
d\left(T x_{n} T x_{n}\right)<\varepsilon \quad \forall n_{3} m>N . \\
Y \text { complete } \Rightarrow T x_{n} \rightarrow z \equiv \widetilde{T}(x) .
\end{gathered}
$$

Claim: \mathbb{T} unit. cont. If so, then $\tilde{T} x=T_{x} \forall x \in A$ and \tilde{T} is unique (sine A dene).
Now $\left.d_{1}\left(\tau_{x}, \tilde{T} y\right) \leqslant d_{1}\left(\tilde{T} x, T x_{n}\right)+d_{(}\left(T x_{n}, T_{y_{m}}\right)+d \tau_{T_{m}} \tilde{\sim} y\right)$ where $x_{n} \rightarrow x, y_{m} \rightarrow y, x_{n}, y_{m} \in A$.
If $N>0$ chow so

$$
\begin{aligned}
d_{x}\left(x_{n}, y_{2}\right) & <d_{x}\left(x_{n}, x\right)+d_{1}(x, y)+d_{x}\left(y, y_{n}\right) \\
& <\delta_{1} / 3+\delta_{4} / 3+\delta_{4} / 3
\end{aligned}
$$

for $n, m>N$ and $d_{x}(x, y)<\delta / 3$.
$\Rightarrow \quad d_{y}\left(\tilde{T}_{x}, \tilde{\tau_{y}}\right) \leqslant 3 \varepsilon$. for n, m lane.
5. $\Omega \subseteq \mathbb{R}^{d}, f \in L^{2}, \varepsilon>0$

$$
-\varepsilon \Delta u_{\varepsilon}+u_{\varepsilon}=f, \Omega ; \quad u_{c}=0, \partial \Omega
$$

Equiv. variational form is.

$$
\begin{aligned}
& \varepsilon\left(\nabla u_{\varepsilon}, \nabla v\right)+\left(u_{\varepsilon}, v\right)=(f, v) \quad \forall v \in H_{0}^{\prime}(\Omega) \\
v= & u_{c} \Rightarrow \\
& \varepsilon\left\|\nabla u_{\varepsilon}\right\|^{2}+\left\|u_{\varepsilon}\right\|^{2}=\left(f, u_{c}\right) \leqslant\|f\|\left\|u_{c}\right\| \\
& \leqslant \frac{1}{2}\|f\|^{2}+\frac{1}{2}\left\|u_{c}\right\|^{2} \\
\Rightarrow & \varepsilon\left\|\nabla u_{c}\right\|^{2}+\frac{1}{2}\left\|u_{c}\right\|^{2} \leqslant \frac{1}{2}\|f\|^{2} \\
\Rightarrow & \sqrt{\varepsilon} u_{c} \text { bounded in } H_{0}^{1} \\
& u_{c} \quad u \quad \text { in } L^{2} \\
\Rightarrow & u_{c} \Rightarrow u \text { in } L^{2} \\
& \sqrt{\varepsilon} u_{c} \longrightarrow q \text { in } H_{0}^{\prime} \Rightarrow \sqrt{\varepsilon} u_{c} \rightarrow q \text { in } L^{2}
\end{aligned}
$$

$\begin{array}{cc}\text { But } & \sqrt{\varepsilon} u_{\varepsilon_{V}} \\ \text { Thus } & \searrow_{0}\end{array}{ }_{v} \Rightarrow q=0$

$$
\begin{array}{ll}
& 0+(u, v)=(f, v) \quad \forall v \in H_{0}^{\prime}(\Omega) \\
\Rightarrow \quad(u-f, v)=0 \quad \Rightarrow \quad u=f
\end{array}
$$

$$
\begin{aligned}
& \text { 6. } \Omega \subseteq \mathbb{R}^{d}, b, f \in L^{2} \\
& \left\{\begin{array}{l}
u+\Delta^{2} u+b \cdot \nabla u=f, \\
u=0, \nabla u \cdot \nu=0, \partial \Omega
\end{array}\right.
\end{aligned}
$$

(a) Let if be a real Hillust space with closed subspace H. Let $B: \nexists x \not A \rightarrow \mathbb{R}$ be bilinear st.
(i) $|B(x, y)| \leqslant M\|x\|\|y\| \quad \forall x, y \in \mathcal{K}$. (cant)
(ii) $B(x, x) \geq \gamma\|x\| \quad \forall x \in H \quad$ (connive) If $x_{0} \in$ A, $F \in H^{*}$, then $\exists!u \in H+x_{0}$ st.

$$
\begin{aligned}
& B(u, v)=F(v) \quad \forall v \in H . \\
& \|u\| \leqslant \frac{1}{\gamma}\|F\|+\left(\frac{u}{\gamma}+1\right)\left\|x_{0}\right\|
\end{aligned}
$$

(b) Find $u \in H=\left\{w \in H^{2}: w=0, \nabla_{w} \cdot \nu=0\right.$ on $\left.\partial \Omega\right\}$ s.

$$
(u, v)+(\Delta u, \Delta v)+(b \cdot \nabla u, v)=(f, v) \quad \forall v \in H .
$$

(c) $L H S=B(u, v)$, when is cant. For coercivity:

$$
\begin{aligned}
\|u\|^{2} & +\|\Delta u\|^{2}+(b \cdot \nabla u, u) \\
& \geqslant\|u\|+\|\Delta u\|^{2}-|b|\|\nabla u\|\|u\| \\
& \geqslant\|u\|+\|\Delta u\|^{2}-\frac{4}{\varepsilon}|b|^{2}\|\nabla u\|^{2}-\varepsilon\|u\|^{2} \\
& =(1-\varepsilon)\|u\|^{2}+\|\Delta u\|^{2}-\frac{u}{\varepsilon}|b|^{2}\|\nabla u\|^{2}
\end{aligned}
$$

Now $C\left(\|u\|^{2}+\|\Delta u\|^{2}\right) \geqslant\|\nabla u\|^{2} \Rightarrow$ Need

$$
(1-\varepsilon) \frac{4}{\varepsilon}|b|<c \Rightarrow|b|<\frac{c}{4}
$$

CSEM Area A-CAM Preliminary Exam (CSE 386C-D)

May 30, 2019, 9:00 a.m. - 12:00 noon

Work any 5 of the following 6 problems.

1. Let X be a Banach space with dual space X^{*} and duality pairing $\langle\cdot, \cdot\rangle$, and let A, B : $X \rightarrow X^{*}$ be linear maps.
(a) State the Closed Graph Theorem and what it means for an operator to be closed.
(b) Assuming $\langle A x, y\rangle=\langle A y, x\rangle$ for all $x, y \in X$, show that A is bounded.
(c) Assuming $\langle B x, x\rangle \geq 0$ for all $x \in X$, show that B is bounded. [Hint: Suppose B is not continuous at 0 , so $x_{n} \rightarrow 0$ but $B x_{n} \rightarrow y \neq 0$. For $w \in X$ such that $\langle y, w\rangle>0$, consider $x_{n}+\epsilon w$.]
2. Let $\Omega=[0,1]$ and $1 \leq p<\infty$ be given and consider the sequence of functions $g_{n} \in L^{p}(\Omega)$ defined by $g_{n}(x)=n^{1 / p} e^{-n x}$. Show that as $n \rightarrow \infty$:
(a) $g_{n}(x)$ converges pointwise to zero for each fixed $x \in(0,1]$ and for any $p \geq 1$;
(b) g_{n} does not converge strongly to zero in $L^{p}(\Omega)$ for any $p \geq 1$;
(c) g_{n} converges weakly to zero in $L^{p}(\Omega)$ if $p>1$, but not if $p=1$.
3. Prove the Mazur Separation Lemma, which says that if X is a normed linear space, Y a linear subspace of $X, w \in X$ but $w \notin Y$, and

$$
d=\operatorname{dist}(w, Y)=\inf _{y \in Y}\|w-y\|_{X}>0
$$

then there exists $f \in X^{*}$ such that $\|f\|_{X^{*}} \leq 1, f(w)=d$, and $f(z)=0$ for all $z \in Y$. [Hint: Begin by working in $Z=Y+\mathbb{F} w$.]
4. Let $\Omega=(0,1)^{2}$ and consider the boundary value problem (BVP)

$$
\begin{align*}
-u_{x x}+u_{x y}-u_{y y}=f & \text { in } \Omega \tag{1}\\
-u_{x}+u_{y}-u=g & \text { on } \Gamma_{L}=\{(0, y): y \in(0,1)\} \tag{2}\\
u=0 & \text { on } \Gamma_{*}=\partial \Omega \backslash \Gamma_{L} \tag{3}
\end{align*}
$$

Let $H=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\Gamma_{*}\right\}$, which is a Hilbert space.
(a) Find the corresponding variational problem for $u \in H$ and test functions $v \in H$. Also give the function spaces containing f and g.
(b) Show the general Poincaré type inequality: There exists $\gamma>0$ such that

$$
\|\nabla v\|_{L^{2}(\Omega)}^{2}+\int_{\Gamma_{L}} v^{2} \geq \gamma\|v\|_{L^{2}(\Omega)}^{2} \quad \forall v \in H
$$

(c) Show that there is a unique solution to the variational problem.
5. For fixed $T>0$, let $g:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be continuous and Lipschitz continuous in the second argument, i.e., there is some $L>0$ such that

$$
\|g(t, v)-g(t, w)\| \leq L\|v-w\| \quad \forall v, w \in \mathbb{R}^{d}, t \in[0, T]
$$

where $\|\cdot\|$ is the norm on \mathbb{R}^{d}. For any $u_{0} \in \mathbb{R}^{d}$, consider the initial value problem (IVP) $u^{\prime}(t)=g(t, u(t))$ and $u(0)=u_{0}$.
(a) Write this IVP as the fixed point of a functional $G: C^{0}\left([0, T] ; \mathbb{R}^{d}\right) \rightarrow C^{0}\left([0, T] ; \mathbb{R}^{d}\right)$.
(b) Normally, we use the $L^{\infty}([0, T])$-norm for $C^{0}\left([0, T] ; \mathbb{R}^{d}\right)$. Show that the function $\|\|\cdot\|\|$: $C^{0}\left([0, T] ; \mathbb{R}^{d}\right) \rightarrow[0, \infty)$, defined by

$$
\|\|v\|\|=\sup _{0 \leq t \leq T}\left(e^{-L t}\|v(t)\|\right)
$$

is a norm equivalent to the $L^{\infty}([0, T])$-norm.
(c) In terms of this new norm, show that G is a contraction.
(d) Explain how we conclude that there is a unique solution $u \in C^{1}\left([0, \infty) ; \mathbb{R}^{d}\right)$ to the IVP for all time.
6. Consider finding extremals to the problem: Find $u, v \in C_{0,1}^{1}([0,1])$ minimizing

$$
F\left(u, v, u^{\prime}, v^{\prime}\right)=\int_{0}^{1}\left(\left(u^{\prime}\right)^{2}+\left(v^{\prime}\right)^{2}+2 u v\right) d x
$$

(a) Find the Euler-Lagrange (EL) equations for this problem.
(b) Reduce the EL equations to a single equation and find its solution. [Hint: The fourth roots of unity are ± 1 and $\pm i$.]
(c) Find the extremal to the problem, up to solving a 4×4 system of linear equations.
(d) If we add the constraint that $\int_{0}^{1} u^{2} v^{\prime} d x=0$, what EL equations do we get?

1. X Banach, $A, B: X \rightarrow X^{*}$ linear.
(a) Closed Graph Theorem:

Let X and Y be Banach spaces and $T: X \rightarrow Y$ linear. Then: T is continuous (bonded)
$\Leftrightarrow T$ is closed
T is closed it whenever $x_{n} \xrightarrow{x} x, T_{x_{n}} \rightarrow y$, Then $y=T x$.
(b) $\langle A x, y\rangle=\langle A y, x\rangle \quad \forall x, y \in X$

Suppose $x_{n} \xrightarrow{x} x, A x_{n} \xrightarrow{x^{*}} y$
Thin $\left\langle A x_{n}, z\right\rangle=\left\langle A z, x_{n}\right\rangle \quad \forall z \in X$

$$
\rightarrow \quad\langle y, z\rangle=\langle A z, x\rangle=\langle A x, z\rangle
$$

$\Rightarrow A x=y$, and A continuous (bonded).
(c) $\langle B x, x\rangle \geqslant 0 \quad \forall x \in X$?

ETS for $x_{n} \rightarrow 0, B x_{n} \rightarrow y \stackrel{!}{=} 0$
Suppose not: $y \neq 0$ so $\exists w \in X,\langle y, w\rangle \neq 0$
Consider

$$
\begin{aligned}
& 0 \leqslant\left\langle B\left(x_{n}+\varepsilon w\right), x_{n}+\varepsilon w\right\rangle \\
& \quad \rightarrow\langle y+\varepsilon B w, \varepsilon w\rangle \\
& \quad=\varepsilon\langle y, w\rangle+\underbrace{\varepsilon^{2}\langle B w, w\rangle}_{\geqslant 0}
\end{aligned}
$$

Let $\varepsilon \rightarrow 0$ so lat term negligible. contradiction, since ε can be + or - . So $y=0$ and B cont.
2. $\Omega=[0,1], 1 \leq p<\infty, \quad g_{n}(x)=n^{1 / p} e^{-n x}$.
(a) $g_{n}(x)=\frac{n^{1 / p}}{e^{n x}} \xrightarrow[\text { L'lopital }]{x e^{n x}} \rightarrow 0$.
(b)

$$
\begin{gathered}
\left\|g_{n}\right\|_{p}^{p}=\int_{0}^{1} n e^{-n p x} d x=-\left.\frac{1}{p} e^{-n p x}\right|_{0} ^{1} \\
=\frac{1}{p}\left(1-e^{-n p}\right) \rightarrow 1 / p \neq 0
\end{gathered}
$$

So $g_{n} \rightarrow 0$
(c) Let $h \in L^{q}, \frac{1}{p}+\frac{1}{q}=1$, If $p>1$, then by density suppose $h \in l_{0}^{1}$ Then $\exists x_{*}>0$ st $h(x) \equiv 0$ for $x<x_{*}$ Now $\left|\int_{0}^{1} g_{n} h\right| \leqslant \int_{0}^{1} g_{n}|h|$,

Note $\frac{d}{d n}\left(n^{1 / p} e^{-n x} h\right)=n^{1 / p} e^{-n x}\left(\frac{1}{\rho n}-x\right) h$
$\leqslant 0$ for n loge enough, and $x \geqslant x_{*}$ (so $\forall x$).
Thus $g_{n h}$ is monotone, $=0$ MCT \Rightarrow $\sin \int g_{n} h=\int \sin \operatorname{gnc}_{n} h=0$.
That is, $g_{n} \rightarrow 0$.
But for $p=1,\left(L^{\prime}\right)^{*}=L^{\infty}$. Consider $h \equiv 1$.
Then $\int_{0}^{1} n e^{-n x}=-\left.e^{-n x}\right|_{0} ^{1}=1-e^{-n} \rightarrow \mid \neq 0$.
3. X NLS, Y lin. subsp, $w \in X \backslash Y$.

$$
d=\operatorname{dist}(. w, Y)=\inf _{y \in Y}\|w-y\|>0 \text {. }
$$

Work in $z=Y+\mathbb{F} w$

$$
\begin{gathered}
z \in Z \Rightarrow \exists!y \in Y, \lambda \in \mathbb{F} \text { st. } \\
z=y+\lambda w
\end{gathered}
$$

(for otherwise $Y \ni y-y^{\prime}=\left(\lambda-\lambda^{\prime}\right) w \notin Y$).
Let $g: z \rightarrow \mathbb{F}$

$$
g(z)=\lambda d \quad \text { (well defined). }
$$

Now g linear and

$$
\begin{aligned}
\frac{|g(y+\lambda w)|}{\|y+\lambda w\|} & =\frac{\mid \lambda d}{\|y+\lambda w\|}=\inf _{z \in Y} \frac{\mid \lambda\|w-z\|}{\|g y+\lambda w\|} \\
& =\inf _{z \in Y} \frac{\|-\lambda z+\lambda w\|}{\|y+\lambda w\|} \leqslant 1 . \\
\Rightarrow\|g\| & \leqslant 1 .
\end{aligned}
$$

Extend (wary Hahn-Bonach) to X.

$$
\begin{aligned}
\text { 4. } \Omega=(0,1)^{2} \\
\Gamma \quad\left\{\begin{array}{l}
-u_{x x}+u_{x y}-u_{y y}=R, \Omega \\
-u_{x}+u_{y}+u=g, \quad \Gamma_{L} \\
H
\end{array}\right)=\left\{v \in H^{\prime}: v=0 \text { on } \Gamma_{*}\right\}
\end{aligned}
$$

(a)

$$
\begin{aligned}
& \quad\left(u_{x}, v_{x}\right)-\left\langle u_{x}, v\right\rangle_{\Gamma} \\
& \quad-\left(u_{y}, v_{x}\right)+\left\langle u_{y}, v\right\rangle_{L} \\
& \quad+\quad+\left(u_{y}, v_{y}\right) \\
& \Rightarrow \quad=(f, v)
\end{aligned}
$$

$$
B(, y, v)=\left(u_{x}, v_{x}\right)-\left(u_{y}, v_{x}\right)+\left(u_{y}, v_{y}\right)+\langle u, v\rangle
$$

$$
=(f, V)-\left\langle g_{*}, V\right\rangle_{L}
$$

So $f \in H^{*}, g \in\left(H^{1 / 2}\left(\Gamma_{L}\right)\right)^{*}$
(b) Suppose not, so $\exists v_{n}$ st. $\left\|v_{n}\right\|_{2}=1$

$$
\begin{aligned}
& \text { but }\left\|\nabla v_{n}\right\|_{L}^{2}+S_{\Gamma_{L}} v_{n}^{2} \leqslant n \\
& \Rightarrow(\text { subbing.) } \\
& \nabla v_{n} \rightarrow 0, S_{\Gamma_{L}} v_{n}^{2} \rightarrow 0 \\
& \\
& \left\|v_{n}\right\|_{H^{\prime}} \leqslant 2 \Rightarrow v_{n} \xrightarrow{H^{\prime}} v, v_{n} \xrightarrow{L^{2}} v \\
& \\
& \text { But } \nabla v=0 \Rightarrow v=\text { cont } \Rightarrow v=0,
\end{aligned}
$$ which contradicts $\left\|v_{n}\right\|_{2}=1$.

(c) Lax-Milgram. Linear form good by fig. continuity: $|B(u, v)| \leqslant\left(\left\|u_{x}\right\|+\left\|u_{y}\right\|\right)\left(\left\|_{x}\right\|+\left\|v_{y}\right\|\right)^{0}+\|u\| \| v$ $\leq\|u\|_{H^{\prime}}\|v\|_{H}$
Coercivity:

$$
B(v, v) \geqslant\left\|v_{x}\right\|^{2}-\left|\left(v_{y}, v_{x}\right)\right|+\left\|v_{y}\right\|^{2}+\int_{L} v^{2}
$$

5. $u^{\prime}=g(t, u(t)), \quad u(0)=u_{0}$.
(a) $u(t)-u(0)=\int_{0}^{t} g(s, u(s)) d s$
\Rightarrow

$$
G(u)=u_{0}+\int_{0}^{t} g(s, u(s)) d s
$$

(b) $\left\|\|v\|=\frac{\sup }{0 \leq t \leq T}\left(e^{-L t}\|v(t)\|\right)\right.$

Note: $\|v\|_{\mathrm{L}} \leq\|v\|_{L \infty},\|v\|_{\mathrm{L}} \geqslant e^{-L T}\|v\|_{, \infty}$
so $\|1\|$.$l equiv. to \|\cdot\|_{\infty} \Rightarrow$
III.III satisfies the zero property

Soling clearly okay

$$
\begin{aligned}
& \|v+w\|\left\|=\operatorname{sun}_{t}\right\|\left(e^{-L t}\|v+w\|\right) \leqslant \sin _{t} e^{-L t}(\|v\|+\|w\|) \\
& \leqslant \sup ^{-L t}\|v\|+\frac{\operatorname{sip}}{t} e^{-L t}\|w\| \\
& \quad=\|v\|+\|w\|
\end{aligned}
$$

So $\|I \cdot\| \|$ is a norm.
(c) $e^{-L t}\|G(v)-G(w)\|=e^{-L t}\left\|\int_{0}^{t}(g(s, v)-g(s, w))\right\|$

$$
\begin{aligned}
& \leqslant L e^{-L t} \int_{0}^{t}\|v-w\|=L e^{-L t} \int_{0}^{t} e^{-s} e^{-L s}\|v-w\| \\
& \leqslant L e^{-L t} \int_{0}^{t} e^{L s}\| \| v-w\| \| \\
& =\left.e^{-L t} e^{L s}\right|_{0} ^{t} \quad\|\mid v-w\|\left\|=\left(1-e^{-L t}\right)\right\|\|v-w\|
\end{aligned}
$$

$\Rightarrow \quad\|G(v)-G(w)\|\|\theta\| v-w\| \|, \quad \theta=1-e^{-L t}<1$.
(d) Banach contraction mapping Th $\Rightarrow \exists$! $u \in C^{0}([0, T])$ s.t. $G(u)=u \quad(i e, I \vee P)$. But it $u \in C^{0}$, then $G(u) \in C^{1}$

$$
\Rightarrow u \in c^{\prime}
$$

Finally, let $T \rightarrow \infty$.
6. $u, v \in C_{0,1}^{\prime}([0,1]), F\left(u, v, u^{\prime} v^{\prime}\right)=\int_{0}^{1}\left[\left(u^{\prime}\right)^{2}+(v)^{2}+2 u v\right] d x$
(a) $\quad f_{y_{i}}=\left(f_{y_{i}^{\prime}}\right)^{\prime} \quad, i=1,2$

$$
\left\{\begin{array} { l }
{ 2 v = 2 u ^ { \prime \prime } } \\
{ 2 u = 2 v ^ { \prime \prime } }
\end{array} \quad \Rightarrow \quad \left\{\begin{array}{l}
v=u^{\prime \prime} \\
u=v^{\prime \prime}
\end{array}\right.\right.
$$

(b) $u=v^{\prime \prime}=u^{\prime \prime \prime \prime}$

$$
\begin{aligned}
& \Rightarrow \quad u=e^{r t}, r^{4}=1 \quad(r= \pm 1, \pm i) \\
& u(x)=A e^{x}+B e^{-x}+C e^{i x}+D e^{-i x}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& v(x)=u^{\prime \prime} \\
&=A e^{x}+B e^{-x}-C e^{i x}-D e^{-i x} \\
&\left\{\begin{aligned}
u(0) & =A+B+C+D=0 \\
u(1) & =A e+B e^{-1}+C e^{i}+D e^{-i}=1 \\
v(0) & =A+B-C-D=0 \\
v(1) & =A e+B e^{-1}-C e^{i}-D e^{-i}=1
\end{aligned}\right.
\end{aligned}
$$

(d)

$$
\begin{aligned}
& H=\int_{0}^{1}\left[\left(u^{\prime}\right)^{2}+\left(v^{2}+2 u v+\lambda u^{2} v^{\prime}\right] d x\right. \\
& \left\{\begin{array} { l }
{ 2 v + 2 \lambda v ^ { \prime } = 2 u ^ { \prime \prime } } \\
{ 2 u = 2 v ^ { \prime \prime } + \lambda (u ^ { 2 }) ^ { \prime } }
\end{array} \Rightarrow \left\{\begin{array}{l}
v+\lambda u v^{\prime}=u^{\prime \prime} \\
u-\frac{1}{2} \lambda\left(u^{2}\right)^{\prime}=v^{\prime \prime}
\end{array}\right.\right.
\end{aligned}
$$

CSEM Area A-CAM Preliminary Exam (CSE 386C-D)

August 7, 2020, about any 3 hours from 9:00 a.m. $-3: 00$ p.m.
You may use the class textbooks and your own notes on this exam.

Work any 5 of the following 6 problems.

1. A problem on continuous operators.
(a) Define the topological dual of a Banach space.
(b) Define the weak topology on a Banach space.
(c) Let X, Y be Banach spaces and $A: X \rightarrow Y$ be a linear operator. Prove that A is continuous if an only if it is weakly continuous (i.e., it is continuous when X and Y are equipped with their weak topologies).

Solution.

(a) The topological dual X^{\prime} of a normed space X consists of all linear and continuous functionals defined on X. For a complex space X, we may define the topological dual as the space of all anti-linear and continuous functionals on X. Either space is equipped with the norm

$$
l \in X^{\prime}, \quad\|l\|_{X^{\prime}}:=\sup _{x \in X, x \neq 0} \frac{|l(x)|}{\|x\|_{X}}=\sup _{\|x\|_{X} \leq 1}|l(x)|=\sup _{\|x\|_{X}=1}|l(x)| .
$$

For a reflexive Banach space, the supremum is actually attained and can be replaced with maximum. The dual space is always complete, no matter whether X is complete or not.
(b) The weak topology on a Banach space X is a locally convex topology defined by a family of seminorms

$$
X \ni x \mapsto\left|\left\langle x^{\prime}, x\right\rangle\right|=\left|x^{\prime}(x)\right|, \quad x^{\prime} \in X^{\prime} .
$$

Due to the definitness of the duality pairing (proved using Hahn-Banach Theorem), the family of seminorms satisfies the axiom of separation which implies that the weak topology is well-defined.
(c) We first prove that weak continuity of A implies strong continuity of A. Assume, to the contrary, that there exists a sequence x_{n} such that $\left\|x_{n}\right\|_{X} \rightarrow 0$ but $\left\|A x_{n}\right\|_{Y} \nrightarrow 0$. At the cost of replacing x_{n} with a subsequence, we can assume that there exists $\epsilon>0$ such that $\left\|A x_{n}\right\|_{Y} \geq \epsilon$. Define,

$$
\bar{x}_{n}=\frac{x_{n}}{\left\|x_{n}\right\|_{X}^{1 / 2}} .
$$

Then,

$$
\left\|\bar{x}_{n}\right\|_{X}=\left\|x_{n}\right\|_{X}^{1 / 2} \rightarrow 0 \quad \text { and } \quad\left\|A \bar{x}_{n}\right\|_{Y} \rightarrow \infty
$$

As the strong convergence implies weak convergence, $\bar{x}_{n} \rightharpoonup 0$ and, by weak continuity of $A, A \bar{x}_{n} \rightharpoonup 0$ in Y. But every weakly convergent sequence must be bounded, a contradiction.

Assume now that A is strongly continuous.
Lemma: Let X be an arbitrary topological vector space, and Y be a normed space. Let $A \in \mathcal{L}(X, Y)$. The following conditions are equivalent to each other.
(i) $A: X \rightarrow Y$ (with weak topology) is continuous.
(ii) $f \circ A: X \rightarrow \mathbb{R}(\mathbb{C})$ is continuous $\forall f \in Y^{\prime}$.
(i) \Rightarrow (ii). Any linear functional $f \in Y^{\prime}$ is also continuous on Y with weak topology. Composition of two continuous functions is continuous.
(ii) \Rightarrow (i). Take an arbitrary $B\left(I_{0}, \epsilon\right)$, where I_{0} is a finite subset of Y^{\prime}. By (ii),

$$
\forall g \in I_{0} \exists B_{g}, \text { a neighborhood of } \mathbf{0} \text { in } X: x \in B_{g} \Rightarrow|g(A(x))|<\epsilon
$$

It follows from the definition of filter of neighborhoods that

$$
B=\bigcap_{g \in I_{0}} B_{g}
$$

is also a neighborhood of $\mathbf{0}$. Consequently,

$$
x \in B \Rightarrow|g(A(x))|<\epsilon \Rightarrow A x \in B\left(I_{0}, \epsilon\right)
$$

To conclude the final result, it is sufficient now to show that, for any $g \in Y^{\prime}$,

$$
g \circ T: X \text { (with weak topology) } \rightarrow \mathbb{R}
$$

is continuous. But $g \circ T$, as a composition of continuous functions, is a strongly continuous linear functional and, consequently, it is continuous in the weak topology as well (compare the discussion in the book).
2. Projections on a Hilbert space. Let X and Y be Hilbert spaces, $P: X \rightarrow Y$ and $Q: Y \rightarrow X$ be bounded linear operators, and suppose that $Q P: X \rightarrow X$ is an orthogonal projection operator. Let $U_{1}=R(Q P)$ and $U_{2}=N(Q P)$, i.e., the image (or range) and null space (or kernel) of the operator, respectively. Moreover, let $V_{1}=R(P)$.
(a) What does it mean to say $X=U_{1} \oplus U_{2}$? Show that U_{1} and U_{2} are orthogonal to each other.
(b) Prove that U_{1} and V_{1} are isomorphic.
(c) Show directly that $P^{*} Q^{*}: X \rightarrow X$ is an orthogonal projection.
(d) If $N(Q) \cap R(P Q)=\{0\}$, show that $P Q: Y \rightarrow Y$ is a projection operator (not necessarily orthogonal).

Solution.

(a) The symbols $X=U_{1} \oplus U_{2}$ mean that $X=\left\{u_{1}+u_{2}: u_{i} \in U_{i}, i=1,2\right\}$ and $U_{1} \cap U_{2}=\{0\}$.

For $u_{i} \in U_{i}$, we know that $u_{1}=Q P u_{1}$ and $Q P u_{2}=0$, so

$$
\left\langle u_{1}, u_{2}\right\rangle_{X}=\left\langle Q P u_{1}, u_{2}-Q P u_{2}\right\rangle_{X}=0
$$

by the definition of orthogonal projection.
(b) Consider the map $T=\left.P\right|_{U_{1}}: U_{1} \rightarrow V_{1}$, that is bounded and linear. Every $v \in V_{1}$ has some $u \in X$ such that $P u=v$. However, there are (unique) $u_{i} \in U_{i}$ such that $u=u_{1}+u_{2}$, and so $T u_{1}=P u_{1}=P u=v$ shows that T maps onto V_{1}. To finish, we need to show that T maps one-to-one, i.e., that $T u_{1}=0$ implies that $u_{1}=0$. But $0=T u_{1}=P u_{1}$, so also $Q P u_{1}=0$. Thus $u_{1} \in U_{1} \cap U_{2}$, and so $u_{1}=0$.
(c) For $u, w \in X$, we compute

$$
0=\langle Q P u-u, w\rangle_{X}=\left\langle u, P^{*} Q^{*} w-w\right\rangle_{X}
$$

which shows that $P^{*} Q^{*}$ is also an orthogonal projection operator.
(d) For $y \in Y$, we know that $Q P Q P Q y=Q P Q y$, since $Q P$ is a projection. But then

$$
0=Q P Q P Q y-Q P Q y=Q(P Q P Q y-P Q y)=Q P(Q P Q y-Q y)
$$

Thus $P Q P Q y-P Q y \in N(Q)$ and clearly $P Q P Q y-P Q y \in R(P Q)$, so $P Q P Q y=$ $P Q y$.
3. Hilbert basis. Let H be a separable Hilbert space and let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be a maximal orthonormal set (i.e., a Hilbert basis). Let $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence of real numbers, and define the linear operator $A: H \rightarrow H$ by

$$
A x=\sum_{n=1}^{\infty} \lambda_{n}\left\langle x, e_{n}\right\rangle e_{n}
$$

(a) Show that A is continuous and self-adjoint.
(b) Show that each λ_{n} is an eigenvalue with eigenvector e_{n}.
(c) Show that if $\lambda_{n} \rightarrow 0$, then A is compact. [Hint: Consider the operator A_{N} defined by a truncated sum, and show that A_{N} converges to A.]

Solution.

(a) If $x_{m} \rightarrow 0$, then $\left\|x_{m}\right\|^{2}=\sum_{n=1}^{\infty}\left|\left\langle x_{m}, e_{n}\right\rangle\right|^{2} \rightarrow 0$. Thus

$$
\left\|A x_{m}\right\|=\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{2}\left|\left\langle x, e_{n}\right\rangle\right|^{2} \leq \max _{n}\left|\lambda_{n}\right|^{2} \sum_{n=1}^{\infty}\left|\left\langle x_{m}, e_{n}\right\rangle\right|^{2} \rightarrow 0
$$

That is, A is continuous at 0 , and so continuous everywhere.
Now

$$
\langle A x, y\rangle=\sum_{n=1}^{\infty} \lambda_{n}\left\langle x, e_{n}\right\rangle \overline{\left\langle y, e_{n}\right\rangle}=\sum_{n=1}^{\infty}\left\langle x, e_{n}\right\rangle \overline{\lambda_{n}\left\langle y, e_{n}\right\rangle}=\langle x, A y\rangle
$$

is clearly self adjoint (since λ_{n} is real).
(b) Compute

$$
(A-\lambda I) x=\sum_{n=1}^{\infty} \lambda_{n}\left\langle x, e_{n}\right\rangle e_{n}-\lambda \sum_{n=1}^{\infty}\left\langle x, e_{n}\right\rangle e_{n}=\sum_{n=1}^{\infty}\left(\lambda_{n}-\lambda\right)\left\langle x, e_{n}\right\rangle e_{n},
$$

and note that this cannot be invertible when $\lambda=\lambda_{n}$ for some n. Moreover, $A e_{n}=\lambda_{n} e_{n}$ is clear by orthonormality of the basis.
(c) Consider the operators

$$
A_{N} x=\sum_{n=1}^{N} \lambda_{n}\left\langle x, e_{n}\right\rangle e_{n}
$$

Each has finite dimensional range, and is hence compact. Moreover,

$$
\left\|A_{N} x-A x\right\|^{2}=\left\|\sum_{n=N+1}^{\infty} \lambda_{n}\left\langle x, e_{n}\right\rangle e_{n}\right\|^{2}=\sum_{n=N+1}^{\infty}\left|\lambda_{n}\right|^{2}\left|\left\langle x, e_{n}\right\rangle\right|^{2} \rightarrow 0,
$$

so $A_{n} \rightarrow A$ and A is compact.
4. Closed operators. All spaces are real. Consider the operator

$$
\begin{gathered}
A: D(A) \rightarrow L^{2}(0,1), \quad A u=u^{\prime}+u \\
D(A):=\left\{u \in L^{2}(0,1): A u \in L^{2}(0,1), u(0)=0, u(1)=0\right\}
\end{gathered}
$$

where the derivative is understood in the sense of distributions.
(a) Interpret $D(A)$ in terms of Sobolev spaces.
(b) Show that A is a closed operator.
(c) Prove that A is bounded below in $L^{2}(0,1)$.
(d) Compute the L^{2}-adjoint $A^{*}, L^{2}(0,1) \supset D\left(A^{*}\right) \ni v \mapsto A^{*} v \in L^{2}(0,1)$.
(e) Compute the null space of the adjoint operator A^{*}.
(f) For an appropriate right-hand side f, discuss the well-posedness of the problem:

$$
\left\{\begin{array}{l}
u \in D(A) \\
A u=f
\end{array}\right.
$$

Solution.

(a) We have

$$
u, u^{\prime}+u \in L^{2}(0,1) \quad \Leftrightarrow \quad u, u^{\prime} \in L^{2}(0,1) \quad \Leftrightarrow \quad u \in H^{1}(0,1)
$$

Consequently, $D(A)=H_{0}^{1}(0,1)$.
(b) We need to show that

$$
D(A) \ni u_{n} \rightarrow u, \quad A u_{n} \rightarrow w \quad \Rightarrow \quad u \in D(A), A u=w
$$

All convergence is in the L^{2}-sense. Let $\phi \in \mathcal{D}(0,1)$. We have

This proves that $-u^{\prime}+u=w$ and, therefore, $u \in H^{1}(0,1)$. Moreover, $u_{n} \rightarrow u$ in $H^{1}(0,1)$. Continuous embedding of $H^{1}(0,1)$ into $C([0,1])$ implies that,

$$
u(x)=\lim _{n \rightarrow \infty} u_{n}(x)=0 \quad \text { for } x=0,1
$$

Consequently, $u \in D(A)$.
(c) We have

$$
\|A u\|^{2}=\left\|u^{\prime}\right\|^{2}+\|u\|^{2}+2\left(u^{\prime}, u\right) .
$$

But

$$
2\left(u^{\prime}, u\right)=\int_{0}^{1} \frac{d}{d x}\left(u^{2}\right)=\left.u^{2}\right|_{0} ^{1}=0
$$

Consequently,

$$
\|A u\|^{2}=\left\|u^{\prime}\right\|^{2}+\|u\|^{2} \geq\|u\|^{2}
$$

(d) Integration by parts and BC's on u reveal that

$$
D\left(A^{*}\right)=H^{1}(0,1) \quad A^{*} v=-v^{\prime}+v
$$

(e) We get

$$
D\left(A^{*}\right)=\left\{c e^{x}: c \in \mathbb{R}\right\}
$$

(f) According to the Closed Range Theorem for Closed Operators, the equation has a unique solution u for every $f \in L^{2}(0,1)$ such that $f \in \mathcal{N}\left(A^{*}\right)^{\perp}$, i.e.,

$$
\int_{0}^{1} f(x) e^{x}=0
$$

5. Variational formulations. Consider the ultraweak variational formulation of the previous problem, i.e.,

$$
\left\{\begin{array}{l}
u \in L^{2}(0,1)=: U \\
\underbrace{\int_{0}^{1} u A^{*} v d x}_{b(u, v)}=\underbrace{\int_{0}^{1} f v d x}_{l(v)} \quad \forall v \in D\left(A^{*}\right)=H^{1}(0,1)=: V
\end{array}\right.
$$

where A^{*} denotes the L^{2}-adjoint of $A, A^{*} v=-v^{\prime}+v$, and $f \in L^{2}(0,1)$. [Hint: For this problem, use results of the previous problem.]
(a) Define the operator $B: U \rightarrow V^{\prime}$ and its conjugate corresponding to the bilinear form $b(u, v)$.
(b) State the Babuška-Nečas Theorem for Hilbert spaces.
(c) Use this theorem to investigate the well-posedness of the variational formulation.

Solution.

(a) If the bilinear form $b(u, v)$ is continuous (trivially in our case), then the operator

$$
B: U \rightarrow V^{\prime}, \quad\langle B u, v\rangle:=b(u, v), \quad v \in V, u \in U,
$$

is always well-defined, linear and continuous. The map setting b into B is an isometric isomorphism. The conjugate operator,

$$
B^{\prime}: V^{\prime \prime} \sim V \rightarrow U^{\prime}, \quad\left\langle B^{\prime} v, u\right\rangle=b(u, v) \quad u \in U, v \in V
$$

is also well-defined, linear and continuous with the norm equal to that of B.
(b) If the bilinear form satisfies the inf-sup condition,

$$
\sup _{v \in V} \frac{|b(u, v)|}{\|v\|_{V}} \geq \gamma\|u\|_{U} \quad \Leftrightarrow \quad\|B u\|_{V^{\prime}} \geq \gamma\|u\|_{U}
$$

and $l \in V^{\prime}$ vanishes on the null space of the transpose operator,

$$
l(v)=0 \quad \forall v \in V_{0}:=\{v \in V: b(w, u)=0 \quad \forall w \in U\}
$$

then there exists a unique solution u to the variational problem and

$$
\|u\|_{U} \leq \gamma^{-1}\|l\|_{V^{\prime}}
$$

(c) We first prove the inf-sup condition. It is sufficient to find a $v \in H^{1}(0,1)$ such that $A^{*} v=u$ and

$$
\|v\| \leq C\left\|A^{*} v\right\|=C\|u\|
$$

Once we control the L^{2}-norm of v, we control also the L^{2}-norm of its derivative,

$$
\left\|v^{\prime}\right\| \leq\|\underbrace{-v^{\prime}+v}_{A^{*} v}\|+\|v\| \leq(1+C)\left\|A^{*} v\right\|=(1+C)\|u\|,
$$

and, consequently,

$$
\|v\|_{H^{1}(0,1)}^{2}=\|v\|^{2}+\left\|v^{\prime}\right\|^{2} \leq \underbrace{\left((1+C)^{2}+C^{2}\right)}_{C_{1}^{2}}\|u\|^{2} .
$$

We have then

$$
\sup _{v} \frac{|b(u, v)|}{\|v\|_{H^{1}}} \geq \frac{\|u\|_{L^{2}}^{2}}{\|v\|_{L^{2}}} \geq \frac{1}{C_{1}} \frac{\|u\|_{L^{2}}^{2}}{\|u\|_{L^{2}}}=\frac{1}{C_{1}}\|u\|_{L^{2}} .
$$

Next, we determine the null space of the transpose operator. Clearly,

$$
0=\int_{0}^{1} u A^{*} v \quad \forall u \in L^{2}(0,1) \quad \Rightarrow \quad A^{*} v=0
$$

This gives,

$$
\mathcal{N}\left(B^{\prime}\right)=\left\{c e^{x}: c \in \mathbb{R}\right\}
$$

Consequently, by the Babuška-Nečas Theorem, for every $l \in\left(H^{1}(0,1)\right)^{\prime}$ that satisfies the compatibility condition

$$
l\left(e^{x}\right)=0,
$$

the variational problem has a unique solution u that depends continuously upon l. Note that the right-hand side may be more general than an L^{2}-function. For the L^{2}-function f,

$$
l(v)=\int_{0}^{1} f v
$$

so the function f must be L^{2}-orthogonal to e^{x}.
Finding a solution $v \in H^{1}(0,1), A^{*} v=u \in L^{2}(0,1)$ is an undetermined problem. We may fix v by adding an extra $\mathrm{BC}: v(0)=0$. You can now find v explicitly (this is an elementary problem), or you can consider an auxiliary problem

$$
\left\{\begin{array}{l}
v \in H^{1}(0,1), v(0)=0 \\
L v:=-v^{\prime}+v=u
\end{array}\right.
$$

By the same argument as in the previous problem, operator L is bounded below,

$$
\left\|-v^{\prime}+v\right\|^{2}=\left\|v^{\prime}\right\|^{2}+v(1)^{2}+\|v\|^{2} \geq\|v\|^{2}
$$

The adjoint,

$$
D\left(L^{*}\right):=\left\{u \in H^{1}(0,1): u(1)=0\right\}, \quad L^{*} u=-u^{\prime}+u
$$

has a trivial null space. The Closed Range Theorem for Closed Operators implies thus that there exists a unique solution $v \in D(L), L v=A^{*} v=u$, and $\|v\| \leq\|u\|$.
6. Nonlinear equations. Let X be a Banach space and $T: X \rightarrow X$ a bounded linear operator. Let $g: X \rightarrow X$ be a nonlinear mapping that is C^{1} and has $g(0)=0$ and $D g(0)=0$. For $f \in X$, we want to solve

$$
F(u)=u+T g(u)=f
$$

We consider the map $G(u)=u+\alpha(F(u)-f)$ for some $\alpha \in \mathbb{R}$.
(a) Show that $G(u)$ is a contractive map for small enough u and properly chosen α.
(b) Use the Banach contraction mapping theorem to show that there is a solution to $F(u)=$ f, provided f is sufficiently small.
(c) Compute $D F(u)(v)$ from the definition of the Fréchet derivative.
(d) Solve $F(u)=f$ using the inverse function theorem, provided f is sufficiently small.

Solution.

(a) Let $u, v \in X$ and compute

$$
G(u)-G(v)=u-v+\alpha(F(u)-F(v))=(1+\alpha)(u-v)+\alpha T(g(u)-g(v)),
$$

so that

$$
\|G(u)-G(v)\| \leq|1+\alpha|\|u-v\|+|\alpha|\|T\|\|g(u)-g(v)\| .
$$

Since $D g(0)=0$ and g is C^{1}, given $\epsilon>0$, there exists $\delta>0$ such that for $w \in B_{\delta}(0)$, $\|D g(w)\| \leq \epsilon$. Therefore the mean value theorem shows that

$$
\|g(u)-g(v)\| \leq \epsilon\|u-v\| \quad \forall u, v \in B_{\delta}(0)
$$

Take, for example, $\alpha=-\frac{1}{2}$ and $\frac{1}{2} \epsilon\|T\|<\frac{1}{4}$ (which defines δ). Then G is contractive (with constant $\frac{3}{4}$) on $B_{\delta}(0)$.
(b) It remains to show that $G: B_{\delta}(0) \rightarrow B_{\delta}(0)$. Compute

$$
\|G(u)\| \leq\|G(u)-G(0)\|+\|G(0)\| \leq \frac{3}{4}\|u\|+\|\alpha f\| .
$$

Requiring $\|f\|<\frac{\delta}{4|\alpha|}$ completes the proof.
(c) We compute

$$
\begin{aligned}
F(u+v)-F(u) & =v+T(g(u+v)-g(u))=v+T\left(D g(u)(v)+R_{g}(u, v)\right) \\
& =v+T(D g(u)(v))+T R_{g}(u, v)
\end{aligned}
$$

where $\left\|R_{g}(u, v)\right\|=o(\|v\|)$. But then $\left\|T R_{g}\right\| \leq\|T\|\left\|R_{g}\right\|=o(\|v\|)$, so

$$
D F(u)(v)=v+T D g(u)(v)
$$

(d) We note that F is C^{1} and $D F(0)=I$ is invertible. Thus the inverse function theorem gives open sets $U, V \subset X$ such that $0 \in U$ and $F(0)=0 \in V$ such that F is a diffeomorphism from U to V. Thus we can solve the problem for $f \in V$.

CSEM Area A-CAM Preliminary Exam (CSE 386C-D)

May 28, 2021, about any 3 hours from 9:00 a.m. to 3:00 p.m.
You may use the class textbooks and your own notes on this exam.

Work any 5 of the following 6 problems.

1. Let the field be real and \mathbb{P} denote the vector space of all polynomials in $x \in \mathbb{R}$; that is, $\mathbb{P}=\left\{p(x)=\sum_{k=0}^{n} c_{k} x^{k}: n\right.$ is a nonnegative integer and $\left.c_{k} \in \mathbb{R}\right\}$. Let $\|\cdot\|: \mathbb{P} \rightarrow[0, \infty)$ be defined for such p as $\|p\|=\max _{0 \leq k \leq n}\left|c_{k}\right|$.
(a) Show $\|\cdot\|$ is a norm on \mathbb{P}.
(b) Show that the NLS $(\mathbb{P},\|\cdot\|)$ is not complete.
(c) Let $m \geq 0$ and $T_{m}: \mathbb{P} \rightarrow \mathbb{R}$ be defined by $T_{m} p=\sum_{k=0}^{\min (m, n)} c_{k}$, which is clearly linear. Show that each T_{m} is bounded.
(d) Since \mathbb{P} is not Banach, the Uniform Boundedness Principle need not hold. In fact, show that $\sup _{m}\left|T_{m} p\right|<\infty$ for each $p \in \mathbb{P}$ but $\sup _{m}\left\|T_{m}\right\|=\infty$.
2. Let Ω be some set and $(H,\langle\cdot, \cdot\rangle)$ be a Hilbert space of functions $f: \Omega \rightarrow \mathbb{F}$ (\mathbb{F} is \mathbb{R} or \mathbb{C}). Suppose that there is a constant $C(x)$ such that

$$
|f(x)| \leq C(x)\|f\| \quad \text { for all } f \in H
$$

(a) Show that if $f, g \in H$ and $x \in \Omega$, then $|f(x)-g(x)| \leq C(x)\|f-g\|$.
(b) Show that there exists a function $K: \Omega \times \Omega \rightarrow \mathbb{F}$ (called a reproducing kernel) such that for each fixed $x \in \Omega, K(\cdot, x) \in H$ and

$$
f(x)=\langle f, K(\cdot, x)\rangle \quad \text { for all } f \in H
$$

[Hint: Use the Riesz representation theorem.]
(c) Show that $K(x, y)=\overline{K(y, x)}$ (i.e., K is conjugate symmetric). Be sure to justify that $K(x, \cdot) \in$ H for each $x \in \Omega$.
3. Let H be a complex Hilbert space and A a bounded linear operator on H. Define $|A|=\left(A^{*} A\right)^{1 / 2}$.
(a) Show that $|A|$ is a well defined, bounded linear, self-adjoint operator. [Hint: Use Theorem 4.26.]
(b) Show that $\||A| x\|=\|A x\|$ for all $x \in H$.
(c) Show that $H=\overline{R(|A|)} \oplus N(|A|)$ and that $N(|A|)=N(A)$.
4. Half Laplacian in \mathbb{R}. Let $\mathbb{R}_{+}^{2}=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$. For $u \in H^{1}\left(\mathbb{R}_{+}^{2}\right)$, we denote by \bar{u} the Fourier transform in x only, i.e.,

$$
\bar{u}(\xi, y)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} u(x, y) e^{-i x \xi} d x
$$

Take $f \in H^{1}(\mathbb{R})$, and consider u the solution to

$$
\begin{cases}\partial_{x}^{2} u+\partial_{y}^{2} u=0, & (x, y) \in \mathbb{R}_{+}^{2} \tag{1}\\ u(x, 0)=f(x), & x \in \mathbb{R}\end{cases}
$$

(a) Find the equation verified by \bar{u}.
(b) Show that there exists a unique solution of (1) such that $\nabla u \in L^{2}\left(\mathbb{R}_{+}^{2}\right)$, and give a formula for \bar{u}. [Hint: Solutions to the ODE $y^{\prime \prime}-\omega^{2} y=0$ are of the form $A e^{-\omega t}+B e^{\omega t}$.]
(c) For $f \in H^{1}(\mathbb{R})$, we define $\Delta^{\alpha} f$, for $0<\alpha<1$ a real number, through the Fourier transform as $\widehat{\Delta^{\alpha} f}=|\xi|^{2 \alpha} \hat{f}$. Show that for u solving (1), we have

$$
-\partial_{y} u(x, 0)=\Delta^{1 / 2} f
$$

(d) Show that

$$
\int_{\mathbb{R}_{+}^{2}}|\nabla u|^{2} d x d y=\int_{\mathbb{R}} f \Delta^{1 / 2} f d x=\int_{\mathbb{R}}\left|\Delta^{1 / 4} f\right|^{2} d x
$$

5. Let $\Omega \in \mathbb{R}^{d}$ be a bounded domain with a Lipschitz boundary, $f \in L^{2}(\Omega)$, and $\alpha>0$. Consider the boundary value problem

$$
\begin{cases}-\Delta u+u=f & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}+\alpha u=0 & \text { on } \partial \Omega .\end{cases}
$$

(a) For this problem, formulate a variational principle

$$
B(u, v)=(f, v) \quad \forall v \in H^{1}(\Omega) .
$$

(b) Show that this problem has a unique weak solution.
6. Given $I=[0, b]$, consider the problem of finding $u: I \rightarrow \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
u^{\prime}(s)=g(s) f(u(s)) \quad \text { for a.e. } s \in I, \tag{2}\\
u(0)=\alpha
\end{array}\right.
$$

where $\alpha \in \mathbb{R}$ is a given constant, $g \in L^{p}(I), p \geq 1$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ are given functions. We suppose that f is Lipschitz continuous and satisfies $f(0)=0$.
(a) Consider the functional

$$
F(u)=\alpha+\int_{0}^{s} g(\sigma) f(u(\sigma)) d \sigma
$$

Show that F maps $C^{0}(I)$ into $C^{0}(I) \cap W^{1, p}(I)$. Moreover, show that $u \in C^{0}(I) \cap W^{1, p}(I)$ is the solution to (2) if and only if it is a fixed point of F.
(b) Show that there exists b small enough, not depending on α, such that F has a unique fixed point in $C^{0}(I)$.
1.

$$
\begin{aligned}
& \mathbb{P}=\left\{p=\sum_{k=0}^{n} c_{k} x^{k}\right\} \\
& \|p\|=\max \left|c_{k}\right|
\end{aligned}
$$

(a) Norm (i) $\|p\| \geqslant 0, \quad\|p\|=0 \Leftrightarrow c_{k}=0 \forall k$

$$
\Leftrightarrow p=0
$$

(ii)

$$
\begin{aligned}
& \text { (ii) } \quad\|c p\|=\left\|\sum c c_{k} x^{k}\right\|=\max \left|c c_{k}\right| \\
& =|c| \max \left|c_{k}\|=|c|\| p \|\right. \\
& \text { (iii) } \quad\|p+q\|=\max \left|c_{k}+d_{k}\right| \\
& \quad \leqslant \max \left|c_{k}\right|+\max \left|d_{k}\right|=\|p\|+\|q\|
\end{aligned}
$$

(b) Let

$$
P_{n}=1+\frac{1}{2} x+\ldots+\frac{1}{n} x^{n}
$$

Then $\left\{p_{n}\right\}$ is Cauchy: $(m>n)$

$$
\left\|p_{n}-p_{m}\right\|=\frac{1}{n+1} \rightarrow 0
$$

But $p_{n} \nrightarrow p$ with finite degree
(if $\operatorname{deg} p=m$, then $\left\|p_{n}-p\right\| \geq \frac{1}{m+1}$)
(c) Thus $\mathbb{P}_{\min (n, m)}$ not complete

$$
\begin{aligned}
& T_{m} p=\sum_{k=0}^{\min (n, m)} c_{k} \\
& \begin{aligned}
\left|T_{m} p\right| \leqslant \sum_{k=0}^{\min (n, m)}\left|c_{k}\right| & \leqslant \min (r, m)\|p\| \\
& \leqslant m\|p\|
\end{aligned}
\end{aligned}
$$

(d) $\sup _{m}\left|T_{m p}\right| \leqslant n\|p\|<\infty$

$$
\begin{gathered}
\sup _{m}\left\|T_{m}\right\| \geq \sup _{m} \frac{\left|T_{m p}\right|}{\|p\|}, \quad p=1+x+x^{2}+\ldots+x^{n} \\
\geqslant \sup _{m}\left|T_{m} p\right|=\min (n, m)=n \rightarrow \infty
\end{gathered}
$$

2. $H=\{f: \Omega \rightarrow \mathbb{F}\}$

$$
|f(x)| \leq c(x)\|f\| \quad \forall f \in H
$$

(a) $f, g \in H, x \in \Omega \Rightarrow$
$|f(x)-g(x)|=|(f-g)(x)| \leq c(x)\|f-g\|$
(b) Let $T_{x}: H \rightarrow \mathbb{F}$ be $T_{x} f=f(x)$ Then I_{x} is a linear final (by defin of + sc. mut of fens)

$$
\begin{aligned}
R_{i c s z} \Rightarrow & \exists \quad g_{x}=k(0, x) \in H \text { st. } \\
& f(x)=\langle f, k(\cdot, x)\rangle \forall f \in H .
\end{aligned}
$$

(c) $k(\cdot, x) \in H \Rightarrow(b y(b))$

$$
\begin{aligned}
k(y, x) & =\langle k(0, x), k(0, y)\rangle \\
= & \langle k(\cdot, y), k(a, x)\rangle=\overline{k(x, y)}
\end{aligned}
$$

Note

$$
K(x,)=K(\cdot, x) \in H .
$$

3. H complex Hilbert. $A \in B(H, H),|A|=\left(A^{*} A\right)^{1 / 2}$ (a)Let $T=A^{*} A \in B(H, H)$

$$
\begin{gathered}
\langle T x, y\rangle=\left\langle A^{*} A x, y\right\rangle=\langle A x, A y\rangle \\
=\left\langle x, A^{*} A y\right\rangle=\langle x, T y\rangle \\
\Rightarrow T=T^{x} \\
\left.\left\langle T_{x}, x\right\rangle=\|A x\|^{2} \geqslant 0 \Rightarrow \quad\right\rangle \geqslant 0
\end{gathered}
$$

The $4.26 \Rightarrow T$ has a unique. pos sg root $\left(A^{x} A\right)^{1 / 2} \in B(A, A)^{b}$ Sine $\left(A^{*} A\right)^{1 / 2} \geqslant 0$, it is alf-adjoint.
(b) 11

$$
\begin{aligned}
& |A| x \cdot^{2} \|^{2}=\langle | A|x,|A| x\rangle \\
& \left.=\left.\langle | A\right|^{2} x, x\right\rangle=\langle T x, x\rangle \\
& =\left\langle A^{4} A x, x\right\rangle=\langle A x, A x\rangle=\|A x\|^{2}
\end{aligned}
$$

(c) Let $R=R(|A|)$

Then $H=R \oplus R^{I}$

$$
\begin{aligned}
x \in R^{\perp} & \Leftrightarrow\langle x, y\rangle=0 \quad \forall y \in R(|A|) \\
& \Leftrightarrow\langle x, y\rangle=0 \quad \forall y \in R(|A|) \\
& \Leftrightarrow\langle x,| A|z\rangle=0 \quad \forall z \in H \\
& \Leftrightarrow\langle | A|x, z\rangle=0 \quad \forall z \in H \\
& \Leftrightarrow x \in N(|A|)
\end{aligned}
$$

Thus $R^{+} \equiv N(|A|)$ and

$$
H=\overline{R(|A|) \oplus N(|A|)}
$$

But

$$
\begin{aligned}
& x \in N(|A|) \Leftrightarrow\||A| x\|=0 \Leftrightarrow\|A x\|=0 \\
& \Leftrightarrow x \in N(A)
\end{aligned}
$$

So $\quad N(|A|)=N(A)$
4. $\mathbb{R}_{+}^{2}=\{(x, y): y>0\} . \bar{u}=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} u(x, y) e^{-i x^{\xi}} d x$

$$
\left\{\begin{array}{l}
\partial_{x}^{2} u+\partial_{y}^{2} u=0 \\
u(x, 0)=f(x) \in H^{1}
\end{array}\right.
$$

(a)

$$
\left.\begin{array}{l}
\overline{\partial_{x}^{2} u}+\partial_{y}^{2} u=0 \\
=-|\xi|^{2} \bar{u}
\end{array}\right\} \Rightarrow \partial_{y}^{2} \bar{u}-|\xi|^{2} \bar{u}=0
$$

(b) Noke: $\bar{u}=A e^{-13 / y}+B e^{+7 \mid \vec{s} / y}$

But $\bar{u}(\bar{\xi}, 0)=\hat{f}$ \& \bar{u} blows up it $\hat{B} \neq 0$ so $\bar{u}(\xi, y)=\hat{f}(\xi) e^{-|\xi| y}$

$$
\Rightarrow u(x, y)=f_{s}^{-1}\left(\hat{f}(\xi) e^{-1 \xi / g}\right)
$$

(c)

$$
\begin{aligned}
& =(2 \pi)^{-1 / 2} f * f^{-1}\left(e^{-13 \mid} \gamma\right) \\
& \Delta^{\alpha} f=|\xi|^{2 a} \hat{f}
\end{aligned}
$$

$$
\begin{gathered}
-\partial_{y} u(x, y)=-(2 \pi)^{-1 / 2} f x\left(\partial_{y} f_{3}^{-1}\left(e^{-1 \xi \mid y}\right)\right) \\
(2 \pi)^{-\prime 2}\left(f x\left(\partial g_{3}^{-1}\left(e^{-\mid \xi / y}\right)\right)\right)^{1}=\hat{f}\left(\partial_{y} f_{3}^{-1}\left(e^{-1 \xi \mid y}\right)\right)^{\wedge} \\
=-|\xi| \hat{f}\left(f_{3}^{-1}\left(e^{-1 \xi \lg }\right)\right)^{\wedge}=-|\xi| \hat{f} e^{-|\xi| y}
\end{gathered}
$$

as $y \rightarrow 0^{+}$, we have

$$
-2 g u(x, 0)=-(-|\xi| \hat{f})^{v}=\Delta^{\prime \prime 2} f
$$

(d)

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{2}}|\nabla u|^{2} d x d y=(\nabla u, \nabla u)_{\mathbb{R}_{I}^{2}}-(\Delta u, u)_{\mathbb{R}^{2}}+\int_{y=0} \nabla u \cdot y u \\
&=\int_{\mathbb{R}} \Delta^{1 / 2 f f} \\
&=\int_{\mathbb{R}}\left(\Delta^{1 / 2} f\right)^{\pi} \hat{f}=\int_{\mathbb{R}}|\xi|^{1 / 2 \hat{f}}|\xi|^{1 / 2} \hat{f} \\
&=\int_{\mathbb{R}}\left|\Delta^{1 / 4} f\right|^{2} d x
\end{aligned}
$$

$$
\text { 5. } \alpha>0 f \in L^{2} \begin{cases}-\Delta u+u=f & , \Omega \\ \partial_{2} u+\alpha u=0, & \partial \Omega\end{cases}
$$

$(a)(-\Delta u, v)+(u, v)=(f, v)$

$$
\begin{aligned}
& =(\nabla u, \nabla v)-\langle\nabla u, \nu, v\rangle \\
& =(\nabla u, \nabla v)+\langle\alpha u, v\rangle \\
\Rightarrow \quad B(u, v) & =(\nabla u, \nabla v)+\alpha\langle u, v\rangle \\
& =(f, v) \quad \forall v \in H^{\prime}
\end{aligned}
$$

where we want $u \in H^{\prime}$ as well.
(b) Uar Lax-Milgram.
(C, V) give a con lin final

$$
\begin{aligned}
& \text { tor }+\in L^{2} \subseteq\left(H^{\prime}\right)^{*} \\
& \leqslant \nabla_{u}\| \| \nabla_{u}\|+\alpha\| u\left\|_{H^{\prime}}\right\| v \|_{H^{\prime}}
\end{aligned}
$$

$$
|B(u, u)|=\|\nabla u\|^{2}+\alpha\|u\|_{L^{\prime}(\partial s)}^{H^{\prime}} \geqslant v \|^{\prime} \geq u H^{\prime}
$$

We need a Poincare ing:

$$
\|u\|_{L^{2}} \leqslant C\left(\left\|\nabla_{u}\right\|_{\lambda}+\|u\|_{L^{2}+\sigma}\right)
$$

Suppose not. Then $\exists u_{n}$ ot

$$
\begin{aligned}
& 1=\left\|u_{n}\right\|_{L^{2}} \geqslant n\left(\left\|\nabla u_{n}\right\|+\left\|u_{n}\right\|_{L^{2}(\Omega \Omega)}\right) \\
& \Rightarrow u_{n} \rightarrow H^{\prime}\left(u_{n} \rightarrow u^{2}\right) \\
& \Rightarrow \nabla L_{n} \rightarrow 0 L^{2},\left.\quad u_{n}\right|_{\partial \Omega} \rightarrow 0 \quad L^{2}(\partial \Omega) \\
& \Rightarrow u=0
\end{aligned}
$$

But $\|u\|=1$, contradiction.
6. $I=[0, b] \quad\left\{\begin{array}{l}\left.u^{\prime} / s\right)=g(s) f(\\ u(0)=\alpha \in \mathbb{R}\end{array}\right.$

$$
g \in L^{\prime}(I), p \geqslant 1 ; f: \mathbb{R} \rightarrow \mathbb{R}, f(0)=0 \text {, Lipschit }
$$

(a)

$$
\begin{aligned}
& F(u)=\alpha+\int_{0}^{s} g(\sigma) f(x(\sigma)) d \sigma \\
& u \in C^{0} \Rightarrow F(u) \in c^{0} \Rightarrow F(u) \in L^{P} \\
& (F(u))^{\prime}=g(s) \underbrace{f(u(s))}_{\in L^{\infty}} \in L^{P}
\end{aligned}
$$

If

$$
u=\alpha+\int_{0}^{s} g(\sigma) f(u(\sigma)) d \sigma
$$

Thun $\left\{\begin{array}{l}\left.u^{\prime}=g(s) f(u / s)\right) \\ u(0)=\alpha\end{array}\right.$
(b)

$$
\begin{aligned}
\|F(u)-F(v)\|_{\infty} & \left\|\int_{0}^{S} g(\sigma)(f(u)=f(v)) d \sigma\right\|_{\infty} \\
& \leqslant \|_{L^{\infty}} \\
& \leqslant\|g\|_{L}^{P}(0, b)
\end{aligned}
$$

$\theta<1$ if b small enough $\left(\theta=\frac{1}{2}\right)$
$\Rightarrow F$ contractive

$$
\begin{aligned}
& \|F(u)\|_{\infty}=\|F(u)-F(0)+\alpha\|_{\infty} ? \\
& \leqslant \theta \|_{L}+\alpha \leqslant \theta R+\alpha \leqslant R \\
& \Rightarrow \quad \alpha \leqslant(1-\theta) R \Rightarrow R=\frac{\alpha}{1-\theta}=2 \alpha
\end{aligned}
$$

Thus $F: \overline{B_{p}(0)} \rightarrow \bar{B}_{p}(0)$ and \exists ! fixed pt. in $\overline{B_{p}(0)}$

CSEM Area A-CAM Preliminary Exam (CSE 386C-D)

May 31, 2022, 9:00 a.m. to 12:00 noon

Work on any 5 of the following 6 problems.

1. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain with $\int_{\Omega} d x=1$. We consider a real base field and $X \in L^{2}(\Omega)$ as a random variable with mean $\mu(X)=\int_{\Omega} X(x) d x$ and standard deviation $\sigma(X)=\|X-\mu(X)\|_{L^{2}(\Omega)}$. The covariance of $X, Y \in L^{2}(\Omega)$ is $\operatorname{cov}(X, Y)=\langle X-\mu(X), Y-\mu(Y)\rangle_{L^{2}(\Omega)}$.
(a) State the domain and range of μ, σ, and cov. Why is $\mu \in\left(L^{2}(\Omega)\right)^{*}$?
(b) Show that σ is a seminorm on $L^{2}(\Omega)$. Why is it not a norm?
(c) Show that $|\operatorname{cov}(X, Y)| \leq \sigma(X) \sigma(Y)$.
(d) We denote the probability that $X \geq \alpha$ as $\operatorname{Prob}(X \geq \alpha)=\int_{\{x: X(x) \geq \alpha\}} d x$. Show Markov's inequality: $\operatorname{Prob}(X \geq \alpha) \leq \frac{1}{\alpha} \mu(X)$.
2. Let H be a separable, infinite dimensional, complex Hilbert space and T a compact, selfadjoint operator on H. The Hilbert-Schmidt and spectral theorems tell us that there is a maximal orthonormal set of eigenvectors u_{n} with corresponding eigenvalues $\lambda_{n}, n=1,2, \ldots$ Let $P_{n}: H \rightarrow H$ be projection onto $\operatorname{span}\left\{u_{n}\right\}$.
(a) Show that for all $x \in H, P_{n} x=\left\langle x, u_{n}\right\rangle u_{n}, x=\sum_{n} P_{n} x$, and $T=\sum_{n} \lambda_{n} P_{n}$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying the property that $f(\lambda) \rightarrow 0$ as $\lambda \rightarrow 0$.

Define $f(T): H \rightarrow H$ by

$$
f(T)=\sum_{n} f\left(\lambda_{n}\right) P_{n}
$$

Show that $f(T)$ is well defined (i.e., the series converges). [Hint: Use Bessel's inequality.]
(c) Show that if $f(x)=x^{2}$, then $f(T)=T^{2}$.
3. Let $T: \mathcal{D}\left((-1,1)^{2}\right) \rightarrow \mathcal{D}(-1,1)$ be defined by $(T \varphi)(x)=\varphi(x, 0)$.
(a) Show that T is a (sequentially) continuous linear operator.
(b) Note that the dual operator $T^{*}: \mathcal{D}^{\prime}(-1,1) \rightarrow \mathcal{D}^{\prime}\left((-1,1)^{2}\right)$. Determine $T^{*}\left(\delta_{0}\right)$ and $T^{*}\left(\delta_{0}^{\prime}\right)$, where δ_{0} is the usual Dirac point distribution at 0 in one space dimension.
4. Let $\Omega \subset \mathbb{R}^{2}$ be an open, connected, and bounded domain with a smooth boundary containing 0 . Let

$$
X=\left\{f \in W^{1,3}(\Omega): f(0)=0\right\}
$$

(a) Use the Sobolev Embedding Theorem to conclude that $X \subset C^{0}(\Omega)$ and that $X \neq W^{1,3}(\Omega)$ is a Banach space.
(b) Prove the Poincaré-like inequality $\|f\|_{L^{3}(\Omega)} \leq C\|\nabla f\|_{L^{3}(\Omega)}$, for some constant C independent of $f \in X$.
5. Let $f \in L^{2}\left(\mathbb{R}^{d}\right)$ and consider the problem

$$
-\Delta u+u=f \quad \text { in } \mathbb{R}^{d} .
$$

(a) Find the variational problem associated to the PDE.
(b) Use the Lax Milgram Theorem to show the existence and uniqueness of a solution in $H^{1}\left(\mathbb{R}^{d}\right)$ to the variational problem.
(c) Using the Fourier transform, show that the solution is actually in $H^{2}\left(\mathbb{R}^{d}\right)$.
6. Given $\alpha \in \mathbb{R}$, consider the problem of finding u such that

$$
\left\{\begin{array}{l}
u^{\prime}(t)=\frac{u(t)}{1+u^{2}(t)} \\
u(0)=\alpha
\end{array}\right.
$$

(a) By integrating, rewrite the differential equation in the fixed-point form $u=F(u)$ for an appropriate functional F.
(b) Show that F maps $C^{0}([0, T])$ into $C^{0}([0, T])$ for any $T>0$.
(c) Show that the problem has a unique solution $u \in C^{0}([0, T])$ for sufficiently small but positive T.

1. $\left.\quad \int_{\Omega} d x=1, x \in L^{2}(\Omega), \mu(x)=\int x d x, \sigma(x)=\| x-\mu \mid x\right) \|$ $\operatorname{cov}(X, Y)=\langle X-\mu(X), Y-\mu(Y)\rangle$
(a) $\mu: L^{2}(\Omega) \rightarrow \mathbb{R}, \sigma: L^{2}(\Omega) \rightarrow \mathbb{R}$, cov: $L^{2}(\Omega) \times L^{2}(\Omega) \rightarrow \mathbb{F}$

$$
\mu(\alpha X+Y)=\int_{\Omega}(\alpha X+Y)=\alpha \int X+S Y=\alpha \mu(X)+\mu(Y)
$$

is Inear, and $|\mu(x)|=\int x d x \leqslant\|x\| \cdot\|\mid\|=\|x\|$ is bounded, so $\mu \in\left(L^{2}\right)^{*}$.
(b) $\sigma: L^{2} \rightarrow[0, \infty)$
(i)

$$
\begin{aligned}
& \sigma(\alpha x)=\|\alpha x-\mu(\alpha x)\|=\|\alpha(x-\mu(x))\| \\
& \quad=|\alpha|\|x-\mu(x)\|=|\alpha| \sigma(x) \quad \forall \alpha \in \mathbb{R}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \sigma(x+Y)=\|X+Y-\mu(x+Y)\|=\|X-\mu(x)+Y-\mu(Y)\| \\
& \leqslant\|x-\mu(x)\|+\|Y-\mu(Y)\|=\sigma(X)+\sigma(Y)
\end{aligned}
$$

Nole: if $x=$ constant $\neq 0, \mu(x)=x$, so

$$
\sigma(x)=0 \text { but } x \neq 0 \text {. }
$$

(c) $|\operatorname{cov}(x, y)|=|\langle x-\mu(x), Y-\mu(y)\rangle|$

$$
\leqslant\|X-\mu(x)\|\|Y-\mu(Y)\|=\sigma(X) \sigma(Y)
$$

(d) $\operatorname{Prob}(x \geq \alpha)=\int_{\{x: x(x) \geqslant \alpha\}} d x$

$$
\leqslant \int_{\{x: x \geqslant \alpha\}} \frac{x(x)}{\alpha} d x \leqslant \frac{1}{\alpha} \int x d x=\frac{1}{\alpha} \mu(x)
$$

since $x \geq 0$
2. $T \in C(H, H), T=T^{*},\left\{u_{n}\right\},\left\{\lambda_{n}\right\}, P_{n}=$ proj. onto $\operatorname{span}\left\{u_{n}\right\}$.
(a) $P_{n}: H \rightarrow \operatorname{span}\left\{u_{n}\right\}$, so for $x \in H$,

$$
\begin{aligned}
& P_{n} x=c u_{n} \text {. But } \\
& \quad\left\langle P_{n} x, u_{m}\right\rangle=\left\langle c u_{n}, u_{m}\right\rangle=c \delta_{n, m} \\
& \quad=\left\langle x, u_{m}\right\rangle \Rightarrow u_{n} \Rightarrow\left\langle x, u_{n}\right\rangle=c \\
& \Rightarrow P_{n} x=\left\langle x, u_{n}\right\rangle u_{n} \\
& \left.x=\sum_{m} c_{m} u_{m} \quad c_{m a x} O N a y\right\rangle \\
& \Rightarrow P_{n} x=\sum_{m} c_{m} P_{n} u_{m}=\sum_{n} c_{m} \delta_{n m} u_{n}=c_{n} u_{n} \\
& \Rightarrow x=\sum_{n} P_{n} x \\
& T x=T\left(\sum_{n} P_{n} x\right)=\sum_{n} T\left(P_{n} x\right)=\sum_{n}\left\langle x, u_{n}\right\rangle \lambda_{n} u_{n} \\
& \quad \Rightarrow T=\sum_{n} \lambda_{n} P_{n}
\end{aligned}
$$

(b) $f(T)=\sum_{n} f\left(\lambda_{n}\right)^{n} P_{n}$

Since $\lambda_{n} \rightarrow 0, \forall \delta>0 \quad \exists N>0$ st. $\left|\lambda_{n}\right| \leq \delta \forall_{n} \geq N$ Moreover, $\forall \varepsilon>0 \quad \exists \delta>0$ st. $|f(\lambda)| \leq \varepsilon \quad \forall|\lambda| \leq \delta$.
Thus the tail of the sequence

$$
\begin{aligned}
& \left\|\sum_{n=N+1}^{\infty} f\left(m_{n}\right) P_{n}\right\|^{2}=\sup _{\|x\|=1}\left\|\sum_{n=N+1}^{\infty} f\left(x_{n}\right) P_{n} x\right\|^{2} \\
& \quad \leqslant \sup _{\|x\|=1}^{\infty} \sum_{n=N+1}^{\infty} \varepsilon^{2}\left\|P_{n} x\right\|^{2}=\sup \cdot \sum_{\|x\|=1}^{\infty} \sum_{n=N+1}^{\infty}\left|\left\langle x, u_{a}\right\rangle\right|^{2} \\
&
\end{aligned}
$$

(c)

$$
\begin{aligned}
& T_{x}^{2}=T\left(\sum_{n} \lambda_{n} P_{n} x\right)=\sum_{m} \lambda_{m} P_{m}\left(\sum_{n} \lambda_{n} P_{n} x\right) \\
&=\sum_{m, n} \lambda_{m} \lambda_{n} P_{n} P_{n} x=\sum_{n} \lambda_{n}^{2} P_{n} x \\
& \Rightarrow T^{2}=f(T)
\end{aligned}
$$

Area A-CAM - Solutions May 2022
3. $T: D\left((-1,1)^{2}\right) \rightarrow \infty(-1,1)$, $T P(x)=\varphi(x, y)$
(a) Let $P_{n} \rightarrow 9$ in $\left.D(t-1,)^{2}\right)$. Then

$$
\left\|x^{\alpha_{1}} y^{\alpha_{2}} D_{x}^{\beta_{1}} D_{y}^{\beta_{2}}\left(\varphi_{n}-\varphi\right)\right\|_{L} \rightarrow 0 \quad \forall \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}
$$

Now $\quad \forall \alpha, \beta$

$$
\begin{gathered}
\left\|x^{\alpha} D^{\beta}\left(T\left(\varphi_{n}\right)-T(\varphi)\right)\right\|_{\infty}=\left\|x^{\alpha} D^{\beta}\left(\varphi_{n}(\cdot 0)-\varphi(-0)\right)\right\|_{L^{\infty}} \\
\left.\leqslant\left\|x^{\alpha} D_{x}^{\beta} \varphi_{n}(0,0)-\varphi(-, \cdot)\right\|_{\infty}(-1,)^{2}\right) \rightarrow 0 .
\end{gathered}
$$

$\Rightarrow T$ is seq. cont. Linearity is clear.
(b) For $\mu \in D^{\prime}(-1,1), \quad \varphi \in D\left((-1,1)^{2}\right)$

$$
\left(I^{4} \mu\right)(P)=\mu\left(T^{\varphi}\right)
$$

Thu

$$
\left(T^{+} \delta\right)(\varphi)=\delta(T \varphi)=\varphi(0,0)
$$

That is $T^{*} S=$ Dirac dist. at $(0,0)$.
Moreover

$$
\begin{aligned}
\left(T^{*} S^{\prime}\right)(\varphi) & =\delta^{\prime}(T \varphi)=\delta^{\prime}(\varphi(, 0)) \\
& =-\frac{\partial \varphi}{\partial x}(0,0)
\end{aligned}
$$

4. Ω open, connected, banded, $\Rightarrow 0, X=\left\{W^{1,3}: f(0)=0\right\}$.
(a) $W_{0}^{1,3}(\Omega) \hookrightarrow C^{0}(\Omega)$
since $m p \leqslant d$, ie. $3.1 \geqslant 2$
But $\partial \Omega$ smooth, so $W^{1,3}(\Omega) c C^{0}(\Omega)$
Thus $x \leq C^{\circ}(\Omega)$ and $T_{0} f=f(0)$
is wall-detinel cont op. Thus
X closed under + , sc. add $\Rightarrow X$ Banach, $\neq W^{\prime}$
(b) Suppose $\left\|F_{n}\right\|_{2}=1$ but $\left\|\nabla f_{n}\right\|_{L_{3}} \leqslant \frac{1}{n}$.

Then

$$
\left\|f_{n}\right\|_{W_{j}, 3} \leqslant C \Rightarrow f_{n} \rightarrow f \text { in } W^{1,3} \text {. }
$$

for a subsequence
Moreover $\quad f_{n_{i}} \rightarrow f$ in L^{3}

$$
\begin{aligned}
\nabla f_{n_{i}} & \rightarrow 0 \text { in } L^{3} \\
\Rightarrow \quad f_{n i} & \rightarrow \text { in } w^{1,3}
\end{aligned}
$$

$$
\text { But } \nabla f_{r_{i}} \rightarrow 0 \Rightarrow f_{n_{i}} \rightarrow \text { constant }
$$

since $F_{n i}(0)=0, \quad F_{A i} \longrightarrow 0$
This contradicts that $\left\|f_{\text {ni ll }}\right\|_{2}=1$, so

$$
\|+\|_{L^{3}} \leqslant C\|\nabla+\|_{L^{3}} \quad \text { for some } C>0
$$

Area A-CAM - Solutions May 2022
5. $-\Delta u+u=f \in L^{2}\left(\mathbb{R}^{d}\right)$
(a) Let $v \in D\left(\mathbb{R}^{d}\right) \underset{\text { donee }}{\subseteq} H^{\prime}(\Omega)$. Then

$$
\left\{\begin{array}{l}
(-\Delta u, v)=(\nabla u, \nabla v) \quad \Rightarrow \\
\text { Find } u \in H^{\prime}\left(\mathbb{R}^{d}\right) \text { st } \\
\quad(\nabla u, \nabla v)+(u, v)=(f, v) \quad \forall v \in H^{\prime}\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

(b) $(F, V)=F(v), F \in\left(H^{\prime}\right)^{*}$ since

$$
\begin{aligned}
& |(f, v)| \leqslant\|f\|_{L^{2}}\|v\|_{H^{\prime}} \\
& |(\nabla u, \nabla v)+(u, v)| \leqslant\|\nabla u\|\|\nabla v\|+\|u\|\|v\| \\
& \leqslant 2\|u\|_{H^{\prime}}\|v\|_{H^{\prime}} \quad \text { continuow. } \\
& (\nabla u, \nabla u)+(u, u)=\|u\|_{H^{\prime}}^{2} \quad \text { coercive } \\
& \Rightarrow \quad \exists!\text { sols. in } H^{\prime}\left(\mathbb{R}^{d}\right) \text {. }
\end{aligned}
$$

(c) FT: $|\xi|^{2} \hat{u}+\hat{u}=\hat{f}$

$$
\Rightarrow \hat{u} \in \frac{\hat{f}}{1+|\xi|^{2}}
$$

Now $\|u\|_{H^{2}}=S\left(1+|s|^{2}\right)|\hat{u}(\xi)|^{2} d \xi$

$$
\begin{aligned}
&=\int|\hat{f}(\xi)|^{2} d \xi=\int|f(x)|^{2} d x<\infty \\
& \Rightarrow \quad u \in H^{2}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

6. $u^{\prime}(t)=\frac{u(t)}{1+u^{2}(t)}, u(0)=\alpha$
(a)

$$
u(t)=\alpha+\int_{0}^{t} \frac{u(s)}{1+u^{2}(s)} d s \equiv F(u)
$$

(b) $F: C^{0}([0, T]) \rightarrow C^{0}([0, T])$ since the integral of a cont. for, is cmt .
(c) We show F is a contraction an $X=\left\{u \in C^{0}([0, T]):\|u\|_{L^{a}} \leqslant R\right\}$ for some $T, R>0$.

$$
\begin{aligned}
\| F(u) & -F(v)\left\|_{\infty}=\right\| \int_{0}^{t}\left(\frac{u}{1+v^{2}}-\frac{v}{1+v^{2}}\right) d b \|_{\infty} \\
& =\left\|\int_{0}^{t} \frac{u+u v^{2}-v-u^{2} v}{\left(1+u^{2}\right)\left(1+v^{2}\right)} d t\right\|_{L^{\infty}}=\left\|\int_{0}^{t} \frac{1-u v}{\left(1+u^{2}\right)\left(1+v^{2}\right)}(u-v) d t\right\|_{L^{\infty}} \\
& \leq T(2 R+1)\|u-v\|_{L_{\infty}} \equiv \theta\|u-v\|_{L_{\infty}}
\end{aligned}
$$

Moreover

$$
\begin{aligned}
\|F(u)\| & =\|F(u)-F(0)\|+|\alpha| \leqslant T(2 R+1)\|u\|+|\alpha| \\
& \leqslant T(2 R+1) R+|\alpha|
\end{aligned}
$$

Want

$$
\theta=T(2 R+1)<1, T(2 R+1) R+|\alpha| \leqslant R
$$

Take $R=2|\alpha|+1>0$. Then

$$
T<\frac{1}{4|\alpha|+3} \text { and } T \leqslant \frac{|\alpha|+1}{(4|\alpha|+3)(2|\alpha|+1)}
$$

so take the minimum of thee e 2 . Note $T>0$.
\qquad

CSEM Area A-CAM Preliminary Exam (CSE 386C-D)

May 15, 2023, 9:00 a.m. to 12:00 noon

Work on any 5 of the following 6 problems.

1. Let X be a normed linear space and $M \subset X$ a linear subspace.
(a) State the Hahn-Banach Theorem for normed linear spaces.
(b) If M is closed and $x_{0} \in X \backslash M$, use the Hahn-Banach Theorem to prove that there is some $f \in X^{*}$ satisfying $f\left(x_{0}\right) \neq 0$ and $f(x)=0$ for any $x \in M$.
(c) If M is not necessarily closed, prove that for any $x_{0} \in X, x_{0} \in \bar{M}$ if and only if there is no bounded linear functional f on X satisfying $f(x)=0$ for any $x \in M$ but $f\left(x_{0}\right) \neq 0$.

2. Open Mapping Theorem.

(a) State the Open Mapping Theorem.
(b) Suppose that $\|\cdot\|$ and $\|\cdot\|^{\prime}$ are two norms on a vector space X. Suppose that both $(X,\|\cdot\|)$ and $\left(X,\|\cdot\|^{\prime}\right)$ are complete and there is a constant $C>0$ such that

$$
\|x\| \leq C\|x\|^{\prime} \quad \text { for all } x \in X
$$

From the Open Mapping Theorem, show that the two norms are equivalent.
(c) Use (b) to show that when $X=L^{\infty}([0,1]),\left(X,\|\cdot\|_{L^{1}}\right)$ is not complete.
3. Let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$.
(a) For $\epsilon>0$, let $\varphi_{\epsilon}(\mathbf{x})=\epsilon^{-d} \varphi\left(\epsilon^{-1} \mathbf{x}\right)$. Show that for $f \in C^{0}\left(\mathbb{R}^{d}\right)$,

$$
\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{d}} \varphi_{\epsilon}(\mathbf{x}) f(\mathbf{x}) d \mathbf{x}=C f(0)
$$

for some constant C. Find the constant C.
(b) Show that for any $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ and any multi-index $\alpha, D^{\alpha} u * \varphi=u * D^{\alpha} \varphi$.
4. Let Ω be a bounded domain with a smooth boundary and let ν be the unit normal vector on its boundary. Consider the solution (u, v) of the differential problem

$$
\begin{aligned}
u+\Delta^{2} u+w=f & \text { in } \Omega \\
-\Delta w-u=g & \text { in } \Omega \\
u=\nabla u \cdot \nu=0 & \text { on } \partial \Omega \\
w=\gamma & \text { on } \partial \Omega .
\end{aligned}
$$

(a) Provide an appropriate weak form for the problem. In what Sobolev spaces should u, w, f, g, γ, and the test functions lie?
(b) Prove that there exists a unique solution to the problem.
5. Let $\phi(x) \in C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ and $K(x) \in L^{1}(\mathbb{R})$. Use the contraction mapping principle to prove that the initial-value problem

$$
\begin{aligned}
\partial_{t} u & =K * u^{2}, \quad x \in \mathbb{R}, t>0 \\
u(x, 0) & =\phi(x)
\end{aligned}
$$

has a continuous and bounded solution $u=u(x, t)$, at least up to some time $T<\infty$.
6. For any $a \in \mathbb{R}$ and $b \in \mathbb{R}$, let the Rectified Linear Unit (ReLU) function $R_{a, b}: \mathbb{R} \rightarrow \mathbb{R}$ be

$$
R_{a, b}(x)=\max (a x+b, 0)
$$

Define

$$
G=\left\{\sum_{j=1}^{m} \alpha_{j} R_{a_{j}, b_{j}}: m \in \mathbb{N}, \alpha_{j}, a_{j}, b_{j} \in \mathbb{R}\right\}
$$

Clearly G consists of piecewise linear functions. In fact, $\varphi \in G$, where

$$
\varphi(x)=R_{0,1}(x)-R_{1,0}(x)+R_{1,-1}(x)-R_{-1,0}(x)+R_{-1,-1}(x)= \begin{cases}0, & |x| \geq 1 \\ 1-|x| & |x| \leq 1\end{cases}
$$

(a) Show that G is invariant to scaling $(x \mapsto \alpha x)$ and translation $(x \mapsto x+c)$.
(b) Show that if $g \in C([0,1])$, then

$$
\int_{0}^{1} R_{a, b}(x) g(x) d x=0 \quad \forall a, b \in \mathbb{R} \quad \Longrightarrow \quad g=0
$$

(c) Let S be the set of functions in G restricted to $[0,1]$. Show that S is dense in $L^{2}(0,1)$. [Hint: use the density of $C([0,1])$ in $L^{2}(0,1)$ and (b) to show that $S^{\perp}=\{0\}$.]

