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Abstract. We develop a locally conservative Eulerian-Lagrangian finite volume scheme with the
weighted essentially non-oscillatory property (EL-WENO) in one-space dimension. This method has
the advantages of both WENO and Eulerian-Lagrangian schemes. It is formally high-order accurate
in space (we present the fifth order version) and essentially non-oscillatory. Moreover, it is free of a
CFL time step stability restriction and has small time truncation error. The scheme requires a new
integral-based WENO reconstruction to handle trace-back integration. A Strang splitting algorithm
is presented for higher-dimensional problems, using both the new integral-based and pointwise-based
WENO reconstructions. We show formally that it maintains the fifth order accuracy. It is also locally
mass conservative. Numerical results are provided to illustrate the performance of the scheme and
verify its formal accuracy.
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1. Introduction. Given a(x, t), consider the one (and later, two) space dimen-
sional initial value problem for a hyperbolic advection equation

∂u

∂t
+
∂(au)

∂x
= ∇t,x ·

(

u(x, t)

a(x, t)u(x, t)

)

= 0, x ∈ R, t > 0,(1.1)

u(x, 0) = u0(x), x ∈ R.(1.2)

The object of this paper is to develop an Eulerian-Lagrangian Weighted Essentially

Non-Oscillatory (EL-WENO) finite volume scheme for this one space dimensional
problem, as well as to extend it to multiple dimensions.

Both essentially non-oscillatory (ENO) and weighted essentially non-oscillatory

(WENO) methods [12, 13, 14, 16, 17, 20] have proven to be very successful schemes
with high-order accuracy when handling hyperbolic equations in many applications.
ENO/WENO schemes use the idea of adaptive stencils in the reconstruction procedure
based on the local smoothness of the numerical solution to automatically achieve high-
order accuracy and a nonoscillatory property near discontinuities. However, both
ENO and WENO (or any scheme with an Eulerian approach) are explicit schemes
designed on a fixed grid, so they suffer from a CFL time step stability restriction.

Schemes using an Eulerian-Lagrangian or semi-Lagrangian approach [1, 2, 4, 6,
8, 9, 10, 11, 19, 26, 27] look to characteristic analysis to aid in solving the problem.
They have in common the fact that the advection is treated by a characteristic tracing
algorithm (a Lagrangian frame of reference) from a fixed Eulerian grid over each time
step. These methods have the significant advantage that CFL number restrictions
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of purely Eulerian methods are alleviated because of the Lagrangian nature of the
advection. Furthermore, because the spatial and temporal dimensions are coupled
through the characteristic tracing, the influence of time truncation error is greatly
reduced.

Recently, J.-M. Qiu, Christlieb, and Shu [21, 22, 23] derived semi-Lagrangian (i.e.,
Eulerian-Lagrangian) WENO finite difference schemes for the advection equation.
Those schemes do not suffer the CFL time step restriction. However, the schemes in
[21, 23] could only handle the constant convection case, i.e., a(x, t) = a. The scheme
in [22] removes this restriction. In their work, the integral form of (1.1) is taken over
a triangular region, and this is used to reconstruct a high-order flux in a conservative
scheme. However, they did not develop theoretically a fifth order method.

Carrillo and Vencil [5, Section 3.5] also proposed two semi-Lagrangian schemes for
a variable advection equation. Their first scheme requires knowledge of the derivative
of the characteristic curves with respect to the initial point, which is not normally
available. This scheme is also not conservative. Their second scheme is a flux balance
method. It was developed for the constant velocity case, and its extension to variable
velocity was mentioned in passing, devoid of details regarding its definition and im-
plementation. The implication seems to be that one should reconstruct the solution
as in the constant velocity case and simply integrate it over the trace-back region (so,
in particular, no integral-based reconstruction was provided). Moreover, no extension
to multi-dimensions was given.

The new scheme we develop follows the Eulerian-Lagrangian framework of the
Characteristics-Mixed Method [1, 2, 4], introduced by Arbogast, Chilakapati, and
Wheeler, and the Finite Difference Locally Conservative Eulerian-Lagrangian Method,
introduced by Douglas and Huang [9]. In this framework, we trace along the charac-
teristics each computational Eulerian grid cell or element E backward in time over the
time step to its Lagrangian trace-back region Ě. Average mass is simply transported
from the trace-back region Ě to the grid cell E. This is the most natural way to
apply the Eulerian-Lagrangian approach, the scheme conserves mass locally, and it is
simple and efficient to compute in one-dimension. However, it leaves us with a low
order finite volume method [3, 4, 9].

We will combine this framework with a WENO reconstruction for high-order ap-
proximation in the spatial variable at the previous time level. Our locally conservative
finite volume scheme achieves the advantages of both WENO and Eulerian-Lagrangian
schemes. That is, our scheme is not only high-order accurate and essentially non-
oscillatory in space, but it is also CFL time step stability limit free and has small
time truncation error.

To be a bit more precise, in the Eulerian-Lagrangian framework, as one traces E
to Ě, one sweeps out a space-time region. The integral form of (1.1) is applied
over this space-time region. Since fluid flux across the two space-time side-lateral
boundaries vanish, the integral of the mass over E at the advanced time level is
equal to the integral of the mass over the non-grid cell Ě at the earlier time level.
The WENO reconstruction is applied at the earlier time level from grid cell average
values. The novelty of our approach is that we devise a WENO reconstruction that
targets high-order approximation of these trace-back integrals. In [18], a detailed
study of WENO reconstruction and interpolation was given, including treatment of
high-order integration given point values. The specific result we need is high-order
integration given cell-average values, which we develop in this paper. We require a
possibly different reconstruction for each subinterval arising from decomposing Ě into
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the original Eulerian grid. In fact, we provide only the fifth-order reconstruction, since
this was missing from the finite difference approach taken in [22].

Once it is understood how to approximate the one-dimensional problem (1.1),
the higher dimensional problem can be handled by Strang splitting [7, 25]. Now our
grid cells are tensor-products of intervals, such as E × F , and, for example, a Strang
split solution in x would involve the trace-back region Ě ×F . An integral over the Ě
part of this region can be computed using our one-dimensional integral-based WENO
reconstruction. However, the integration over F requires quadrature, and so a special
treatment is needed to maintain local mass conservation. To maintain accuracy, we
need also a traditional, high order, pointwise-based WENO reconstruction. We show
formally that our two-dimensional, finite volume scheme is fifth-order convergent in
space and locally mass conservative. Numerical examples also bear this out.

The paper is organized as follows. We provide the local mass conservation rela-
tion in Section 2, which is the foundation of all Eulerian-Lagrangian type schemes. In
Section 3, we derive the linear and nonlinear weight functions for the WENO recon-
struction procedure and define the reconstructed polynomials for fifth order accurate
integration and interpolation. We define our locally conservative, finite volume scheme
for one-dimensional problems in Section 4. A two space dimensional version is given
in Section 5, using a Strang splitting technique. We also show the formal fifth or-
der spatial accuracy of this two-dimensional, finite volume method and its local mass
conservation. Sections 6–7 demonstrate the numerical performance of the proposed
one and two space dimensional schemes. We conclude the paper in Section 8.

2. The Local Conservation Relation. For h > 0, let the spatial grid be
defined, respectively, by midpoints and grid points

xi := ih and xi±1/2 := (i± 1/2)h,

and then the grid cells or elements are

Ei := [xi−1/2, xi+1/2].

For ∆t > 0 and any function v(x, t), let the time levels be

tn := n∆t and vn
i := v(xi, t

n).

Let z(t;x) be the solution of the final value problem given by

(2.1)
dz

dt
= a(z, t), z(tn+1;x) = x,

and set

(2.2) x̌n := x̌n(x) := z(tn;x).

We call x̌n the trace-back or predecessor point of x. Then the trace-back or predecessor

set corresponding to Ei at time level tn is defined as

(2.3) Ěn
i := [x̌n

i−1/2, x̌
n
i+1/2] := [x̌n(xi−1/2), x̌

n(xi+1/2)].

Define the space-time region En+1
i ⊂ R × (tn, tn+1) to be the set contained between

Ei ×{tn+1}, Ěn
i ×{tn}, and the two integral curves z(t;xi±1/2), t

n < t < tn+1. If the

lateral boundary of En+1
i is Sn+1

i , so that ∂En+1
i = Ei ∪ Ěn

i ∪Sn+1
i , we note that the
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normal to ∂En+1
i along Sn+1

i is orthogonal to the vector (u, a(x, t)u). Thus (1.1)–(1.2)
and the (space-time) divergence theorem imply that

(2.4)

∫

E
n+1

i

∇t,x ·
(

u(x, t)

a(x, t)u(x, t)

)

dx dt =

∫

Ei

un+1(x) dx −
∫

Ěn
i

un(x) dx = 0.

The approximation of the advection will be based on this relation expressing local
mass conservation.

3. The WENO Reconstructions. We will assume in this section that the
trace-back points (and therefore the trace-back sets Ěn

i ) are found exactly. We will
revisit this assumption later in Section 4 when we describe the time discretization.
Let ūn+1

i be the finite volume numerical approximation

ūn+1
i ≈ 1

h

∫

Ei

un+1(x) dx =
1

h

∫

Ěn
i

un(x) dx,

by (2.4). Therefore we define ūn+1
i by

(3.1) ūn+1
i :=

1

h

∫

Ěn
i

Rn(x; ūn) dx,

where Rn(x; ūn) is a piecewise-polynomial reconstruction of {ūn
j }j with local in space

truncation error accuracy of O(hs+1) for smooth solutions. That is, we require

(3.2)

∫

Ěn
i

Rn(x; ūn) dx =

∫

Ěn
i

un(x) dx + O(hs+1),

assuming that the solution is correct up to time tn. The main difficulty lies in deter-
mining how to define such a reconstruction Rn(x; ūn), and this is described below in
Subsections 3.1 and 3.2 for s = 5.

Once we have the reconstruction, by (2.4), we then have that

(3.3)
∑

i

∣

∣

∣

1

h

∫

Ei

u(x, tn+1) dx− ūn+1
i

∣

∣

∣
h = O(hs).

Moreover, having {ūn+1
i }i, we could apply a standard WENO reconstruction or post-

processing to define a piecewise-polynomial q(x, tn+1) so that

qn+1
i := q(ξi, t

n+1) = un+1(ξi) + O(hs)

for some points ξi ∈ Ei (see Subsection 3.3), and then we have the pointwise estimate

(3.4) sup
i

|un+1(ξi) − qn+1
i | = O(hs).

Note that q(x, tn+1) is not needed during the time stepping process, so this recon-
struction can be omitted or computed only at time steps when it is otherwise needed.

3.1. Liner reconstruction for integration. In order to be precise, we provide
a sixth order WENO reconstruction, giving a fifth order scheme, i.e., s = 5 in (3.2)
above. Other order WENO reconstructions could be derived accordingly, see, e.g., [22].
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For each cell Ei = [xi−1/2, xi+1/2], we begin by constructing three polynomials,
each of degree two, Pi−1(x), Pi(x), and Pi+1(x). These are defined, for k = i−1, i, i+1,
by posing the interpolation requirements

(3.5)
1

h

∫

Ej

Pk(x) dx = ūn
j , j = k − 1, k, k + 1,

where ūn
j are the known cell-average values. To be precise, let

L±1(x) :=
1

2

[(x

h
± 1

2

)2

− 1

3

]

, L0(x) :=
13

12
−

(x

h

)2

,

and then

(3.6) Pk(x) :=

1
∑

j=−1

ūn
k+jLj(x− xk), k = i− 1, i, i+ 1.

The full reconstruction is a convex combination of these three polynomials.
For our new method, we need to integrate a reconstructed polynomial over a

typical trace-back set Ěn
j = [x̌n

j−1/2, x̌
n
j+1/2]. Therefore, we need to decompose Ěn

j

into the grid cells Ei = [xi−1/2, xi+1/2]. This leads us to decompose Ěn
j into a union

of the following four types of subintervals, where we write xγ = γh for any γ ∈ R:
1. [xi−1/2, xi+1/2], when the whole Ei is contained in Ěn

j ;
2. [xi−1/2, xi−1/2+α], 0 < α < 1, when x̌n

j+1/2 intersects Ei but not x̌n
j−1/2;

3. [xi−1/2+β , xi+1/2], 0 < β < 1, when x̌n
j−1/2 intersects Ei but not x̌n

j+1/2;

4. [xi−1/2+β , xi−1/2+α], 0 < β < α < 1, when Ěn
j is contained in Ei.

Our goal is to find the corresponding linear weights for each subinterval of Ěn
j so that

the higher order accuracy of the cell-average (3.2) is maintained.
We begin with a Type 2 subinterval [xi−1/2, xi−1/2+α]. We will find the linear

weight functions Ci
k(α), k = i− 1, i, i+ 1, so that

(3.7)

∫ xi−1/2+α

xi−1/2

P 0,α
i (x) dx =

∫ xi−1/2+α

xi−1/2

u(x, tn) dx+ O(h6),

where P 0,α
i is a second degree polynomial defined by

P 0,α
i (x) :=

i+1
∑

k=i−1

Ci
k(α)Pk(x) =

i+1
∑

k=i−1

Ci
k(α)

1
∑

j=−1

ūn
k+jLj(x− xk)(3.8)

=

i+2
∑

ℓ=i−2

( min(i,ℓ)+1
∑

k=max(i,ℓ)−1

Ci
k(α)Lℓ−k(x− xk)

)

ūn
ℓ .

To determine the Ci
k(α), we need an auxiliary construction. Let U5(x) be the poly-

nomial of degree five so that

U5(xi+k+1/2) =

∫ xi+k+1/2

x
i− 5

2

u(x, tn) dx, k = −3,−2,−1, 0, 1, 2.

That is, with the standard Lagrange basis, scaled by h,

Lj(x) := h

2
∏

k=−3
k 6=j

x− (k + 1
2 )h

(j − k)h
, j = −3,−2,−1, 0, 1, 2,
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we have

(3.9) U5(x) =

2
∑

j=−2

Lj(x− xi)

i+j
∑

ℓ=i−2

ūn
ℓ =

i+2
∑

ℓ=i−2

( 2
∑

j=ℓ−i

Lj(x − xi)

)

ūn
ℓ .

Since U5(x) interpolates six points of the integral of u, i.e., sums of the five cell-average
values {ūi−2, ūi−1, ūi, ūi+1, ūi+2} times h, we note that

U5(xi−1/2+α) − U5(xi−1/2) =

∫ xi−1/2+α

xi−1/2

u(x, tn) dx+ O(h6)(3.10)

=

i+2
∑

ℓ=i−2

( 2
∑

j=ℓ−i

[

Lj

(

(

α− 1
2

)

h
)

− Lj

(

− 1
2h

)

]

)

ūn
ℓ .

It remains only to match the coefficients of ūn
ℓ above with those from the integral of

(3.8) over [xi−1/2, xi−1/2+α] to determine the Ci
k(α). Although tedious to calculate,

the five equations are consistent, and the resulting three coefficients are

(3.11)
Ci

i−1(α) :=
(2 − α)(3 − α)

20
, Ci

i (α) :=
(2 + α)(3 − α)

10
,

Ci
i+1(α) :=

(1 + α)(2 + α)

20
.

For a Type 1 subinterval [xi−1/2, xi+1/2], any constant convex combination of

linear weights that sum to one will work, since for P 0,1
i (x) =

∑i+1
k=i−1 C

i
k(1)Pk(x),

(3.12)

∫ xi+1/2

xi−1/2

P 0,1
i (x) dx = hūn

i =

∫ xi+1/2

xi−1/2

u(x, tn) dx,

by the definition of Pi(x) (3.5). We shall choose

{Ci
i−1(1), Ci

i (1), Ci
i+1(1)} := {1/10, 3/5, 3/10},

which is consistent with Type 2 intervals, i.e., formulas (3.8) and (3.11) with α = 1.
For a Type 3 subinterval [xi−1/2+β , xi+1/2], by symmetry, we again use the same

formulas (3.8) and (3.11) to define

(3.13) P β,1
i (x) := P 0,β

i (x) =

i+1
∑

k=i−1

Ci
k(β)Pk(x).

Then we have, by (3.7) and (3.12),

∫ xi+1/2

xi−1/2+β

P β,1
i (x) dx =

∫ xi+1/2

xi−1/2

P 0,β
i (x) dx −

∫ xi−1/2+β

xi−1/2

P 0,β
i (x) dx(3.14)

=

∫ xi+1/2

xi−1/2

u(x, tn) dx−
∫ xi−1/2+β

xi−1/2

u(x, tn) dx+ O(h6)

=

∫ xi+1/2

xxi−1/2+β

u(x, tn) dx+ O(h6).

Note that for α = β = 1/2 in Types 2 and 3, our linear weight functions give the
same set of constant linear weights {3/16, 5/8, 3/16} as in CWENO [16, 20].
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Fig. 3.1. The singularity plots for both
Ci

i−1(β, α) (top) and Ci
i+1(β, α) (bottom).
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Fig. 3.2. The feasible region for 0 ≤

Ci
k(β, α), k = i − 1, 1, i + 1, when β < α.

We finally turn to a Type 4 subinterval [xi−1/2+β , xi−1/2+α]. Intuitively, one
might wish to find similar linear weight functions Ci

k(β, α), k = i− 1, i, i+ 1. But in
fact, for arbitrary (β, α) it is not always possible do so, since Ci

i−1(β, α) or Ci
i+1(β, α)

could be singular for certain values of β and α. Fig. 3.1 gives the plot of Ci
i−1(β, α)

and Ci
i+1(β, α) where these are singular. From the plot it is easy to see that for any

given β > 0 there is an α1(β) so that Ci
i−1(β, α1) = ∞. Similarly there is an α2(β)

giving Ci
i+1(β, α2) = ∞.

In fact, Fig. 3.2 gives the feasible region of (α, β) so that 0 < Ci
k(β, α) < 1,

k = i− 1, i, i+ 1. One can read the plot as follows. Given a starting subinterval end
point defined by β, the x-cross section is the feasible interval. For example, if β = 0,
then the feasible interval is all of [0, 1], so any α is allowed. However, if β = 0.5, the
feasible interval for α is only about [0.65, 1], and if β = 0.2, then the feasible interval
for α is a union of two subintervals, i.e., about [0.2, 0.68] and [0.9, 1].

The point is that for an arbitrary subinterval [xi−1/2+β , xi−1/2+α], we cannot

find feasible linear weights to define P β,α
i (x) so that integration over the subinterval

is preserved to fifth order. We can do this, as shown above, only when one of the
interval’s end points is a grid point. We present below another way to define the second
order polynomial P β,α

i (x) on [xi−1/2+β , xi−1/2+α] so that the integration remains high-
order approximated, i.e.,

(3.15)

∫ xi−1/2+α

xi−1/2+β

P β,α
i (x) dx =

∫ xi−1/2+α

xi−1/2+β

u(x, tn) dx+ O(h6).

From (3.7), we have

∫ xi−1/2+α

xi−1/2+β

u(x, tn) dx =

∫ xi−1/2+α

xi−1/2

u(x, tn) dx−
∫ xi−1/2+β

xi−1/2

u(x, tn) dx(3.16)

=

∫ xi−1/2+α

xi−1/2

P 0,α
i (x) dx −

∫ xi−1/2+β

xi−1/2

P 0,β
i (x) dx + O(h6)

=

∫ xi−1/2+α

xi−1/2+β

P 0,α
i (x) dx +

∫ xi−1/2+β

xi−1/2

(P 0,α
i (x) − P 0,β

i (x)) dx + O(h6),
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where, again, P 0,α
i (x) and P 0,β

i (x) are defined in (3.8). Therefore, we define

(3.17) P β,α
i (x) := P 0,α

i (x) + A− B,

where

A :=
1

(α− β)h

∫ xi−1/2+β

xi−1/2

P 0,α
i (x) dx,(3.18)

B :=
1

(α− β)h

∫ xi−1/2+β

xi−1/2

P 0,β
i (x) dx.(3.19)

Then we have (3.15) as desired. Moreover, our definition does not create extra com-
putational costs, since

(3.20)

∫ xi−1/2+α

xi−1/2+β

P β,α
i (x) dx =

∫ xi−1/2+α

xi−1/2

P 0,α
i (x) dx −

∫ xi−1/2+β

xi−1/2

P 0,β
i (x) dx.

To compute the left-hand side above, we only need to compute the middle term, since
the last term would have been computed when we handled the previous grid cell.

Although everything is defined implicitly above, to complete the construction, we
define the full reconstruction piecewise-polynomial Pn(x; ūn) on Ěn

j . First, let the left

and right endpoints of Ej = [xj−1/2, xj+1/2] be traced back to Ěn
j = [x̌n

j−1/2, x̌
n
j+1/2],

and identify the grid indices iL and iR, where

xiL−1/2 ≤ x̌n
j−1/2 < xiL+1/2 and xiR−1/2 < x̌n

j+1/2 ≤ xiR+1/2.

Then define αk and βk so that 0 ≤ βk < αk ≤ 1 and

(3.21) Ěn
j =

iR−iL
⋃

k=0

[xiL+k−1/2+βk
, xiL+k−1/2+αk

].

Finally, Pn(x; ūn) is defined as

(3.22) Pn(x; ūn) :=

iR−iL
∑

k=0

P βk,αk

iL+k (x)χ[xiL+k−1/2+βk
,xiL+k−1/2+αk

](x), x ∈ Ěn
j ,

where χS(x) is the characteristic function of S and the P βk,αk

i (x) are defined for
Types 1–3 subintervals (βk = 0 and/or αk = 1) by (3.8), (3.11), and (3.13), and for
Type 4 subintervals (0 < βk < αk < 1) by (3.17)–(3.19). Moreover, we have

(3.23)

∫

Ěn
j

Pn(x; ūn) dx =

∫

Ěn
j

u(x, tn) dx+ O(h6).

We emphasize that our construction gives a piecewise-polynomial, so we may have
more than one set of linear weights and reconstruction polynomials in a single grid
cell Ei. This is very different from the traditional WENO reconstruction. However,
it does not pose any difficulty or inconsistency, since we only want to find the correct
approximation of the integral of the reconstruction over a particular subinterval, not
the approximation of the reconstruction itself at points within the grid cell. This is
the key to the success of the scheme. Traditional WENO requires that one compute
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the left and right fluxes from the reconstruction, and therefore consistency is required
for all the reconstruction polynomials in a single grid cell.

Lemma 3.1. The number of integration computations needed is only at most one

plus the number of computational grid cells.

Proof. This result is due to two simple facts. Firstly, we note that there is no
need to compute the integration of Pn(x; ūn) on a Type 1 subinterval Ei, since it is
equal to hūi. Secondly, integration of a Type 3 subinterval can be obtained by

∫ xi+1/2

xi−1/2+β

P β,1
i (x) dx =

∫ xi+1/2

xi−1/2

P β,1
i (x) dx −

∫ xi−1/2+β

xi−1/2

P β,1
i (x) dx(3.24)

= hūn
i −

∫ xi−1/2+β

xi−1/2

P 0,β
i (x) dx.

Thus, except the very first cell, the main computation has already been computed for
the previous cell. Therefore, the scheme is very efficient.

Lemma 3.2. Mass is conserved locally by the linear reconstruction; that is,
∫

Ei

Pn(x; ūn) dx = hūn
i for all i.

Proof. Consider a grid cell Ei. Let

Ei ∩ {x̌n
j−1/2}j = {xi−1/2+αk

}N
k=0

be the set of trace-back grid points that intersect Ei, and the endpoints of Ei, where
we order the set so that 0 = α0 < α1 < · · · < αN = 1. Then

∫

Ei

Pn(x; ūn) dx =

N−1
∑

k=0

∫ xi−1/2+αk+1

xi−1/2+αk

P
αk,αk+1

i (x, tn) dx.

If N = 1, Ei is a Type 1 subinterval, and the result was noted earlier. Otherwise,
(3.20) shows that the sum collapses for any Type 4 subintervals that we may have,
and (3.24) shows that the initial Type 2 and final Type 3 subintervals combine to give
the claim.

3.2. WENO reconstruction for integration. The WENO reconstruction is
achieved by first computing the usual smoothness indicator

ISi
k :=

2
∑

l=1

∫ xi+1/2

xi−1/2

h2l−1
(∂lPk(x)

∂xl

)2

dx, k = i− 1, i, i+ 1.

An explicit integration yields

ISi
i−1 =

13

12
(ūi−2 − 2ūi−1 + ūi)

2 +
1

4
(ūi−2 − 4ūi−1 + 3ūi)

2,(3.25)

ISi
i =

13

12
(ūi−1 − 2ūi + ūi+1)

2 +
1

4
(ūi−1 − ūi+1)

2,(3.26)

ISi
i+1 =

13

12
(ūi − 2ūi+1 + ūi+2)

2 +
1

4
(3ūi − 4ūi+1 + ūi+2)

2.(3.27)

The nonlinear weights ωi
k(α) are

(3.28) ωi
k(α) :=

γi
k(α)

γi
i−1(α) + γi

i(α) + γi
i+1(α)

, k = i− 1, i, i+ 1,
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where

(3.29) γi
k(α) :=

Ci
k(α)

(ǫ+ ISi
k)2

, k = i− 1, i, i+ 1,

and ǫ > 0 is small, taken to be 10−6 in our numerical tests. Although we may have
more than one set of WENO weights in a single interval Ei, the smoothness indicator is
uniquely defined, since it represents the smoothness of the input cell-average values ūk.

Now for a Type 1 or 2 subinterval [xi−1/2, xi−1/2+α], we define the piecewise-

polynomial reconstruction R0,α
i (x) by

(3.30) R0,α
i (x) :=

i+1
∑

k=i−1

ωi
k(α)Pk(x).

We have

(3.31)

∫ xi−1/2+α

xi−1/2

R0,α
i (x) dx =

∫ xi−1/2+α

xi−1/2

u(x, tn) dx+ O(h6),

because
∫ xi−1/2+α

xi−1/2

(R0,α
i (x) − P 0,α

i (x)) dx(3.32)

=

∫ xi−1/2+α

xi−1/2

i+1
∑

k=i−1

(ωi
k(α) − Ci

k(α))Pk(x) dx

=

∫ xi−1/2+α

xi−1/2

i+1
∑

k=i−1

(ωi
k(α) − Ci

k(α))(Pk(x) − u(x, tn)) dx = O(h6),

and, for k = i − 1, i, i + 1, ωi
k(α) = Ci

k(α) + O(h2) and each Pk(x) is a parabolic
reconstruction that is fourth order accurate in the integration of u(x, tn) over our
subinterval. Similarly, for a Type 3 subinterval [xi−1/2+β , xi+1/2], we define

(3.33) Rβ,1
i (x) :=

i+1
∑

k=i−1

ωi
k(β)Pk(x) = R0,β

i (x),

and note that

(3.34)

∫ xi+1/2

xi−1/2+β

Rβ,1
i (x) dx =

∫ xi+1/2

xi−1/2+β

u(x, tn) dx + O(h6).

Finally, for a Type 4 subinterval [xi−1/2+β , xi−1/2+α], we define

Rβ,α
i (x) := R0,α

i (x) + Aw − Bw,(3.35)

Aw :=
1

(α− β)h

∫ xi−1/2+β

xi−1/2

R0,α
i (x) dx,(3.36)

Bw :=
1

(α− β)h

∫ xi−1/2+β

xi−1/2

R0,β
i (x) dx,(3.37)
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and then

(3.38)

∫ i−1/2+α

i−1/2+β

Rβ,α
i (x) dx =

∫ i−1/2+α

i−1/2+β

u(x, tn) dx + O(h6).

This result could be obtained similarly as (3.16).
Finally, we define Rn(x; ūn) similar to Pn(x; ūn) in (3.22). Using the decomposi-

tion (3.21) of Ěn
j , let

(3.39) Rn(x; ūn) :=

iR−iL
∑

k=0

Rβk,αk

iL+k (x)χ[xiL+k−1/2+βk
,xiL+k−1/2+αk

](x), x ∈ Ěn
j .

In summary, for the scheme (3.1), we have obtained (3.2), and therefore (3.3), i.e., we
have shown the local truncation error estimate for smooth solutions. Moreover, by
reasoning similar to the proof of Lemma 3.2, we see that mass is conserved locally.
We have proved the following result.

Lemma 3.3. The local truncation error of the reconstruction is O(h5), so also

for the method; that is, (3.3) holds with s = 5. Moreover, mass is conserved locally by

the reconstruction; that is,
∫

Ei

Rn(x; ūn) dx = hūn
i for all i.

3.3. Optional WENO postprocessing for pointwise values. Optionally,
one may postprocess the cell-average values ūn+1

i to obtain a high order pointwise
approximation q(x, tn+1) of u(x, tn+1) at certain points using a standard WENO
reconstruction, similar to that done above. For completeness, we briefly review the
process. However, the reader should realize that this step is optional, since higher
order pointwise values do not enter into the time stepping computation.

For a fixed time level, the standard WENO reconstruction starts with the cell
average values ūn+1

i on Ei, and produces (in our case) a fifth order accurate ap-
proximation of u(x, tn+1) at the predetermined points ξi ∈ Ei for all i. Normally
ξi = xi±1/2 for WENO and ξi = xi for CWENO.

For example, we will take ξi = xi+1/2. We use Pk(x), k = i − 1, i, i+ 1, defined

in (3.6) and U5(x) constructed above in (3.9) with ūn+1
i in place of ūn

i . We find the
linear weights Ci

k so that

i+1
∑

k=i−1

Ci
kPk(ξi) = U ′

5(ξ),

which in the case ξi = xi+1/2 is {Ci
i−1, C

i
i , C

i
i+1} = {1/10, 3/5, 3/10}. We then modify

the weights using the nonlinear weight procedure in Subsection 3.2 above. We achieve
a fifth order accurate approximation q(x, tn+1) at each ξi.

If we choose ξi = xi instead, we would have the linear weights {Ci
i−1, C

i
i , C

i
i+1} =

{−9/80, 49/40,−9/80}. Because some weights are negative, a splitting technique [24]
needs to be applied in this case.

Because the ūn+1
i are not exact cell-averages, it is not clear that our postprocessed

reconstruction is O(h5), as claimed. What we have shown from (3.1) and (3.2) is that,
locally,

∫

Ei

(ūn+1
i − u(x, tn+1)) dx = O(h6);
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that is, hūn+1
i is sixth order accurate. Let V5(x) be the polynomial analogous to

U5(x) that is defined by (3.9) with exact cell averages 1
h

∫

Ei
u(x, tn+1) dx in place of

ūn
i . Therefore on Ei,

|U5(x) − V5(x)| =

i+2
∑

ℓ=i−2

( 2
∑

j=ℓ−i

1

h
Lj(x − xi)

)

(

hūn
ℓ −

∫

Eℓ

u(x, tn+1) dx
)

maintains O(h6) accuracy, since

λ = max
Ei

2
∑

j=−2

∣

∣

∣

1

h
Lj(x− xi)

∣

∣

∣

is bounded. This means that although we use perturbed data for our interpolation,
we still maintain the desired order of accuracy for U5, and also its derivative. This
justifies the accuracy of our standard WENO postprocessing reconstruction.

4. The Finite Volume Procedure in One Space Dimension. We define
the full finite volume procedure in this section. In general, the trace-back points
x̌n

i can not be found analytically. We need to use some approximate ODE solver to
solve (2.1). While any reasonable solver should work well, we chose to use a fourth
order Runge-Kutta method. Note that we can use micro-stepping to solve (2.1) over
the time step [tn, tn+1] if x̌n

i are not accurate enough, since a(x, t) is independent
of the solution. With the approximated trace-back points X̌n

i+1/2, and therefore the

approximated trace-back regions Ẽn
i = [X̌n

i−1/2, X̌
n
i+1/2], the WENO reconstruction

procedure given in Section 3 can be computed.

Assume that the cell-averages {Ū0
i }i are obtained from the initial condition u0(x)

and {Ūn
i }i have been derived up to time level n. For each Ei = [xi−1/2, xi+1/2], we

find the approximated trace-back set Ẽn
i = [X̌n

i−1/2, X̌
n
i+1/2], and define Ūn+1

i by

(4.1) Ūn+1
i :=

1

h

∫

Ẽn
i

R̃n(x; Ūn) dx,

where R̃n(x; Ūn) is the WENO piecewise-polynomial reconstructed from {Ūn
i }i for

integration as described in Section 3, but using the approximated trace-back sets Ẽn
i .

After Ūn+1
i is obtained, we may apply the WENO postprocessing reconstruction for

pointwise values, if desired. This completes our scheme.

Note that the only additional error is from approximating the trace-back regions.
An algorithm as in [2] should be used to adjust the approximate trace-back set volume.
Also, an analogue of the argument in [9] and/or [3] should provide a rigorous error
analysis for the overall scheme.

Theorem 4.1. The method has formal O(h5) accuracy, and it is locally mass

conservative.

Proof. The accuracy follows directly from the truncation error part of Lemma 3.3
(which continues to hold for R̃n in place of Rn, assuming a sufficiently accurate
characteristic tracing). The local mass conservation follows in a Lagrangian setting
directly from the mass conservation part of Lemma 3.3, since the reconstruction is
locally conservative and all mass is accounted for within the approximate space-time
regions Ẽn+1

i (see (2.4)).
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We can also demonstrate the conservation in an Eulerian setting as follows, again
using Lemma 3.3. The scheme is

h Ūn+1
i =

∫

Ẽn
i

R̃n(x; Ūn) dx(4.2)

=

∫

Ei

R̃n(x; Ūn) dx+

∫

Ẽn
i

R̃n(x; Ūn) dx−
∫

Ei

R̃n(x; Ūn) dx

= h Ūn
i +

∫ X̌n
i+1/2

X̌n
i−1/2

R̃n(x; Ūn) dx−
∫ xi+1/2

xi−1/2

R̃n(x; Ūn) dx

= h Ūn
i +

∫ xi−1/2

X̌n
i−1/2

R̃n(x; Ūn) dx−
∫ xi+1/2

X̌n
i+1/2

R̃n(x; Ūn) dx,

which is in conservative form.

5. A Method for Two-Dimensional Problems. In this section, we extend
the one-dimensional method to multiple dimensions. For simplicity, we extend only
to two-dimensions, since three and higher higher dimensional cases follow easily from
the two-dimensional case. That is, we approximate the unknown function u(x, y, t)
satisfying the equation

∂u

∂t
+
∂(a1u)

∂x
+
∂(a2u)

∂y
= 0, (x, y) ∈ R

2, t > 0,(5.1)

u(x, y, 0) = u0(x, y), (x, y) ∈ R
2,(5.2)

where a1(x, y, t), a2(x, y, t), and u0(x, y) are given. We use a Strang splitting tech-
nique [7, 25] in space to decouple the problem into two one dimensional problems.

For a first order in time splitting, over the time interval [tn, tn+1], we approximate
in two steps. First, for each fixed y ∈ R, from the current value of the approximate
solution un(x, y) as the initial condition at time tn, we approximate the x-sweep

(5.3)
∂u

∂t
+
∂(a1u)

∂x
= 0, u(x, y, tn) = un(x, y), x ∈ R, t ∈ (tn, tn+1],

for ũn+1(x, y). Second, for each fixed x ∈ R, from ũn+1(x, y) as initial condition at
time tn, we approximate the y-sweep

(5.4)
∂u

∂t
+
∂(a2u)

∂y
= 0, u(x, y, tn) = ũn+1(x, y), y ∈ R, t ∈ (tn, tn+1].

The result is the final approximation un+1(x, y).
A second order Strang splitting requires three steps. First, one solves the x

sweep (5.3) only over the time interval (tn, tn+1/2], where tn+1/2 := tn + ∆t/2, for
ũn+1/2(x, y). The second step is the same as the y-sweep (5.4) above, but starting
from the initial condition ũn+1/2(x, y) and resulting in ˜̃un+1(x, y). The third step is
to solve the rest of the x-sweep (5.3) over the time interval (tn+1/2, tn+1], starting
from the initial condition ˜̃un+1(x, y), for the final solution un+1(x, y).

Thus, we need only provide a way to solve the one-dimensional x- and y-sweep
problems (5.3) and (5.4), each of which are the same as (1.1), and also to limit the
number of y points required for the x-sweep(s) and x points required for the y-sweep.
We describe only the approximation of the x-sweep, since the y sweep is then defined
by symmetry. Moreover, we define only the full x-sweep, since the half sweep needed
for the second order splitting is then clear.
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5.1. The two-dimensional scheme. The x-grid has been defined in Section 2,
and for simplicity, we define the y-grid similarly using the same h > 0 and the y-grid
cells or elements

Fj := [yj−1/2, yj+1/2].

As with any finite volume scheme, we approximate the average of u,

ūn
i,j :=

1

h2

∫

Fj

∫

Ei

u(x, y, tn) dx dy,

by Ūn
i,j , defined below.
For any fixed y, the final value problem

(5.5)
dz

dt
= a1(z, y, t), z(tn+1;x, y) = x,

can be used to define the exact trace-back point of x to time tn as x̌n(x, y) :=
z(tn;x, y). The trace-back set corresponding to Ei at time level tn is then

(5.6) Ěn
i (y) := [x̌n(xi−1/2, y), x̌

n(xi+1/2, y)].

Similarly, we can approximate the solution to (5.5) as z̃ and define the approximate
trace-back points X̌n(x; y) := z̃(tn;x, y) and the approximate trace-back set

(5.7) Ẽn
i (y) := [X̌n(xi−1/2, y), X̌

n(xi+1/2, y)],

possibly adjusted for volume conservation as described in [2] and as noted above in
Section 4.

Analogous to (2.4), we have that

(5.8)

∫

Ei

un+1(x, y) dx −
∫

Ěn
i (y)

un(x, y) dx = 0.

This equation suggests that we would like to define approximate cell averages by

Ūn+1
i,j ≈ 1

h2

∫

Fj

∫

Ẽn
i (y)

un(x, y) dx dy.

Three problems arise. First, we cannot compute the integral involving every y, so we
will use a quadrature formula. Second, in place of un we need to use a reconstruction
of the approximate solution at time tn, and we will use one similar to that presented
above for the one-dimensional case. Third, our reconstruction must be made from
the two-dimensional cell averages. To maintain high order accuracy, we will need to
include a second, y-reconstruction technique in the method.

Since we aim for O(h5) accuracy, we use a three point Gauss rule to approximate
the integral in y over Fj . Let the Gauss points and corresponding weights be yj

k ∈ Fj

and wj
k, k = −1, 0, 1. Analogous to (4.1), we can state the x-sweep as

(5.9) Ūn+1
i,j :=

1

h2

∑

k

wj
k

∫

Ẽn
i (yj

k)

R̃n,j(x, yj
k; Ūn) dx,

where it remains to define the reconstruction R̃n,j(x, yj
k; Ūn).

If desired, at any time level, a pointwise WENO postprocessing reconstruction
can be applied to obtain higher order pointwise values. This is done below in Section 7
to define a discrete maximum norm.
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5.2. The two-dimensional reconstruction for integration. We begin with
a reconstruction targeting high order pointwise approximation. Fix a y-grid cell Fj

and a Gauss point yj
k. Let Rj

k(y; v̄) be a one-dimensional, piecewise-polynomial,
WENO reconstruction in the y-direction of the values {v̄ℓ}ℓ which is O(h5) accurate
at the Gauss point yj

k.

To be specific, on the interval Fj = [yj−1/2, yj+1/2], let yj
±1 = yj ± h

√

3/5 and

yj
0 = yj be the three Gaussian quadrature points. The linear reconstruction is given

basically in (3.5)–(3.6) as

(5.10) Rj
linear,k(y; v̄) =

j+1
∑

ℓ=j−1

rℓ−j

1
∑

m=−1

v̄ℓ+mLm(y − yℓ),

wherein the linear weights rℓ−j for yj
±1 are

r−1 =
∓9 + 22

√
15

40(±2 + 3
√

15)
, r0 = 1 − r−1 − r1, and r1 =

±9 + 22
√

15

40(∓2 + 3
√

15)
,

and for yj
0, r±1 = −9/80 and r0 = 98/80. The weights for yj

±1 are all between 0 and

1, and so a nonlinear WENO modification can be applied to define Rj
k(y; v̄). The

weights for yj
0 includes negative values, but [24] explains how to treat such negative

weights in a WENO reconstruction. However, we do not use Rj
0(y; v̄).

For each fixed x-index i, we reconstruct in y as follows. For each Gauss point
index k = ±1, we set

(5.11) V n,j,±1
i := Rj

±1(y
j
±1; Ū

n
i,(·)).

We will show later in (5.17) that these are O(h5) approximations of the average mass
in the interval Ei, for the given point y = yj

k. For index k = 0, however, we use the
definition

(5.12) V n,j,0
i =

1

wj
0

[

h Ūn
i,j − wj

−1V
n,j,−1
i − wj

1V
n,j,1
i

]

,

so that mass is conserved locally under the Gauss quadrature rule; that is,

(5.13)
∑

k

wj
kV

n,j,k
i = Ūn

i,j h.

We now complete the description of the x-sweep (5.9) by defining

(5.14) R̃n,j(x, yj
k; Ūn) := R̃n(x;V n,j,k),

where the one-dimensional reconstruction for integration R̃n is the one used in (4.1).
We remark that one could use (5.11) to define V n,j,0

i in place of (5.12). As one
can see from the next subsection, formal O(h5) accuracy would be obtained, but the
mass balance would only be O(h5) accurate. Moreover, if the linear reconstruction
Rj

linear,k(y; v̄) in (5.10) were to be used, then the use of (5.11) to define V n,j,0
i would

result in both formal O(h5) accuracy and mass conservation. However, the scheme
presented here is designed to both reduce oscillation and maintain mass conservation.
It is also relatively efficient, as the following lemma records.
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Lemma 5.1. For a full x-sweep on an m×n grid, the main computations needed

are (1) 2mn full WENO reconstructions in y given by (5.11) and mn simple recon-

structions in y given by (5.12), (2) using these values as in (5.14), 3n solutions of the

one-dimensional method on a grid with m elements, and finally (3) n compilation of

one-dimensional results in (5.9).

5.3. Formal accuracy. We have the following result.
Theorem 5.2. The two-dimensional EL-WENO finite volume scheme (5.9) is

formally O(h5) accurate in space. Moreover, it is locally mass conservative.

Proof. In light of (5.8), we note that

h2 ūn+1
i,j :=

∫

Fj

∫

Ei

un+1(x, y) dx dy =

∫

Fj

∫

Ěn
i (y)

un(x, y) dx dy.(5.15)

We claim that

(5.16)

∫

Fj

∫

Ěn
i (y)

un(x, y) dx dy =
∑

k

wj
k

∫

Ẽn
i (yj

k)

R̃n,j(x, yj
k; ūn) dx+ O(h7),

which will prove the local truncation error or formal accuracy of our scheme (5.9)
is O(h5). The quadrature and approximate trace-back error (assuming sufficiently
accurate characteristic tracing) is simple to account for:

∫

Fj

∫

Ěn
i (y)

un(x, y) dx dy =
∑

k

wj
k

∫

Ẽn
i (yj

k)

un(x, yj
k) dx+ O(h7).

Consider next the reconstruction in y. For each index j, let

v̄n
j (x) :=

1

h

∫

Fj

un(x, y) dy

be the average mass in Fj for the given value of x. Our one-dimensional reconstruction

Rj
k(y; v̄n(x)) is accurate in y for such average values at the Gauss point yj

k, i.e.,

Rj
k(yj

k; v̄n(x)) = un(x, yj
k) + O(h5).

However, by definition (see (5.10)), the reconstruction operator does not depend ex-
plicitly on x, and it is linear in the v̄n(x), so in fact

1

h

∫

Ei

Rj
k(yj

k; v̄n(x)) dx = Rj
k

(

yj
k;

1

h

∫

Ei

v̄n(x) dx
)

= Rj
k(yj

k; ūn
i,(·)),

since

1

h

∫

Ei

v̄n
j (x) dx = ūn

i,j =
1

h2

∫

Fj

∫

Ei

u(x, y, tn) dx dy.

Therefore, the y reconstruction accurately approximates the x-grid cell averages, i.e.,

(5.17) Rj
k(yj

k; ūn
i,(·)) = ṽn(yj

k) + O(h5),

where we define

ṽn
i (y) :=

1

h

∫

Ei

un(x, y) dx.
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So, if vn,j,k
i is defined from (5.11)–(5.12) using ūn

i,(·) in place of Ūn
i,(·), then

ṽn
i (yj

k) = vn,j,k
i + O(h5), k = ±1.

We need to treat the case k = 0 specially. We compute

vn,j,0
i − ṽn

i (y0
k) =

1

wj
0

[

h Ūn
i,j − wj

−1v
n,j,−1
i − wj

1v
n,j,1
i − wj

0ṽ
n
i (y0

k)
]

=
1

wj
0

[

h Ūn
i,j −

∑

k

wj
kṽ

n
i (yk

k)
]

+ O(h5)

=
1

wj
0

[

h Ūn
i,j −

∫

Fj

ṽn
i (y) dy

]

+ O(h5) = O(h5),

using that the Gauss weights are O(h) and noting that the last quantity in brackets
above vanishes identically. Thus, for all k,

ṽn
i (yj

k) = vn,j,k
i + O(h5).

Finally, the one-dimensional reconstruction for integration in x, R̃n, was seen
earlier to be formally accurate for each fixed y, so we have at the Gauss points that

∫

Ẽn
i (yj

k)

un(x, yj
k) dx =

∫

Ẽn
i (yj

k)

R̃n(x; ṽn(yj
k)) dx+ O(h6)

=

∫

Ẽn
i (yj

k)

R̃n(x; vn,j,k) dx + O(h6)

=

∫

Ẽn
i (yj

k)

R̃n,j(x, yj
k; ūn) dx+ O(h6),

using (5.14) in the last equality. Since the Gauss weights are O(h), the claim (5.16),
and therefore the O(h5) formal accuracy of the method, follows.

The proof of the local mass conservation is based on three facts. First, during
the x-sweep, no mass crosses the y-faces; that is, mass is constrained locally to the
strip R × Fj for each j. Second, all mass is accounted for in the quadrature rule

over Fj by the V n,j,k
i , as we saw in (5.13). Finally, each one-dimensional transport in

the x-direction is locally mass conservative by Theorem 4.1. We can also express the
scheme (5.9) conservatively in an Eulerian setting. Using (5.14) and (5.13), we have

h2 Ūn+1
i,j =

∑

k

wj
k

∫

Ẽn
i (yj

k)

R̃n(x;V n,j,k) dx

= h2 Ūn
i,j +

∑

k

wj
k

∫

Ẽn
i (yj

k)

R̃n(x;V n,j,k) dx− h
∑

k

wj
kV

n,j,k
i .

Now Lemma 3.3 (for the approximate characteristics, i.e., R̃n in place of Rn) shows
that for k = −1, 0, 1,

∫

Ei

R̃n(x;V n,j,k) dx = hV n,j,k
i
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and thus

h2 Ūn+1
i,j = h2 Ūn

i,j +
∑

k

wj
k

{
∫

Ẽn
i (yj

k
)

R̃n(x;V n,j,k) dx−
∫

Ei

R̃n(x;V n,j,k) dx

}

(5.18)

= h2 Ūn
i,j +

∑

k

wj
k

{
∫ xi−1/2

X̌n
i−1/2

(yj
k)

R̃n(x;V n,j,k) dx

−
∫ xi+1/2

X̌n
i+1/2

(yj
k)

R̃n(x;V n,j,k) dx

}

.

The proof is complete.

6. Some Numerical Results in One Space Dimension. All the examples
herein use a periodic boundary condition. In all our one-dimensional results, m is
the number of grid cells used. Corresponding to the estimate (3.3), we report errors
measured in the discrete L1

h norm

(6.1) ‖un − ūn‖1,h :=
∑

i

∣

∣

∣

1

h

∫

Ei

u(x, tn) dx − ūn
i

∣

∣

∣
h,

and, corresponding to (3.4), errors measured in the discrete L∞
h norm

(6.2) ‖un − qn‖∞,h := sup
i

|un
i − qn

i |,

using the points ξi = xi.

6.1. Example 1. We first test our scheme in the simple case of a(x, t) = 1/3,
with initial condition u0(x) = 0.75 + 0.25 sin(πx) over [0, 2]. The exact solution is
u(x, t) = u0(x − t/3). We present two tests. First, we use a time step ∆t = 40h,
which is about 13.3 times the CFL time limit, i.e., CFL∆t = max |a|∆t/h = 13.3.
The final time is at T = 10. The L1

h and L∞
h errors as defined in (6.1) and (6.2) are

reported in Table 6.1, where m is the number of grid cells. A fifth order convergence
is observed, as expected from Theorem 4.1.

Table 6.1

Ex. 1. Error and convergence order at T = 10 with ∆t = 40h.

m L1
h error order L∞

h error order
20 3.40206E-05 ——– 2.91819E-05 ——–
40 7.90078E-07 5.42827 7.35534E-07 5.31014
80 2.34044E-08 5.07714 2.39566E-08 4.94030
160 7.07622E-10 5.04766 7.57568E-10 4.98290
320 2.18519E-11 5.01715 2.21733E-11 5.09448
640 6.88475E-13 4.98821 6.08624E-13 5.18713

For the second test, we choose ∆t so that grid points trace back to grid points,
i.e., ∆t is a multiple of 3h. The L1

h error is within round off error for all m, and a
superconvergence of the sixth order in the L∞

h error is obtained. This seems reason-
able, since the error in (3.2) remains zero for all iterations if there is no initial error
and the trace-back regions are exact for all times. The test with ∆t = 45h and the
final time at T = 9, using long double precision, is given in Table 6.2.
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Table 6.2

Ex. 1. Error and convergence order at T = 9 with ∆t = 45h.

m L1
h error L∞

h error order
20 3.28371E-33 3.20158E-06 ——–
40 1.10645E-32 7.22244E-08 5.47016
80 1.50295E-32 1.31427E-09 5.78015
160 2.36420E-32 2.19594E-11 5.90328
320 4.98864E-32 3.49684E-13 5.97264
640 8.96463E-32 5.35670E-15 6.02857

6.2. Example 2. We test our scheme on a case with a(x, t) = sin(x) over [0, 2π],
with exact solution

u(x, t) =
sin

(

2 arctan(e−t tan(x/2))
)

sin(x)
.

Note that Type 4 subintervals occur in this example. We report the L1
h and L∞

h errors
in Table 6.3. The initial time is at 0.1 and the final time is at T = 1. We use 10 steps,
so ∆t = 0.09. A fifth order convergence is observed.

Table 6.3

Ex. 2. Error and convergence order at T = 1 with 10 steps.

m L1
h error order L∞

h error order
20 1.11043E-02 ——– 8.65266E-03 ——–
40 4.47664E-04 4.63256 5.66291E-04 3.93353
80 1.31403E-05 5.09035 1.81398E-05 4.96431
160 2.78878E-07 5.55822 5.36271E-07 5.08005
320 5.56687E-09 5.64663 1.25553E-08 5.41659
640 1.24537E-10 5.48221 3.25145E-10 5.27107

Table 6.4

Ex. 2. Errors and convergence order at T = 1 with 5 steps.

m L1
h error order L∞

h error order
20 8.74024E-03 ——– 6.89093E-03 ——–
40 2.32960E-04 5.22952 4.15458E-04 4.05192
80 7.34720E-06 4.98674 1.43913E-05 4.85143
160 1.55773E-07 5.55968 3.72114E-07 5.27331
320 3.42601E-09 5.50678 9.70153E-09 5.26139
640 1.09435E-10 4.96838 3.00589E-10 5.01235

In Table 6.4, we report the errors using only 5 time steps. In fact, we can use only
one time step, and the results are given in Table 6.5. It can be seen that the errors
are slightly reduced when the number of time steps is reduced, since less numerical
diffusion builds up. However, the order of convergence remains basically the same
fifth order, since it reflects the spatial convergence order.

In the above tests, we used a fixed point iteration to find the exact trace-back
points. In the final test, we use an approximate Runge-Kutta solver for (2.1), and
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Table 6.5

Ex. 2. Errors and convergence order at T = 1 with one step.

m L1
h error order L∞

h error order
20 2.81444E-03 ——– 3.01100E-03 ——–
40 1.98279E-04 3.82724 1.92974E-04 3.96377
80 6.04810E-06 5.03491 8.59603E-06 4.48859
160 1.29589E-07 5.54447 2.18847E-07 5.29568
320 2.33589E-09 5.79383 4.19884E-09 5.70378
640 3.92587E-11 5.89481 7.51634E-11 5.80382

Table 6.6

Ex. 2. Error and convergence order at T = 1 with 10 steps and m/10 micro-time steps for the
trace-back Runge-Kutta solver.

m L1
h error order L∞

h error order
20 1.11044E-02 ——– 8.65267E-03 ——–
40 4.47667E-04 4.63256 5.66291E-04 3.93353
80 1.31403E-05 5.09036 1.81398E-05 4.96431
160 2.78878E-07 5.55822 5.36263E-07 5.08007
320 5.56624E-09 5.64679 1.25548E-08 5.41663
640 1.16465E-10 5.57873 3.25641E-10 5.26882

within each time step defined by (4.1), we use m/10 micro-time steps for the Runge-
Kutta solver. The results are reported in Table 6.6. Comparing Tables 6.3 and 6.6,
we see that the Runge-Kutta solver is in fact providing a good approximation to the
trace-back points.

6.3. Example 3. In this example, we test a case with a(x, t) = sin(t) on [0, 2],
for which the exact solution is u(x, t) = u0(x + 1 + cos(t)), where u0(x) is chosen
as in Ex. 1. We use a fourth order Runge-Kutta method to approximate the trace-
back points for system (2.1). We take the time step ∆t = h4/5, and a fifth order
convergence is obtained at the final time T = 4, see Table 6.7.

Table 6.7

Ex. 3. Errors and convergence order at T = 4 with ∆t = h4/5, using RK4 for the trace-back
points.

m L1
h error order L∞

h error order
20 5.61267E-04 ——– 4.86282E-04 ——–
40 1.94068E-05 4.85405 1.87017E-05 4.70055
80 6.51947E-07 4.89567 6.49074E-07 4.84865
160 2.14898E-08 4.92303 2.09586E-08 4.95277
320 6.98781E-10 4.94266 6.64485E-10 4.97916
640 2.24770E-11 4.95832 2.03981E-11 5.02573

We also used m micro-time steps in the Runge-Kutta method within each time
step defined by (4.1). The results are reported in Table 6.8. Finally, since the exact
trace-back point could be found analytically, we test it with 5 time steps and report
the results in Table 6.9. We seem to obtain a sixth order superconvergence for both
of these tests, but it is not clear why, since the grid points are not traced back to grid
points.
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Table 6.8

Ex. 3. Errors and convergence order at T = 4, with 5 steps, m micro-time RK4 steps.

m L1
h error order L∞

h error order
20 3.96103E-05 ——– 3.30529E-05 ——–
40 4.95198E-07 6.32172 4.54642E-07 6.18390
80 8.20460E-09 5.91543 7.91174E-09 5.84459
160 1.33948E-10 5.93669 1.22479E-10 6.01339
320 2.18257E-12 5.93949 1.83076E-12 6.06395
640 1.45575E-13 3.90620 1.69054E-12 0.11496

Table 6.9

Ex. 3. Errors and convergence order at T = 4, with 5 steps and exact trace-back points.

m L1
h error order L∞

h error order
20 3.96105E-05 ——– 3.30536E-05 ——–
40 4.95196E-07 6.32174 4.54625E-07 6.18399
80 8.20452E-09 5.91544 7.91116E-09 5.84464
160 1.33942E-10 5.93674 1.22519E-10 6.01281
320 2.19103E-12 5.93385 1.81899E-12 6.07372
640 1.40254E-13 3.96549 2.10054E-13 3.11430

6.4. Example 4. In the final example, we take a standard test case, called Shu’s

linear test [14]. In this case, a(x, t) = 1 and the initial data u0(x) is defined as

u0(x) =































1
6 (G(x, β, z − δ) +G(x, β, z + δ) + 4G(x, β, z)) , 0.2 ≤ x ≤ 0.4,

1, 0.6 ≤ x ≤ 0.8,

1 − |10(x− 1.1)|, 1 ≤ x ≤ 1.2,
1
6 (F (x, α, a− δ) + F (x, α, a+ δ) + 4F (x, α, a)) , 1.4 ≤ x ≤ 1.6,

0, otherwise,

where

G(x, β, z) = e−β(x−z)2 and F (x, α, a) =
√

max(1 − α2(x− a)2, 0).

The constants are set to a = 0.5, z = −0.7, δ = 0.005, α = 10, and β = log 2/(36δ2).
We compute the solution up to time T = 2 with m = 160 grid cells. The resulting

solution is shown in Fig. 6.1. The blue curve stands for the exact solution, the solid
black squares are the exact solution at the center of each cell. The red circles are
the computed solution at the center of each cell. It is easy to see that the numerical
solution maintains the same resolution as the initial condition, since all the trace-back
points are exact and at grid points. The results shown use ∆t = 2/10, i.e., 10 steps,
but in fact, we could use one step, ∆t = 2. No numerical diffusion builds up. We
could run the test with a larger final time, and the results would remain the same as
long as the final time was a multiple of 2.

7. Some Numerical Results in Two Space Dimensions. All the examples
herein use a periodic boundary condition; however, mass is restricted to the interior of
the domain. Most of the examples are taken from LeVeque [15] and Qiu and Shu [22].
For our two-dimensional results, m is the number of grid cells used in each direction.
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Fig. 6.1. Ex. 4. Shu’s linear test with m = 160. The blue curve shows the exact solution,
while the solid black squares are the exact solution at the center of each cell. The red circles are the
computed solution plotted at the center of each cell.

We report errors measured in the discrete L1
h norm

(7.1) ‖un − ūn‖1,h :=
∑

i,j

∣

∣

∣

1

h2

∫

Fj

∫

Ei

u(x, tn) dx dy − ūn
i,j

∣

∣

∣
h2

and a discrete L∞
h norm. In all cases, the global mass balance error is negligible, as

reported in Table 7.2, so we do not otherwise comment on it.
Our L∞

h norm is based on a pointwise postprocessing of the two-dimensional
discrete solution. We chose to target the cell centers (xi, yj). As in the y-sweep
described in Subsection 5.2, we first perform high order WENO reconstruction of the
solution in the y-direction targeting the point yj for constant xi. This results in a
high order approximation of the average mass in the interval Ei × {yj}, as noted in
(5.17). Then in the x-direction, for each yj , we apply the optional postprocessing
described in Subsection 3.3. The result is qn

i,j , a high order (i.e., fifth order in our
case) pointwise approximation of un

i,j . Thus we define

(7.2) ‖un − qn‖∞,h := sup
i,j

|un
i,j − qn

i,j |.

Of course, there is no reason to begin with the y-direction. We could also reconstruct
in the x-direction first and then reconstruct in the y-direction. In fact there is very
little difference between these two possibilities, and we report the worse of the two.

All two-dimensional figures in this section show the results of using an 80×80 grid.
In our Strang-split, two-dimensional simulations, the CFL limited time step would be

∆tCFL =
h

max
(

max
x,y

|a1(x, y)|,max
x,y

|a2(x, y)|
) ,

and so, for a given ∆t, the CFL number is

CFL∆t = max
(

max
x,y

|a1(x, y)|,max
x,y

|a2(x, y)|
)∆t

h
.

We use a first order Strang splitting unless otherwise noted.
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(a) Initial condition.
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(b) t = 0.5 with ∆t = 10h.

Fig. 7.1. Ex. 5 with an initial cross pattern. Plot of cell average values at t = 0 and t = 0.5,
using ∆t = 10h. The time step allows perfect reproduction of the cross pattern on the grid.

7.1. Example 5. This example is a two dimensional linear transport. The gov-
erning equation is

(7.3) ut + ux + uy = 0, x ∈ (0, 2), y ∈ (0, 2), t > 0.

The equation is split into two one-dimensional equations, each of which is evolved by
the proposed EL-WENO finite volume method. Note that there is no dimensional
splitting error in time and the spatial error is the dominant error. Moreover, In this
case a1 ≡ a2 ≡ 1, so ∆tCFL = h.

Table 7.1 gives the L1
h and L∞

h errors and the corresponding orders of convergence
for the smooth solution u(x, y, t) = sin(πx + πy − 2πt), using ∆t = 2.5h. Very clean
fifth order convergence is observed for our fifth order reconstruction, as expected from
the formal convergence theory Theorem 5.2.

Table 7.1

Ex. 5 with true solution u(x, y, t) = sin(πx+πy−2πt). Errors and convergence order at t = 20,
for ∆t = 2.5h (CFL∆t = 2.5).

m L1
h error order L∞

h error order
20 1.28182E-02 ——– 4.99453E-03 ——–
40 4.16771E-04 4.94280 1.85201E-04 4.75319
80 1.30725E-05 4.99465 6.15524E-06 4.91113
160 4.08569E-07 4.99981 1.91862E-07 5.00367
320 1.27688E-08 4.99989 5.88077E-09 5.02792

We next advect a cross pattern, as shown in Figs. 7.1 and 7.2. It is clear that we
have less numerical diffusion error when ∆t is chosen so that grid points are traced
back to grid points, as in Fig. 7.1(b), where ∆t = 10h, since then the cross pattern
can be represented exactly on the grid, as opposed to Fig. 7.2, where ∆t = 10.5h and
we are one-half grid cell off each time step.

7.2. Example 6. The next example is a two dimensional rigid body rotation.
The governing equation is

(7.4) ut − ((y − 1)u)x + ((x − 1)u)y = 0, x ∈ [0, 2], y ∈ [0, 2], t > 0.
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Fig. 7.2. Ex. 5 with an initial cross pattern. Plot of cell average values at t = 0.5 using
∆t = 10.5h. The time step does not allows reproduction of the cross pattern on the grid.

The initial condition is a smooth, radial bump function, defined as

u(x, y, 0) = 2
5

[

ψ
(

1 + r(x, y)
)

ψ
(

1 − r(x, y)
)

+ 1
]

,

r(x, y) =
√

(x− 1)2 + (y − 1)2,

where ψ(s) = e−1/s2

for s > 0 and ψ(s) = 0 otherwise.

Table 7.2

Ex. 6. Errors, convergence order, and mass error at t = 2π, using ∆t = 2h (CFL∆t = 2).

m L1
h error order L∞

h error order mass error
20 9.17146E-04 ——– 1.00826E-03 ——– 2.80779E-15
40 9.79220E-05 3.22745 1.48453E-04 2.76379 1.28105E-14
80 4.83232E-06 4.34084 9.68675E-06 3.93785 4.61530E-14
160 1.23696E-07 5.28785 2.87469E-07 5.07454 1.05292E-13
320 3.85239E-09 5.00490 5.89530E-09 5.60769 4.89608E-14

Table 7.2 gives the L1
h and L∞

h errors, the corresponding orders of convergence,
and the global mass balance error, where ∆t = 2h (CFL∆t = 2). Very clean fifth
order convergence is observed, as expected, and the mass balance error is nonzero
due only to rounding error. For this example, we used a second order in time Strang
splitting.

7.3. Example 7. This next example is again a two-dimensional rigid body ro-
tation as in (7.4) of Ex. 6. However, the initial condition used now includes a slotted
disk, a cone, and a “smooth” hump, similar to that used by LeVeque [15]. The initial
condition is shown in Fig. 7.3.

The numerical solution after six full revolutions of the scheme using ∆t = 4h
(CFL∆t = 4) are shown in Fig. 7.3. One-dimensional cross-sections showing the
solution are given in Fig. 7.5, benchmarked with the exact solution. Some oscillation
in the solution is observed. However, it is not due to the difference of integrals needed
for the handling of Type 4 subintervals, since none arose during the computation. We
also computed the solution using time steps that were non-integral multiples of h,
e.g., 4.5h, but the results show no significant difference to those shown here.
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(a) Cell average values. (b) Contour plot.

Fig. 7.3. Ex. 7. Initial condition, shown using (a) cell average values and (b) a graphically
smoothed contour plot.
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Fig. 7.4. Ex. 7. Solution at t = 12π, using ∆t = 4h (CFL∆t = 4), shown using (a) cell average
values and (b) a graphically smoothed contour plot.

7.4. Example 8. A more severe test is obtained by using a swirling deformation
flow. Following [15], we take the velocity in the form

(7.5) a1(x, y) = sin2
(πx

2

)

sin(πy) g(t), a2(x, y) = − sin2
(πy

2

)

sin(πx) g(t).

This flow satisfies a1 = a2 = 0 on the boundaries of our domain (0, 2) × (0, 2). The
function g(t) is used to introduce time dependence in the flow field, and we use

g(t) = 2 cos(πt/T )

on the time interval 0 ≤ t ≤ T . The flow slows down and reverses direction in such a
way that the initial data is recovered at time T . We use T = 1.5, and the same initial
condition as in the previous example, Ex. 7.

We remark that in [15], Leveque worked over the unit square domain. Compared
to his work, we have rescaled both the velocity field and g(t). Moreover, Qiu and
Shu [22] used a similar scaling over the domain (−π, π)2.

The results using a first order Strang splitting are shown in Fig. 7.6. They are
not very good, because the splitting error is large.



26 HUANG, ARBOGAST, AND QIU

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
x = 1.0125

(a) x = 1 + h/2.

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
x = 0.5125

(b) x = 0.5 + h/2.

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
y = 1.3625

(c) y = 1.35 + h/2.

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
y = 0.5125

(d) y = 0.5 + h/2.

Fig. 7.5. Ex. 7. Cross-sections of the numerical solution at (a) x = 1+h/2, (b) x = 0.5+ h/2,
(c) y = 1.35 + h/2, and (d) y = 0.5 + h/2. The true solution is also shown as a solid line.
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Fig. 7.6. Ex. 8. First order Strang splitting solution at T = 1.5 using ∆t = 2h (CFL∆t = 4).

The second order Strang splitting improves the result significantly, as shown in
Figs. 7.7–7.9 for three different time steps, ∆t = 4h, 8h, and 12h. The results are
remarkably good, especially for the largest time step, which has a CFL number of
CFL∆t = 24 and therefore is the least numerically diffusive. We also report cross-
sectional slices for the ∆t = 8h case in Fig. 7.10, benchmarked with exact solution.
Again some oscillation is observed. In this example, Type 4 subintervals do arise.
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Fig. 7.7. Ex. 8. Second order Strang splitting solution at T = 1.5 using ∆t = 4h (CFL∆t = 8).
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Fig. 7.8. Ex. 8. Second order Strang splitting solution at T = 1.5 using ∆t = 8h (CFL∆t = 16).
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Fig. 7.9. Ex. 8. Second order Strang splitting solution at T = 1.5 using ∆t = 12h (CFL∆t = 24).

At time T/2 the initial data is quite deformed. Fig. 7.11 shows the solution at
this time using ∆t = 8h. The solution is very similar to that given in [15, 22].

7.5. Example 9. As a final example, we use the swirling flow (7.5) of the pre-
vious example, but we scale it to the unit square and take g(t) ≡ 1. The initial
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Fig. 7.10. Ex. 8. Cross-sections of the numerical solution at (a) x = 1+h/2, (b) x = 0.5+h/2,
(c) y = 1.35 + h/2, and (d) y = 0.5 + h/2. The true solution is also shown as a solid line.
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Fig. 7.11. Ex. 8. Second order Strang splitting solution at time t = 0.75 = T/2 using ∆t = 8h
(CFL∆t = 16).

condition is

u(x, y, 0) =

{

1 if (x− 1)2 + (y − 1)2 < 0.82,

0 otherwise.

Fig. 7.12 shows the computed solution at time t = 2.5 using ∆t = 8h (CFL∆t = 8).
The level of numerical diffusion on this 80 × 80 grid is extremely low, since it takes
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Fig. 7.12. Ex. 9. Solution at time t = 2.5 using ∆t = 8h (CFL∆t = 8).

only 25 steps to reach the final time.

8. Conclusions. We defined a locally conservative Eulerian-Lagrangian finite
volume method with a WENO reconstruction (EL-WENO). It is a generalization of
the Finite Difference Locally Conservative Eulerian-Lagrangian Method [9] and the
Characteristics-Mixed Method [1, 2, 4]. The fifth order version was worked out in
detail. For each time step, the grid points are first traced backward in time, perhaps
using a Runge-Kutta solver. For each grid cell, these trace-back points define the
trace-back set. The mass in the trace-back set advects forward to the new time level
over the time step. It is therefore only necessary to integrate accurately the mass over
the trace-back set.

An integration-based, piecewise-polynomial WENO reconstruction was developed
to obtain a fifth order representation of the fluid mass at the previous time level,
although other order methods could presumably be developed. To define the re-
construction, the trace-back set must be decomposed into the fixed Eulerian grid.
The definition of the linear weights depends on this decomposition and varies locally.
Rules for computing the integrated mass were developed that are fifth order accurate.
Moreover, the scheme was shown to be computationally efficient and locally mass
conservative.

Numerical results showed that the optimal fifth order accuracy is obtained for
both constant and variable coefficient cases. Large time steps, greatly exceeding the
CFL limit, could be taken by our scheme; in fact, we could take a fixed number of time
steps regardless of the number of cells in the computation, as long as the trace-back
points are approximated accurately enough.

Strang splitting was used to handle multidimensional problems. Even though the
scheme is based on finite volumes, we were able to show fifth order spatial accuracy
as well as local mass conservation. Numerical results bore these facts out.

Our scheme inherits the high-order accuracy and nonoscillatory property from
WENO schemes, and the CFL time step limit free property and small time truncation
error from Eulerian-Lagrangian methods.

REFERENCES

[1] T. Arbogast, A. Chilakapati, and M. F. Wheeler, A characteristic-mixed method for con-
taminant transport and miscible displacement, in Computational Methods in Water Re-



30 HUANG, ARBOGAST, AND QIU

sources IX, Vol. 1: Numerical Methods in Water Resources, T. F. Russell et al., eds.,
Southampton, U.K., 1992, Computational Mechanics Publications, pp. 77–84.

[2] T. Arbogast and C. Huang, A fully mass and volume conserving implementation of a char-
acteristic method for transport problems, SIAM J. Sci. Comput., 28 (2006), pp. 2001–2022.

[3] T. Arbogast and W.-H. Wang, Stability, monotonicity, maximum and minimum principles,
and implementation of the volume corrected characteristic method, SIAM J. Sci. Comput.,
33 (2011), pp. 1549–1573.

[4] T. Arbogast and M. F. Wheeler, A characteristics-mixed finite element method for advec-
tion dominated transport problems, SIAM J. Numer. Anal., 32 (1995), pp. 404–424.

[5] J. Carrillo and F. Vecil, Nonoscillatory interpolation methods applied to Vlasov-based mod-
els, SIAM J. Sci. Comput., 29 (2007), pp. 1179–1206.

[6] M. A. Celia, T. F. Russell, I. Herrera, and R. E. Ewing, An Eulerian-Lagrangian local-
ized adjoint method for the advection-diffusion equation, Advances in Water Resources, 13
(1990), pp. 187–206.

[7] C. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space, J.
Comput. Phys., 22 (1976), pp. 330–351.

[8] H. K. Dahle, R. E. Ewing, and T. F. Russell, Eulerian-Lagrangian localized adjoint methods
for a nonlinear advection-diffusion equation, Comput. Methods Appl. Mech. Engrg., 122
(1995), pp. 223–250.

[9] J. Douglas, Jr. and C.-S. Huang, The convergence of a locally conservative Eulerian-
Lagrangian finite difference method for a semilinear parabolic equation, BIT, 41 (2001),
pp. 480–489.

[10] J. Douglas, Jr., F. Pereira, and L.-M. Yeh, A locally conservative Eulerian-Lagrangian
numerical method and its application to nonlinear transport in porous media, Comput.
Geosci., 4 (2000), pp. 1–40.

[11] J. Douglas, Jr. and T. F. Russell, Numerical methods for convection-dominated diffusion
problems based on combining the method of characteristics with finite element or finite
difference procedures, SIAM J. Numer. Anal., 19 (1982), pp. 871–885.

[12] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Uniformly high-order accurate
essentially nonoscillatory schemes III, J. Comput. Phys., 71 (1987), pp. 231–303.

[13] A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes I, SIAM J.
Numer. Anal., 24 (1987), pp. 279–309.

[14] J.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput.
Phys., 126 (1996), pp. 202–228.

[15] R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow,
SIAM. J. Numer. Anal., 33 (1996), pp. 627–665.

[16] D. Levy, G. Puppo, and G. Russo, Central WENO schemes for hyperbolic systems of con-
servation laws, Math. Model. Numer. Anal., 33 (1999), pp. 547–571.

[17] X. D. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput.
Phys., 115 (1994), pp. 200–212.

[18] Y.-Y. Liu, C.-W. Shu, and M. Zhang, On the positivity of linear weights in WENO approxi-
mations, Acta Mathematicae Applicatae Sinica, 25 (2009), pp. 503–538.

[19] O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes
equations, Numer. Math., 38 (1981/82), pp. 309–332.

[20] J. Qiu and C.-W. Shu, On the construction, comparison, and local characteristic decomposi-
tion for high-order central WENO schemes, J. Comput. Phys., 183 (2002), pp. 187–209.

[21] J.-M. Qiu and A. Christlieb, A conservative high order semi-Lagrangian WENO method for
the Vlasov equation, J. Comput. Phys., 229 (2010), pp. 1130–1149.

[22] J.-M. Qiu and C.-W. Shu, Conservative high order semi-Lagrangian finite difference WENO
methods for advection in incompressible flow, J. Comput. Phys., 230 (2011), pp. 863–889.

[23] , Conservative semi-Lagrangian finite difference WENO formulations with applications
to the Vlasov equation, Communications in Comput. Phys., 10 (2011), pp. 979–1000.

[24] J. Shi, C. Hu, and C.-W. Shu, A technique of treating negative weights in WENO schemes,
J. Comput. Phys., 175 (2002), pp. 108–127.

[25] G. Strang, On the construction and comparison of difference schemes, SIAM. J. Numer.
Anal., 5 (1968), pp. 506–517.

[26] H. Wang and M. Al-Lawatia, A locally conservative Eulerian-Lagrangian control-volume
method for transient advection-diffusion equations, Numer. Methods Partial Differential
Equations, 22 (2006), pp. 577–599.

[27] H. Wang, D. Liang, R. E. Ewing, S. L. Lyons, and G. Qin, An ELLAM approximation for
highly compressible multicomponent flows in porous media. Locally conservative numerical
methods for flow in porous media, Comput. Geosci., 6 (2002), pp. 227–251.


