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Abstract

For a nonlinear scalar conservation law in one-space dimension, we develop a locally conservative semi-Lagrangian
finite difference scheme based on weighted essentially non-oscillatory reconstructions (SL-WENO). This scheme has
the advantages of both WENO and semi-Lagrangian schemes. It is a locally mass conservative finite difference
scheme, it is formally high-order accurate in space, it has small time truncation error, and it is essentially non-
oscillatory. The scheme is nearly free of a CFL time step stability restriction for linear problems, and it has a relaxed
CFL condition for nonlinear problems. The scheme can be considered as an extension of the SL-WENO scheme of
Qiu and Shu [J. Comput. Phys., 2011] developed for linear problems. The new scheme is based on a standard sliding
average formulation with the flux function defined using WENO reconstructions of (semi-Lagrangian) characteristic
tracings of grid points. To handle nonlinear problems, we use an approximate, locally frozen trace velocity and a
flux correction step. A special two-stage WENO reconstruction procedure is developed that is biased to the upstream
direction. A Strang splitting algorithm is used for higher-dimensional problems. Numerical results are provided to
illustrate the performance of the scheme and verify its formal accuracy. Included are applications to the Vlasov-
Poisson and guiding-center models of plasma flow.
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1. Introduction

We develop a semi-Lagrangian finite difference WENO (SL-WENO) scheme to approximate the scalar conserva-
tion law

ut +
(
f (u)

)
x = 0, x ∈ R, t > 0, (1)

u(x, 0) = u0(x), x ∈ R, (2)

with the possibly nonlinear flux f (u) = f (u; x, t). Moreover, multiple space dimensions will be treated using operator
splitting.

The semi-Lagrangian computational scheme uses a mixture of Eulerian and Lagrangian reference frames in the
sense that it has a fixed (Eulerian) numerical grid but advances each time step by evolving the partial differential
equations by propagating information along (Lagrangian) characteristic curves. A semi-Lagrangian scheme does not
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inherently suffer the CFL time step restriction of an Eulerian approach. In consequence, longer time step evolution
can be achieved, potentially resulting in less computational effort and less numerical diffusion.

In 2011, Qiu and Shu [1] (see also [2]) developed a semi-Lagrangian finite difference WENO method for linear
scalar conservation laws for which f (u) = au for some advection velocity a(x, t). In fact, they could develop the
linear weights needed in the WENO reconstruction [3, 4] only when the velocity a is constant. For variable advection
velocity, they developed weights based on heuristic empirical criteria.

In this paper we develop a locally mass conservative SL-WENO scheme for nonlinear scalar conservation laws.
In the linear case, it is an extension of the scheme of Qiu and Shu [1]. It reduces to their scheme if the advection
velocity a is constant and linear WENO weights are used; however, our scheme has exact WENO linear weights in
the case of variable advection problems. Our scheme is new in the case of nonlinear problems, and it can be viewed
as an extension of related work on finite volume Eulerian-Lagrangian WENO schemes [5, 6], in which characteristic
tracing is incorporated only in an approximate way. For simplicity of exposition, we will describe only the third order
SL-WENO scheme (SL-WENO3), but in principle any order scheme can be implemented.

Our finite difference scheme is based on the standard sliding average formulation of Shu and Osher [7, 8], but the
flux function is defined using WENO reconstructions of (semi-Lagrangian) characteristic tracings of grid points [1].
To handle nonlinear problems for which the trace velocity in unknown, we use a fixed, approximate trace velocity (as
is done in, e.g., [9, 6] and in arbitrary Lagrangian-Eulerian (ALE) schemes [9]). This approximate trace velocity is
locally frozen to avoid numerical difficulties [6]. The introduction of an approximate trace velocity means that we do
not trace the exact characteristic curves, and necessitates the use of a flux correction step [6], which is implemented
using the approach of Levy, Puppo, and Russo [10] developed for CWENO schemes.

Unlike the direct WENO reconstructions used by Qiu and Shu [1], we develop a two-stage WENO reconstruction
procedure. We first reconstruct cell averages of the numerical flux function, and then we reconstruct the flux function
at the needed point. In our procedure, the linear WENO weights always exist. We nonlinearly weight at each stage
using a smoothness indicator that is based on the underlying smoothness of the solution u; that is, rather than using
the smoothness of the cell average fluxes in the second stage, we use the smoothness indicator for u in both stages.

For nonlinear problems, the scheme requires a special upstream bias in the computation of the flux function
between two grid points, since nonsmooth shocks may develop. The Rankine-Hugoniot shock speed is computed
assuming a shock based on the solution u between the two grid points (i.e., the Roe speed [11]). The direction of this
assumed shock determines the wave direction and consequent upstream biasing in our scheme.

The flux correction step requires a relaxed CFL constraint, given later in (42) [12, 6]. The constraint is based on
the speed of the difference between the true value of ∂ f (u)/du and the fixed approximate trace velocity. If these are
approximately equal, the constraint is very mild.

For multi-dimensional problems, we use a standard, usually second order Strang splitting which decouples the
differential equation into a sequence of one-dimensional problems (see (53)). The advantage of a finite difference
scheme is that the splitting error manifests itself as temporal error, because the splitting does not induce a shearing of
the variable coefficients, and so the scheme maintains its formal high order spatial accuracy [2].

We present a detailed description of our formally third order SL-WENO3 scheme in the next section. Sections 3
and 4 are devoted to numerical results of SL-WENO3 and SL-WENO5 in one and two space dimensions, respectively.
In Section 5 we apply our new scheme to two models of plasma transport: (1) the Vlasov-Poisson system, which has a
constant advection within the Strang split scheme, and (2) the guiding-center model [13, 14], which has a nonconstant
advection. We conclude briefly in the last section.

2. The semi-Lagrangian finite difference WENO scheme

The development of our semi-Lagrangian finite difference WENO (SL-WENO) scheme for nonlinear problems
parallels and extends the development of the finite difference scheme given by Qiu and Shu [1] for linear problems.
For simplicity of exposition, we describe the third order SL-WENO scheme.

Partition time and space as t0 < t1 < t2 < · · · and · · · < x−1 < x0 < x1 < · · · , respectively, where ∆x = xi − xi−1 is
constant. We approximate u(xi, tn) as un

i . Integrate (1) over [tn, tn+1] and evaluate at a grid point xi to obtain

un+1
i = un

i −

( ∫ tn+1

tn
f (u) dt

)
x

∣∣∣∣∣∣∣
x=xi

= un
i − F

′(xi), (3)
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where

F (x) =

∫ tn+1

tn
f (u) dt. (4)

We introduce a functionH(x) whose sliding average is F (x) [7, 8]; that is,

F (x) =
1

∆x

∫ x+∆x/2

x−∆x/2
H(ξ) dξ. (5)

Taking the derivative in x gives

F ′(x) =
1

∆x
[
H(x + ∆x/2) −H(x − ∆x/2)

]
, (6)

and thus (3) can be written in conservative form as

un+1
i = un

i −
1

∆x
[
H(xi+1/2) −H(xi−1/2)

]
, (7)

where xi+1/2 = xi + ∆x/2. We callH(xi+1/2) the flux function at x = xi+1/2.

2.1. Evaluation of the cell averagesH i of the flux function

As in a finite difference WENO scheme, H(xi+1/2) is reconstructed from its neighboring cell averages. For most
of this section, consider that the index i is fixed. Then the cell average ofH at xi is

H i =
1

∆x

∫ xi+1/2

xi−1/2

H(x) dx = F (xi), (8)

due to (5). We use Lagrangian tracing to define H i [1], but to handle the complexity of nonconstant and possibly
nonlinear velocities, we introduce a known, fixed trace velocity vi+1/2(x, t) (fixed for each index i) [6] that approximates
the true characteristic velocity. In Section 2.5 we will discuss how vi+1/2 should be chosen. The ith traceline from
(xi, tn+1) backward in time is defined by

dx̌i

dt
= vi+1/2

(
x̌i(t), t

)
and x̌i(tn+1) = xi. (9)
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Figure 1: Representation of the “triangular” space-time region Ωi, depending on the sign of vi+1/2, which is bounded by the lines t = tn and x = xi
and the curve Ei (shown as a straight line). The counterclockwise orientation is shown in each case.

From grid point (xi, tn+1), we follow the traceline to define the curve

Ei = {x̌i(t) : tn ≤ t ≤ tn+1} ⊂ R × [tn, tn+1].

The end of this curve is located at (x̌n
i , t

n), where the traceback point x̌n
i is x̌i(tn). We denote by Ωi ⊂ R × [tn, tn+1]

the space-time “triangular” region bounded by Ei and the two lines joining (x̌n
i , t

n) to (xi, tn) and back to (xi, tn+1), as
shown in Fig. 1. We integrate (1) over the region Ωi and apply the Divergence Theorem. The sign of vi+1/2 determines
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whether Ωi slopes to the left or the right. Letting the top and bottom signs in a stacked pair refer to the cases vi+1/2 ≥ 0
and vi+1/2 < 0, respectively (more precisely, the cases are x̌n

i ≤ xi and x̌n
i > xi), we obtain that

0 =

∫
Ωi

[
ut +

(
f (u)

)
x
]
dx dt =

∫
Ωi

∇x,t · ( f (u), u) dx dt =

∫
∂Ωi

( f (u), u) · νEi ds

= ∓

∫ xi

x̌n
i

u(x, tn) dx ±
∫ tn+1

tn
f (u(xi, t)) dt +

∫
Ei

( f (u), u) · νEi ds, (10)

where νEi is the outer unit normal to ∂Ωi along Ei. This direction is orthogonal to (vi+1/2 u, u), and so we can replace∫
Ei

( f (u), u) · νEi ds =

∫
Ei

( f (u) − vi+1/2 u)νEi,x ds =

∫
Ei

gi(u)νEi,x ds,

where gi(u) = f (u) − vi+1/2 u. ThusH i = F (xi) =
∫ tn+1

tn f (u(xi, t)) dt is

H i =

∫ xi

x̌n
i

u(x, tn) dx ∓
∫

Ei

gi(u)νEi,x ds. (11)

Note that the last term above would vanish if f (u) = au has a constant linear velocity and one chose vi+1/2 = a. The
finite difference schemes in [1] are based on this assumption. Here, we allow a(x, t) to be non-constant, and we even
treat nonlinear problems. The price we pay is that we must compute the last term involving gi(u) by some WENO
reconstruction to the desired accuracy.
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Figure 2: Representation of the “triangular” space-time region Ωi = Ωi,0 and its two translates Ωi,` for ` = −1, 1, assuming vi+1/2 > 0. The region
Ωi is highlighted, and each Ωi,` is bounded by the lines t = tn and x = xi+` and the curve Ei,` (shown as a straight line), where Ei = Ei,0. These
regions are used to defineH i,`, ` = −1, 0, 1 (H i = H i,0), which in turn are used to WENO reconstructHi+1/2 ≈ H(xi+1/2).

Later we will reconstruct Hi+1/2 ≈ H(xi+1/2) from values of H near xi. We have defined H i in (11). We define
neighboring values in a similar way, but we use a locally frozen trace velocity [6] to insure that no numerical compli-
cations arise from merging or diverging tracelines (e.g., all the traceback points will be regularly spaced so that linear
WENO weights will be known to exist). For fixed i, the parallel traceline for a neighboring point xi+` is defined by
translation, that is, we let

x̌i,`(t) = x̌i(t) + `∆x (12)

be the ith traceline offset by index `. Then H i,` is defined by integrating over Ωi,` = Ωi + (`∆x, 0) ⊂ R × [tn, tn+1],
which results in

H i,` =

∫ xi+`

x̌n
i,`

u(x, tn) dx ∓
∫

Ei,`

gi(u)νEi,` ,x ds, (13)
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where x̌n
i,` = x̌i,`(tn) and Ei,` = Ei + (`∆x, 0), as depicted in Fig. 2.

We define xi∗ to be the closest grid point to x̌n
i that is between xi and x̌n

i . That is, if vi+1/2 ≥ 0, then xi∗ is the closest
grid point greater than or equal to x̌n

i , and if vi+1/2 < 0, then xi∗ is the closest grid point less than or equal to x̌n
i . Since

we keep the same tracing speed vi+1/2 for all indices, we have equal spacing ratio ki < 1 as defined in

|x̌i,` − xi∗+` | = ∆x ki < ∆x.

ExpandH i,` in (13) into three terms, respectively, as

H i,` =


∫ xi∗+`

x̌n
i,`

u(x, tn) dx +

∫ xi+`

xi∗+`

u(x, tn) dx −
∫

Ei,`

gi(u)νEi,` ,x ds, if vi+1/2 ≥ 0,

−

∫ x̌n
i,`

xi∗+`

u(x, tn) dx −
∫ xi∗+`

xi+`

u(x, tn) dx +

∫
Ei,`

gi(u)νEi,` ,x ds, if vi+1/2 < 0,

= T 1
i,` + T 2

i,` + T 3
i,`, ` = −1, 0, 1, 2. (14)

We next discuss approximation of the terms T 1
i,` and T 3

i,`.

2.2. Evaluation and reconstruction of T 1
i,`

Unlike as is done in [1], we use a simple WENO process to reconstruct T 1
i,` for the first term in (14), i.e.,

T 1
i,` = ±

∫ xi∗+`

x̌n
i,`

u(x, tn) dx.

Three values of T 1
i,` will be needed later when we reconstruct H i+1/2 in (44). When vi+1/2 ≥ 0, these are ` = −1, 0, 1,

and we reconstruct from un
i∗−1, un

i∗ , and un
i∗+1. When vi+1/2 < 0, these are ` = 0, 1, 2, and we reconstruct from un

i∗ , un
i∗+1,

and un
i∗+2.

To continue the exposition, we assume that vi+1/2 ≥ 0. Let pi,L(x) be the linear polynomial that interpolates the
pointwise data {un

i∗−1, u
n
i∗ } at {xi∗−1, xi∗ }, respectively. Similarly, pi,R(x) is the linear polynomial interpolating {un

i∗ , u
n
i∗+1}

at {xi∗ , xi∗+1}. For each ` = −1, 0, 1, we seek the linear weights γi,`,L and γi,`,R so that

γi,`,L

∫ xi∗+`

x̌n
i,`

pi,L(x) dx + γi,`,R

∫ xi∗+`

x̌n
i,`

pi,R(x) dx =

∫ xi∗+`

x̌n
i,`

Qi(x) dx ≈ T 1
i,`, (15)

where Qi(x) is the quadratic polynomial interpolating {un
i∗−1, u

n
i∗ , u

n
i∗+1} at {xi∗−1, xi∗ , xi∗+1}. We see below that these

linear weights exist, because we use a locally frozen trace velocity vi+1/2. This means that the traceback points remain
a distance ∆x apart from each other, and no confusion arises due to tracelines tracking to irregular positions that lie in
the same grid cell or that skip a cell. In fact, this way we have that the offset ratio ki = (xi∗+` − x̌n

i,`)/∆x is constant for
each fixed index i.

We compute that when ` = −1,∫ xi∗−1

x̌n
i,−1

pi,L(x) dx =
∆x ki

2
[
(2 + ki)un

i∗−1 − kiun
i∗
]
, (16)∫ xi∗−1

x̌n
i,−1

pi,R(x) dx =
∆x ki

2
[
(4 + ki)un

i∗ − (2 + ki)un
i∗+1

]
, (17)∫ xi∗−1

x̌n
i,−1

Qi(x) dx =
∆x ki

12
[
(12 + 9ki + 2k2

i )un
i∗−1 − (12ki + 4k2

i )un
i∗ + (3ki + 2k2

i )un
i∗+1

]
.

Therefore, we see that the linear weights exist and are in fact

γ+
i,−1,L =

12 + 9ki + 2k2
i

12 + 6ki
and γ+

i,−1,R = −
3ki + 2k2

i

12 + 6ki
. (18)
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When ` = 0, we compute∫ xi∗

x̌n
i

pi,L(x) dx =
∆x ki

2
[
kiun

i∗−1 + (2 − ki)un
i∗
]
, (19)∫ xi∗

x̌n
i

pi,R(x) dx =
∆x ki

2
[
(2 + ki)un

i∗ − kiun
i∗+1

]
, (20)∫ xi∗

x̌n
i

Qi∗ (x) dx =
∆x ki

12
[
(3ki + 2k2

i )un
i∗−1 + (12 − 4k2

i )un
i∗ + (−3ki + 2k2

i )un
i∗+1

]
,

and determine that
γ+

i,0,L =
3 + 2ki

6
and γ+

i,0,R =
3 − 2ki

6
. (21)

Finally, when ` = 1,∫ xi∗+1

x̌n
i,1

pi,L(x) dx =
∆x ki

2
[
(ki − 2)un

i∗−1 + (4 − ki)un
i∗
]
, (22)∫ xi∗+1

x̌n
i,1

pi,R(x) dx =
∆x ki

2
[
kiun

i∗ + (2 − ki)un
i∗+1

]
, (23)∫ xi∗+1

x̌n
i,1

Qi∗ (x) dx =
∆x ki

12
[
(−3ki + 2k2

i )un
i∗−1 + (12ki − 4k2

i )un
i∗ + (12 − 9ki + 2k2

i )un
i∗+1

]
,

and so

γ+
i,1,L =

3ki − 2k2
i

12 − 6ki
and γ+

i,1,R =
12 − 9ki + 2k2

i

12 − 6ki
. (24)

We define T 1
i,` by (15) using (16)–(24), but replacing the linear weights by their nonlinear counterparts defined

using the usual smoothness indicator. For a uniform grid, this indicator is defined when vi+1/2 ≥ 0 for the values
{un

i∗−1, u
n
i∗ , u

n
i∗+1} and when vi+1/2 < 0 for the values {un

i∗ , u
n
i∗+1, u

n
i∗+2} as

IS +
i,L(un) = (un

i∗ − un
i∗−1)2, IS +

i,R(un) = IS −i,L(un) = (un
i∗+1 − un

i∗ )
2,

IS −i,R(un) = (un
i∗+2 − un

i∗+1)2, (25)

and then nonlinear weights are defined for either sign of vi+1/2 as

γ̃±i,`,L(γ±i,`,L, u
n) =

γ±i,`,L

(ε + IS ±i,L(un))2

γ±i,`,L

(ε + IS ±i,L(un))2 +
γ±i,`,R

(ε + IS ±i,R(un))2

and γ̃±i,`,R = 1 − γ̃±i,`,L, (26)

where ε > 0 is some small parameter. Finally, for vi+1/2 ≥ 0, we have

T 1
i,−1 =

∆x ki

2
{
γ̃+

i,−1,L
[
(2 + ki)un

i∗−1 − kiun
i∗
]
+ γ̃+

i,−1,R
[
(4 + ki)un

i∗ − (2 + ki)un
i∗+1

]}
, (27)

T 1
i,0 =

∆x ki

2
{
γ̃+

i,0,L
[
kiun

i∗−1 + (2 − ki)un
i∗
]
+ γ̃+

i,0,R
[
(2 + ki)un

i∗ − kiun
i∗+1

]}
, (28)

T 1
i,1 =

∆x ki

2
{
γ̃+

i,1,L
[
(ki − 2)un

i∗−1 + (4 − ki)un
i∗
]
+ γ̃+

i,1,R
[
kiun

i∗ + (2 − ki)un
i∗+1

]}
. (29)

Each reconstruction involves two linear weights which could be negative for some values of ki. In this case, we use
the usual techniques for treating negative weights in WENO schemes [15].
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When vi+1/2 < 0, we need to reconstruct T 1
i,` for ` = 0, 1, 2 from un

i∗ , un
i∗+1, and un

i∗+2. These can be determined by
symmetry from the case when vi+1/2 ≥ 0. We need to account for the change in sign, exchange L and R, and we need
to identify indices i − 1, i, and i + 1 with i + 2, i + 1, and i, respectively. The linear weights are

γ−i,0,L =
12 − 9ki + 2k2

i

12 − 6ki
and γ−i,0,R =

3ki − 2k2
i

12 − 6ki
, (30)

γ−i,1,L =
3 − 2ki

6
and γ−i,1,R =

3 + 2ki

6
, (31)

γ−i,2,L = −
3ki + 2k2

i

12 + 6ki
and γ−i,2,R =

12 + 9ki + 2k2
i

12 + 6ki
, (32)

and the values of T 1
i,`, for vi+1/2 < 0, are

T 1
i,0 =

∆x ki

2
{
γ̃−i,0,L

[
(ki − 2)un

i∗ − kiun
i∗+1

]
+ γ̃−i,0,R

[
(ki − 4)un

i∗+1 + (2 − ki)un
i∗+2

]}
, (33)

T 1
i,1 =

∆x ki

2
{
γ̃−i,1,L

[
kiun

i∗ − (2 + ki)un
i∗+1

]
+ γ̃−i,1,R

[
(ki − 2)un

i∗+1 − kiun
i∗+2

]}
, (34)

T 1
i,2 =

∆x ki

2
{
γ̃−i,2,L

[
(2 + ki)un

i∗ − (4 + ki)un
i∗+1

]
+ γ̃−i,2,R

[
kiun

i∗+1 − (2 + ki)un
i∗+2

]}
, (35)

using (25)–(26).

2.3. Evaluation of T 3
i,`, the flux correction step

We now turn our attention to computing the third term of (14),

T 3
i,` = ∓

∫
Ei,`

gi(u)νEi,` ,x ds, ` = −1, 0, 1, 2,

which is the term in our scheme that corrects the mass flux when gi(u) = f (u) − vi+1/2 u , 0. After changing variables
(see Fig. 1), we have

T 3
i,` =

∫ tn+1

tn
gi
(
u(x̌i,`(t), t)

)
dt. (36)

Applying a two-point Gauss quadrature rule gives

T 3
i,` = ∆t

[
wG,L gi

(
u(x̌i,`(tG,L), tG,L)

)
+ wG,R gi

(
u(x̌i,`(tG,R), tG,R)

)]
, (37)

where wG,k are the weights and tG,k are the Gauss points, k = L,R. The main task is to find values for u(x̌i,`(t), t)
at the Gauss points along the traceline. We adapt an algorithm given originally by Levy, Puppo, and Russo [10] for
Eulerian CWENO methods and modified for the Lagrangian setting by two of the authors in [6]. The algorithm uses
a Runge-Kutta method combined with its natural continuous extension for time evolution of the differential equation
along the traceline curve. We describe the algorithm below; more details can be found in [10, 6]. We remark that a
more traditional flux correction procedure could be used to compute T 3

i,`, but this would require flux splitting. Our
choice avoids the flux splitting, since the semi-Lagrangian nature of our overall scheme is already upstream biased.

In general, given the Cauchy problem

u′ = F(t, u(t)) and u(t0) = u0, (38)

the solution at time step n + 1 can be obtained by a ν-stage Runge-Kutta method

un+1 = un + ∆t
ν∑

i=1

big(i),
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where each g(i) is a Runge-Kutta flux

g(i) = F
(
tn + ∆tci, un + ∆t

ν∑
j=1

ai jg( j)
)

and ci =
∑

j ai j. The method is completely determined by the vector b and the lower triangular matrix a, which has a
zero diagonal for explicit methods. For our third order SL-WENO scheme, we use the two-stage method

a =

(
0 0
1 0

)
and b =

(
1/2
1/2

)
.

After all g(i) are obtained, the Natural Continuous Extension (NCE) [16] of the Runge-Kutta method provides a
uniform accuracy of the solution in the time interval [tn, tn+1]. Each ν-stage Runge-Kutta method of order p has an
NCE of degree d ≤ p in the sense that there exist ν polynomials bi(θ), i = 1, · · · , ν, of degree at most d, such that

u(tn + θ∆t) ≈ un+θ = un + ∆t
ν∑

i=1

bi(θ)g(i), 0 ≤ θ ≤ 1, (39)

satisfies

max
tn≤t≤tn+∆t

∣∣∣∣∣ dk

dtk

[
un+(t−tn)/∆t − u(t)

]∣∣∣∣∣ = O
(
(∆t)d+1−k), 0 ≤ k ≤ d.

In our case, b1(θ) = (b1 − 1)θ2 + θ and b2(θ) = b2θ
2. In particular, we can evaluate the solution at the Gauss points tG,k

using θG,k = (tG,k − tn)/∆t.

- xtn

- xtn+1
6
t

xi∗−2 xi∗−1 xi∗ xi∗+1 xi∗+2

xi−1 xi xi+1

6 6 6 6 6

x̌n
i,−2 x̌n

i,−1 x̌n
i x̌n

i,1 x̌n
i,2

Ei

× × ×

× × × × ×

Figure 3: An illustration of the evaluation of the Runge-Kutta fluxes g(1) and g(2) from evolution of (41) when vi+1/2 ≥ 0. To reconstruct the
derivatives appearing in g(2) at (xi, tn+1), we need function values at xi−1, xi, and xi+1 at time tn+1. These function values are computed using three
values of g(1), which requires us to reconstruct derivatives at the points x̌n

i,−1, x̌n
i , and x̌n

i,1 at time tn, and so we need to reconstruct point values
at the five points x̌n

i,`, ` = −2,−1, 0, 1, 2. Moreover, we in fact need to reconstruct g(2) at the three points xi−1, xi, and xi+1, and so ultimately
we need to reconstruct g(1) at the five points x̌n

i,`, ` = −2,−1, 0, 1, 2, and therefore we require point values reconstructed at the seven points x̌n
i,`,

` = −3,−2, . . . , 3.

In our setting, that is, to evaluate (37), we need to obtain values of the function gi along the traceline at the Gauss
points. We solve Cauchy problems based on the original equation (1), but modified to evolve along the traceline x̌i(t)
defined by vi+1/2 in (9). That is, at gridpoint xi, we have that

ut + vi+1/2ux = vi+1/2ux −
(
f (u)

)
x. (40)

Let ǔi(t) = u(x̌i(t), t). Then along the traceline, this is simply

dǔi

dt
= vi+1/2ǔi,x −

(
f (ǔi)

)
x = F(ǔi). (41)

We remark that the right-hand side reduces to F(ǔi) = −
(
gi(ǔi(t))

)
x if vi+1/2 is taken to be a constant in space. Thus

the computation of the ith Runge-Kutta flux g(i) requires the evaluation of the x-derivatives of f (ǔi) and ǔi (or just of

8



gi(ǔi(t)) when vi+1/2 is constant). We are using a two-stage method, so we need the two Runge-Kutta fluxes g(1) and
g(2).

To continue, suppose that vi+1/2 ≥ 0, so that ` = −1, 0, 1 rather than ` = 0, 1, 2. Let ǔi,`(t) = u(x̌i,`(t), t). We
use standard WENO schemes to reconstruct values and derivatives of ǔn

i,` and f (ǔn
i,`) at time tn to the appropriate

order, where ` = −2,−1, 0, 1, 2. As illustrated in Fig. 3, to obtain g(2) at xi requires g(1) at xi−1, xi, and xi+1, since we
need derivatives. The single value g(1) at xi+` requires reconstruction at x̌i,`−1, x̌i,`, and x̌i,`+1, again because we need
derivatives.

In fact, for this WENO3 scheme, we have to compute T 3
i,`, ` = −1, 0, 1. Because we use a locally frozen velocity,

we can reuse our reconstructions for ` = 0. Thus we only require reconstructions of ǔn
i,` and f (ǔn

i,`) at time tn to the
appropriate order for ` = −3,−2, . . . , 3. In the end, we evolve (41) three times to obtain the needed values of ǔi,`(tG,k)
in (37) to compute T 3

i,`, ` = −1, 0, 1.
For each traceback point, we could in fact use standard WENO to reconstruct two values for T 3

i,` from stencils
biased either to the left or to the right of the point. The numerical results showed only an insignificant difference
between the left and right choices for our SL-WENO3 scheme. The SL-WENO5 numerical results that we present
later simply use the right reconstructed value.

The requirement of a flux correction step imposes a relaxed CFL constraint on the time step. The constraint was
identified by Stockie, Mackenzie, and Russell [12, (2.7)] and also in [6]. The relaxed CFL condition is

∆t ≤ ∆tCFL :=
∆x

max
∣∣∣ ∂ f (u)
∂u − vi+1/2

∣∣∣ . (42)

Our choice of vi+1/2 later in (48) renders this constraint relatively mild compared to a purely Eulerian scheme that has
vi+1/2 = 0.

2.4. Reconstruction of the flux functionHi+1/2

We determineHi+1/2 using a third order WENO reconstruction ofH i,−1,H i = H i,0, andH i,1 when vi+1/2 ≥ 0 and
H i,H i,1, andH i,2 when vi+1/2 < 0. If Ri+1/2 represents this linear reconstruction operator for index i, then

Hi+1/2 = Ri+1/2(H i,−1,H i,H i,1,H i,2) = Ri+1/2(H i,`)

= Ri+1/2(T 1
i,` + T 2

i,` + T 3
i,`) = Ri+1/2(T 1

i,` + T 3
i,`) + Ri+1/2(T 2

i,`), (43)

abusing the notation here and below by suppressing the argument list that should include arguments for indices ` = −1,
0, 1, and 2 (possibly omitting −1 or 2). Following the standard WENO reconstruction for average values, Ri+1/2(Ti,`)
is defined with linear weights as

Ri+1/2(Ti,`) =


r+

L
−Ti,−1 + 3Ti,0

2
+ r+

R
Ti,0 + Ti,1

2
, if vi+1/2 ≥ 0,

r−L
Ti,0 + Ti,1

2
+ r−R

3Ti,1 − Ti,2

2
, if vi+1/2 < 0,

(44)

where the linear weights are r+
L = r−R = 1/3 and r+

R = r−L = 2/3.
From (14), we see that the second term

T 2
i,` =

∫ xi+`

xi∗+`

u(x, tn) dx, ` = −1, 0, 1, 2,

is an integral over a complete set of grid cells. From [1, Proposition 3.7 and the discussion in §3.3.3], the reconstruc-
tion is simply

Ri+1/2(T 2
i,`) =



i∑
k=i∗+1

un
k ∆x, vi+1/2 ≥ 0,

−

i∗−1∑
k=i+1

un
k ∆x, vi+1/2 < 0.

(45)
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Unlike as is done in [1], we use a two-stage WENO process. Stage one gave us T 1
i,` and T 3

i,`, and now stage two
is R(Ti,`), Ti,` = T 1

i,` + T 3
i,`. Of course, to avoid discontinuities within the WENO framework, we modify the linear

weights r±L and r±R in (44) with a smoothness indicator. Normally, one would base the smoothness indicator on Ti,`.
However, we computed T 1

i,` from a WENO reconstruction that was already biased to the smoother stencil, so the T 1
i,`

do not reflect the discontinuities of the underlying function u(x). Therefore, we base the smoothness indicator directly
on the values of un

i∗+` and use the previously defined indicator (25). So we define Ri+1/2 by replacing the linear weights
in (44) by the nonlinear weights, analogous to (26).

Finally, then, the finite difference scheme for (1), or (7), is

un+1
i = un

i −
1

∆x
[
Hn

i+1/2 −H
n
i−1/2

]
, (46)

with
Hn

i+1/2 = R(T 1
i,` + T 3

i,`) + Ri+1/2(T 2
i,`),

and T 1
i,` as defined in (27)–(29) or (33)–(35), T 3

i,` as evaluated in (37) as described in Section 2.3, and Ri+1/2(T 2
i,`) as

evaluated in (45).
A fifth order semi-Lagrangian finite difference WENO (SL-WENO5) scheme can be defined analogously to our

third order SL-WENO3 scheme. We need H i,`, ` = −2,−1, 0, 1, 2. A similar Runge-Kutta-NCE computation is
needed. Such a fifth order computation is described in [6], and we refer the reader to that paper for more details. We
include SL-WENO5 computations in the two sections on numerical results.

2.5. Determination of the upstream direction and selection of vi+1/2

For the linear problem, where f (u) = a(x, t) u, no special treatment of the trace velocity vi+1/2 is required. It may
be evaluated simply as vi+1/2(x, t) = a(x, t), possibly fixing t = tn or tn+1 and x = xi, xi+1, or xi+1/2. Assuming that a is
smooth, all choices give essentially equivalent results. We choose vi+1/2 = a(xi, tn) for most of our linear problems.

We have observed numerically that the nonlinear problem requires a careful selection of vi+1/2 in regions where the
characteristic wave speed changes direction and the velocity is not smooth, i.e., near shocks. Otherwise the scheme
may exhibit instability or give an incorrect solution. The nonlinear weighting of the Eulerian WENO scheme provides
good stabilization near shocks by biasing the finite difference stencil to one side of the shock where the solution
remains smooth. To maintain this property in our semi-Lagrangian scheme, we need to know which direction the
shock is moving, which is given by the Rankine-Hugoniot jump condition. In our case, we take the shock speed as
computed using un

i and un
i+1 (this speed is also called the Roe speed [11]), and so

si+1/2 =
f (un

i ) − f (un
i+1)

un
i − un

i+1
. (47)

We then set

vi+1/2 =


∂ f
∂u

(un
i ; xi, tn) if si+1/2 ≥ 0,

∂ f
∂u

(un
i+1; xi+1, tn) if si+1/2 < 0.

(48)

The entropy condition implies that f ′(un
i ) ≥ si+1/2 ≥ f ′(ui+1), so the shock speed and the trace velocity have the same

sign.
In regions where the solution is smooth, or a rarefaction forms, we use the same criterion, since it seems to

matter little. We may as well also apply this criterion to linear problems instead of taking the simple condition
vi+1/2 = a(xi, tn).

We remark that we tested the scheme using the trace velocity taken as the approximate particle velocity vi+1/2 =

f (un
i )/un

i or f (un
i+1)/un

i+1. The results are disappointing compared to using an approximate characteristic velocity.
The condition (48) is problematic when the Roe speed si+1/2 = 0. We arbitrarily took one of the two cases, but in

truth we should not bias to either direction. We therefore modify the scheme for some small ε > 0, when |si+1/2| < ε,
by replacing the construction of the numerical fluxHi+1/2 in the scheme as follows. ComputeHn,−

i+1/2 andHn,+
i+1/2 using

vi+1/2 defined in (48) assuming si+1/2 > 0 and si+1/2 < 0, respectively. Also compute u−i+1/2 and u+
i+1/2 using standard
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WENO to reconstruct the two values of ui+1/2 from stencils biased to the left and to the right of the point xi+1/2. Then
defineHn

i+1/2 using a type of Lax-Friedrichs flux, which in this case is

Hn
i+1/2 =

1
2
[
H

n,−
i+1/2 +H

n,+
i+1/2 − ∆t α (u+

i+1/2 − u−i+1/2)
]
, (49)

where α = max |∂ f /∂u|. Note the presence of ∆t above, which arises becauseHn,±
i+1/2 is, more or less, an approximation

to
∫ tn+1

tn f (u) dt. We remark that a similar but more complex construction is used in the standard finite difference WENO
scheme (WENO-FD) [17, pp. 24–25]; however, we cannot use the same construction here because f ± does not satisfy
the hyperbolic equation ut + f ±(u)x = 0, where f (u) = f +(u) + f −(u).

0.5 1 1.5

-1

-0.5

0

0.5

1

Figure 4: A Riemann test for the modified scheme using (49). The solution at time T = 0.5 to Burgers’ equation using the initial condition
u0(x) = uL = −1 when x < 1 and u0(x) = uR = 1 when x > 1. We use 80 grid cells in [0, 2] (∆x = 1/40) and ∆t = 0.3∆x. The entropy solution, a
rarefaction, is obtained.

In fact, we require this modification only in the very rare cases for which |si+1/2| < ε. For most problems we do not
even bother to check for this condition. However, it can be important in some cases, such as the famous example of a
Riemann problem for Burgers’ equation using the initial condition u0(x) = uL = −1 when x < 1 and u0(x) = uR = 1
when x > 1. The entropy solution is a rarefaction wave. The unmodified scheme does show slow convergence to a
rarefaction wave, since the scheme is based on semi-Lagrangian principles. However, the modified scheme provides
the correct solution even on coarser meshes, as shown in Fig. 4. In fact, the modification comes into play only for the
first time step, since the wave direction becomes clear after a single step.

3. Some numerical results in one space dimension

We present several examples of our numerical scheme to test its accuracy and performance. Some of the examples
are for the linear equation

ut + (a(x, t)u)x = 0, (50)

for which we specify only the velocity a(x, t). In that case, unless stated otherwise, we use the simple trace velocity
vi+1/2 = a(xi, tn).

3.1. Example 1, linear velocity a = 1
We begin with the simple test case of linear translation with velocity a = 1 and the initial condition u0(x) =

0.75 + 0.25 sin(πx) over [0, 2]. Since the traceback points could be found exactly, we perturb them randomly by
an amount at most ±0.05∆x. We see from Table 1 that the solution converges with a clean third or fifth order for
SL-WENO3 and SL-WENO5, respectively, when the error is measured in either the L1 or L∞ norm.

The CPU time to compute T 3 is also given in Table 1. Since this is a linear problem, we can apply the scheme of
Qiu and Shu [1]. Because their scheme and ours are computationally similar, the CPU time we need to compute T 1

and T 2 is essentially the time needed to compute the scheme of Qiu and Shu. We also report the percentage of extra
CPU time needed to compute T 3 versus computing T 1, T 2, and T 3. For SL-WENO3, T 3 takes around 50% of the
time, so our scheme is about twice as costly as the scheme of Qiu and Shu for the same ∆x and ∆t. For SL-WENO5,
around 70% more time is needed for computing T 3, making the scheme about 3.3 times more costly. However, with
the flux correction term T 3, our scheme may potentially allow a longer time step to be used for some problems, which
results in a less numerically diffuse solution, so it is difficult to make a fair comparison of the computational effort.
Moreover, our scheme handles nonlinear problems.
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Table 1: Ex. 1, linear velocity a = 1. SL-WENO error and convergence order at T = 10 with ∆t = 10.5∆x. The traceback points are perturbed
randomly by an amount at most ±0.05∆x. The CPU time needed to compute the term T 3, and the percentage of time spent computing T 3 versus
computing all three terms.

m L1
∆x error order L∞

∆x error order CPU for T 3 (sec.) CPU for T 3 (%)
SL-WENO3

20 7.01366E-04 —— 5.45853E-04 —— 1.56E-4 31.6
40 8.79353E-05 2.99565 6.89518E-05 2.98485 4.23E-4 44.7
80 1.04822E-05 3.06849 8.22295E-06 3.06786 1.60E-3 44.3

160 1.30657E-06 3.00409 1.02901E-06 2.99840 5.83E-3 48.2
320 1.63175E-07 3.00130 1.28445E-07 3.00203 2.23E-2 48.4
640 2.04083E-08 2.99920 1.60473E-08 3.00075 8.80E-2 48.3

SL-WENO5
20 1.11926E-04 —— 1.10994E-04 —— 1.21E-3 76.4
40 1.57164E-06 6.15413 1.43448E-06 6.27381 4.15E-3 78.9
80 3.43443E-08 5.51605 5.61897E-08 4.67408 1.53E-2 78.0

160 1.16414E-09 4.88274 1.25944E-09 5.47945 6.14E-2 75.0
320 3.41564E-11 5.09096 3.13533E-11 5.32803 2.46E-1 73.7
640 9.38473E-13 5.18570 9.00169E-13 5.12228 1.05E+0 68.8

The standard finite difference WENO scheme (WENO-FD) can handle nonlinear problems, and it is based more
or less on a flux correction like ours (41). However, for each grid point xi, WENO-FD requires two solves due to
flux splitting, and we need to compute our approximation three times for SL-WENO3 and five times for SL-WENO5.
Therefore, the computational cost for WENO3-FD is roughly (2/3)0.5 or 33% of our SL-WENO3, and WENO5-FD
is roughly (2/5)0.7 or 28% of our SL-WENO5. To put it more simply, we need about three to three and a half times
more CPU time than a WENO-FD scheme. But again, it is difficult to make a fair comparison of the computational
effort versus the accuracy achieved.
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Figure 5: Ex. 1, Shu’s linear test. The traceback points are perturbed randomly by an amount at most ±0.05∆x. Results are shown at time T = 2
for SL-WENO3 for various spatial resolutions ∆x = 2/n and CFL numbers. Results for SL-WENO5 are similar.

We also present the standard test case called Shu’s linear test, which is simply the linear translate (with velocity
a = 1) of a complicated initial condition. Again, the traceback points are perturbed randomly by an amount at most
±0.05∆x. We see excellent results in Fig. 5 for SL-WENO3 at the final time T = 2. Results for SL-WENO5 are
similar.

3.2. Example 2, linear velocity a(x, t) = sin(t)
In the next example, we consider linear transport with a(x, t) = sin(t) on [0, 2], for which the exact solution is

u(x, t) = u0(x + 1 + cos(t)) and the initial condition is chosen to be u0(x) = 0.75 + 0.25 sin(πx). Clean third order
convergence is observed in Table 2 for ∆t = 5.5∆x. If we increase the time step to ∆t = 10.5∆x, then clean fourth
order convergence is observed. Similar results are observed for SL-WENO5, as given in Table 3.
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Table 2: Ex. 2, linear velocity a(x, t) = sin(t). SL-WENO3 errors and convergence order at T = 4 with ∆t = 5.5∆x and ∆t = 10.5∆x, using RK4
for the trace-back points.

m L1
∆x error order L∞

∆x error order
∆t = 5.5∆x

20 2.93569E-03 —— 2.28050E-03 ——
40 1.04654E-04 4.81000 8.21084E-05 4.79568
80 5.28225E-06 4.30833 4.14897E-06 4.30671

160 3.96333E-07 3.73637 3.11253E-07 3.73659
320 3.85977E-08 3.36012 3.03127E-08 3.36010
640 4.21385E-09 3.19530 3.30955E-09 3.19521

∆t = 10.5∆x
20 4.08665E-02 —— 3.20055E-02 ——
40 2.00674E-03 4.34799 1.57052E-03 4.34901
80 8.23635E-05 4.60671 6.47211E-05 4.60086

160 3.08929E-06 4.73666 2.42631E-06 4.73740
320 1.53627E-07 4.32977 1.20657E-07 4.32977
640 9.51076E-09 4.01373 7.46968E-09 4.01373

Table 3: Ex. 2, linear velocity a(x, t) = sin(t). SL-WENO5 errors and convergence order at T = 4 with ∆t = 5.5∆x and ∆t = 10.5∆x, using RK4
for the trace-back points.

m L1
∆x error order L∞

∆x error order
∆t = 5.5∆x

20 6.90696E-05 —— 6.38140E-05 ——
40 1.32375E-06 5.70535 1.23738E-06 5.68851
80 2.64693E-08 5.64417 3.70303E-08 5.06244

160 1.17479E-09 4.49385 1.19085E-09 4.95864
320 3.25780E-11 5.17236 2.91145E-11 5.35411
640 9.30040E-13 5.13046 9.08273E-13 5.00247

∆t = 10.5∆x
20 1.36122E-03 —— 1.06236E-03 ——
40 1.87142E-05 6.18462 1.47547E-05 6.16996
80 2.41995E-07 6.27302 1.89562E-07 6.28236

160 3.92645E-09 5.94561 3.10189E-09 5.93338
320 5.89586E-11 6.05738 4.75878E-11 6.02641
640 9.65577E-13 5.93217 9.76441E-13 5.60692

3.3. Example 3, linear velocity a(x, t) = sin(x)
We test our scheme using a(x, t) = sin(x) over [0, 2π] up to the final time T = 1. The exact solution is

u(x, t) =
sin

(
2 arctan(e−t tan(x/2))

)
sin(x)

.

We see from Table 4 that the error for SL-WENO3 as measured in L1
∆x converges at the optimal rate. However, when

measured in L∞
∆x, the error converges to one power less than optimal. Similar results are seen in Table 5 for SL-

WENO5. If we apply the more complex choice of vi+1/2 using the Rankine-Hugoniot jump condition given in (48),
we see very little change in the errors in Tables 6–7.

Our results indicate a degeneracy in the L∞-norm error. In a 1990 paper [18], Shu showed that an ENO scheme
may experience a loss of one order of accuracy in the L∞-norm error when the stencil used by the scheme varies from
one point to another. In particular, there is a problem when the stencil jumps over, and therefore omits, a point of the
grid. The stencil jump is problematic due to a failure to cancel error in the conservative form (7). There appears to be
no simple resolution of this problem.
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Table 4: Ex. 3, linear velocity a(x, t) = sin(x). SL-WENO3 error and convergence order at T = 1 using RK4 tracing.
m L1

∆x error order L∞
∆x error order

∆t = 0.5∆x
20 3.24579E-01 —— 2.92166E-01 ——
40 8.55810E-02 1.92321 8.35633E-02 1.80585
80 8.11433E-03 3.39875 1.40641E-02 2.57085

160 4.04675E-04 4.32564 2.76850E-03 2.34484
320 2.96076E-05 3.77272 5.55736E-04 2.31663
640 3.72088E-06 2.99225 1.38315E-04 2.00644

∆t = 6.5∆x
20 3.15283E-01 —— 3.01127E-01 ——
40 9.46767E-02 1.73557 9.15660E-02 1.71749
80 2.52199E-02 1.90845 5.89933E-02 0.63426

160 1.37485E-03 4.19722 3.68352E-03 4.00140
320 9.03128E-05 3.92820 6.01375E-04 2.61475
640 6.85537E-06 3.71962 1.38941E-04 2.11379

∆t = 10.5∆x
20 3.15283E-01 —— 3.01127E-01 ——
40 9.46767E-02 1.73557 9.15660E-02 1.71749
80 2.51429E-02 1.91286 2.66881E-02 1.77861

160 1.63479E-03 3.94297 2.95283E-03 3.17603
320 1.07356E-04 3.92863 6.19259E-04 2.25348
640 8.43736E-06 3.66947 1.41818E-04 2.12651
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Figure 6: Ex. 3, linear velocity a(x, t) = sin(2x). The pointwise L∞
∆x error for two resolutions n = 40 and n = 80 at the time T = 1/2. Note that the

error is clustered near x = π/2 and x = 3π/2 where the sign of the velocity a = sin(2x) changes from positive to negative.

Our scheme may experience a stencil jump in this problem near x = π where the velocity changes from positive
to negative. The positive stencil at xi is {ui∗−1, ui∗ , ui∗+1} and the negative stencil at xi+1 is {u(i+1)∗ , u(i+1)∗+1, u(i+1)∗+2}. If
xi∗+1 + ∆x < x(i+1)∗ , then we omit data at xi∗+2, for example.

To verify that stencil switching is the problem, we rescale the velocity to a(x) = sin(2x) over [0, 2π] so that we
cover two complete periods and experience a change in stencil at x = 0, π/2, π, and 3π/2. Fig. 6 shows that the
pointwise errors are indeed relatively large at the two points x = π/2 and 3π/2 where the sign of a(x) changes from
positive to negative. Moreover, if we use a fixed stencil, say the one for positive velocities {ui∗−1, ui∗ , ui∗+1} regardless
the sign of a(x), and we rely on the WENO nonlinear weights to pick up the correct stencil, we recover the lost order of
accuracy in the L∞-norm. However, this modification breaks down in two space dimensional problems, and it cannot
be expected to work for nonlinear problems.
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Table 5: Ex. 3, linear velocity a(x, t) = sin(x). SL-WENO5 error and convergence order at T = 1 using RK4 tracing.
m L1

∆x error order L∞
∆x error order

∆t = 0.5∆x
20 4.41248E-02 —— 5.45453E-02 ——
40 3.60168E-03 3.61485 4.76705E-03 3.51629
80 1.23245E-04 4.86907 5.19132E-04 3.19892

160 2.98001E-06 5.37007 3.21900E-05 4.01142
320 6.04899E-08 5.62248 1.12337E-06 4.84071
640 1.59594E-09 5.24422 5.50376E-08 4.35127

1280 4.97604E-11 5.00326 3.40876E-09 4.01310
∆t = 6.5∆x

20 4.41513E-02 —— 4.98883E-02 ——
40 5.19001E-03 3.08865 5.57751E-03 3.16101
80 1.96211E-04 4.72526 5.65309E-04 3.30251

160 6.41004E-06 4.93593 4.03784E-05 3.80738
320 2.00220E-07 5.00067 2.52046E-06 4.00182
640 5.63142E-09 5.15195 1.22039E-07 4.36827

1280 1.50732E-10 5.22344 4.15521E-09 4.87628
∆t = 10.5∆x

20 4.41513E-02 —— 4.98883E-02 ——
40 5.19001E-03 3.08865 5.57751E-03 3.16101
80 1.05895E-03 2.29310 8.58960E-04 2.69896

160 2.87648E-05 5.20219 5.33115E-05 4.01007
320 9.68361E-07 4.89262 3.06933E-06 4.11845
640 3.04895E-08 4.98916 1.58211E-07 4.27801

1280 9.65502E-10 4.98089 5.53593E-09 4.83688

3.4. Example 4, Burgers’ equation

In the next example we test Burgers’ equation with a simple initial condition to evaluate the convergence rates of
the schemes for a nonlinear problem; that is, for

ut + (u2/2)x = 0 and u0(x) = 0.5 + sin(πx) for x ∈ (0, 2).

Shocks will form at time t = 1/π ≈ 0.32. To test convergence, we ran the computation over gradually refined meshes
up to time T = 0.25, before the shocks are fully developed. The numerical errors and convergence orders for the
scheme are given in Tables 8–9. We see third and fifth order convergence in the L1-norm for SL-WENO3 and SL-
WENO5, respectively, as the mesh becomes fine enough for this nonlinear problem, as expected. The L∞-norm is not
as well behaved, but the rates also appear to be optimal in this norm. We note that our scheme, despite being based
on exact time integration, nevertheless has some time discretization error in the approximation of the flux correction
term T 3. Thus, the error from T 3 will eventually increase as ∆t increases, as one sees in Tables 8–9, especially for the
case ∆t = 15∆x, although third and fifth order convergence is maintained.

Fig. 7 shows the solutions at T = 3/(2π) ≈ 0.48 after the shocks have formed. There is no numerical oscillation,
and both schemes perform satisfactorily.

3.5. Example 5, Buckley-Leverett equation

The next example for scalar conservation law (1) uses the Buckley-Leverett flux function

f (u) =
u2

u2 + (1 − u)2
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Table 6: Ex. 3, linear velocity a(x, t) = sin(x). SL-WENO3 error and convergence order at T = 1 using RK4 tracing. Here we use the more complex
choice of vi+1/2 using the Rankine-Hugoniot jump condition given in (48).

m L1
∆x error order L∞

∆x error order
∆t = 0.5∆x

20 1.24992E-01 —— 8.68310E-02 ——
40 2.28395E-02 2.45223 3.09329E-02 1.48907
80 3.90462E-03 2.54828 8.64846E-03 1.83863

160 5.61515E-04 2.79779 2.09878E-03 2.04289
320 7.70512E-05 2.86543 3.96888E-04 2.40275
640 9.47769E-06 3.02321 7.55154E-05 2.39389

∆t = 6.5∆x
20 9.66143E-02 —— 8.22429E-02 ——
40 5.21595E-02 0.88931 4.41931E-02 0.89607
80 5.02481E-03 3.37579 8.69606E-03 2.34539

160 6.53692E-04 2.94239 2.41547E-03 1.84806
320 7.63623E-05 3.09768 4.27393E-04 2.49867
640 8.88052E-06 3.10414 6.86186E-05 2.63889

∆t = 10.5∆x
20 9.66143E-02 —— 8.22429E-02 ——
40 5.21595E-02 0.88931 4.41931E-02 0.89607
80 1.50708E-02 1.79117 1.25268E-02 1.81881

160 1.01809E-03 3.88782 3.24624E-03 1.94818
320 8.95787E-05 3.50656 5.68740E-04 2.51293
640 9.23741E-06 3.27760 5.75340E-05 3.30528
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Figure 7: Ex. 4, Burgers’ equation with a shock. The solution at time T = 3/(2π) of the SL-WENO schemes using m = 80 grid elements and
∆t = 2∆x = 4/m.

and involves the interaction of shocks and rarefactions. The initial condition is

u0(x) =


1 − 20x for 0 ≤ x ≤ 0.05,
0.5 for 0.25 ≤ x ≤ 0.4,
0 otherwise,

(51)

so the problem has two pulses that merge over time. We use m = 80 grid elements. The results for the third and fifth
order schemes are shown in Fig. 8 and Fig. 9, respectively. The schemes handle the merging of the two pulses quite
well and reproduce the solution to adequate accuracy even on a relatively low resolution grid. In fact, the SL-WENO
results are somewhat better than those of the Eulerian finite difference WENO scheme (WENO-FD). In particular,
WENO5-FD shows more numerical diffusion than SL-WENO in this test.
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Table 7: Ex. 3, linear velocity a(x, t) = sin(x). SL-WENO5 error and convergence order at T = 1 using RK4 tracing. Here we use the more complex
choice of vi+1/2 using the Rankine-Hugoniot jump condition given in (48).

m L1
∆x error order L∞

∆x error order
∆t = 0.5∆x

20 1.07696E-02 —— 8.27402E-03 ——
40 2.25629E-03 2.25493 4.35033E-03 0.92746
80 1.09633E-04 4.36320 4.99510E-04 3.12254

160 4.33732E-06 4.65973 3.15522E-05 3.98470
320 1.52751E-07 4.82755 1.49442E-06 4.40009
640 4.84909E-09 4.97732 4.69414E-08 4.99258

1280 1.37993E-10 5.13505 1.91373E-09 4.61640
∆t = 6.5∆x

20 2.89233E-02 —— 2.72218E-02 ——
40 4.50924E-03 2.68127 3.86699E-03 2.81548
80 1.84267E-04 4.61301 3.02948E-04 3.67407

160 7.64841E-06 4.59049 2.07271E-05 3.86948
320 2.87272E-07 4.73467 9.93562E-07 4.38276
640 1.01709E-08 4.81989 7.85410E-08 3.66109

1280 3.51343E-10 4.85543 5.94584E-09 3.72349
∆t = 10.5∆x

20 2.89233E-02 —— 2.72218E-02 ——
40 4.50924E-03 2.68127 3.86699E-03 2.81548
80 1.10704E-03 2.02618 8.14590E-04 2.24707

160 4.25166E-05 4.70254 2.18153E-04 1.90073
320 1.62855E-06 4.70636 1.28226E-05 4.08858
640 5.76343E-08 4.82052 7.08507E-07 4.17776

1280 2.02261E-09 4.83263 4.92683E-08 3.84605
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Figure 8: Ex. 5, Buckley-Leverett, WENO3. An interaction of shocks and rarefactions, resulting from the evolution of the initial condition of two
pulses given in (51). The solid line is the reference solution, given by CWENO5 with a very small ∆x = 1/1280 and ∆t = 1/15360. The filled
black squares are our SL-WENO3 results, and the open red squares are WENO3-FD results, both using m = 80 and ∆t = 0.4∆x.

4. Some numerical results in two space dimensions

There are standard ways to apply our finite difference scheme to two-space dimensional problems. For

ut +
(
f (u)

)
x +

(
g(u)

)
y = 0, x, y ∈ R, t > 0, (52)

we might simply compute the analogue of (7), which involves a sliding average function in the y-variable K . The
conservative scheme is based on

un+1
i j = un

i j −
1

∆x
[
H(xi+1/2, j) −H(xi−1/2, j)

]
−

1
∆y

[
K(xi, j+1/2) − K(xi, j−1/2)

]
. (53)
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Table 8: Ex. 4, Burgers’ equation. Error and convergence order at T = 0.25 for the SL-WENO3 scheme.
m L1

∆x error order L∞
∆x error order

∆t = ∆x
40 5.20606E-03 —— 1.24030E-02 ——
80 1.29974E-03 2.00197 4.07879E-03 1.60448

160 3.25383E-04 1.99801 3.20622E-03 0.34727
320 4.09994E-05 2.98847 7.20030E-04 2.15474
640 4.23083E-06 3.27659 2.31519E-04 1.63693

1280 4.43564E-07 3.25373 5.25378E-05 2.13970
∆t = 5∆x

40 3.62204E-02 —— 1.78528E-01 ——
80 5.75650E-03 2.65354 5.10251E-02 1.80687

160 8.59292E-04 2.74397 1.08849E-02 2.22888
320 1.06154E-04 3.01699 1.69780E-03 2.68059
640 1.10888E-05 3.25899 2.16030E-04 2.97436

1280 7.74855E-07 3.83903 4.75593E-05 2.18343
∆t = 15∆x

40 3.62204E-02 —— 1.78528E-01 ——
80 3.08074E-02 0.23353 1.47193E-01 0.27844

160 3.93878E-03 2.96745 2.94998E-02 2.31893
320 5.05804E-04 2.96110 6.10904E-03 2.27169
640 5.42105E-05 3.22194 8.66999E-04 2.81684

1280 4.30414E-06 3.65477 9.24604E-05 3.22912

Table 9: Ex. 4, Burgers’ equation. Error and convergence order at T = 0.25 for the SL-WENO5 scheme.
m L1

∆x error order L∞
∆x error order

∆t = ∆x
40 2.16066E-03 —— 1.82590E-02 ——
80 3.72800E-04 2.53500 7.02089E-03 1.37888

160 1.96631E-05 4.24484 5.89346E-04 3.57447
320 8.77459E-07 4.48601 2.58235E-05 4.51236
640 2.76269E-08 4.98919 8.69127E-07 4.89298
1280 8.74263E-10 4.98186 2.80420E-08 4.95390

∆t = 5∆x
40 9.16230E-03 —— 4.94176E-02 ——
80 6.88724E-04 3.73371 7.05318E-03 2.80868

160 3.06176E-05 4.49149 5.81517E-04 3.60038
320 1.27523E-06 4.58554 2.20463E-05 4.72121
640 3.70836E-08 5.10383 5.87805E-07 5.22906
1280 7.39448E-10 5.64819 1.79596E-08 5.03251

∆t = 15∆x
40 9.16230E-03 —— 4.94176E-02 ——
80 1.21819E-02 -0.41096 6.96252E-02 -0.49458

160 1.55674E-03 2.96814 8.98972E-03 2.95326
320 7.86725E-05 4.30653 1.23385E-03 2.86510
640 5.54985E-06 3.82534 1.08509E-04 3.50728
1280 1.81762E-07 4.93233 4.26829E-06 4.66802
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Figure 9: Ex. 5, Buckley-Leverett, WENO5. An interaction of shocks and rarefactions, resulting from the evolution of the initial condition of two
pulses given in (51). The solid line is the reference solution, given by CWENO5 with a very small ∆x = 1/1280 and ∆t = 1/15360. The filled
black squares are our SL-WENO5 results, and the open red squares are WENO5-FD results, both using m = 80 and ∆t = 0.4∆x.

However, we prefer to view the treatment of space as a Strang splitting. For a first order Strang splitting, we compute
the two-stage scheme

ũi j = un
i j −

1
∆x

[
H(xi+1/2, j) −H(xi−1/2, j)

]
, (54)

un+1
i j = ũi j −

1
∆y

[
K̃(xi, j+1/2) − K̃(xi, j−1/2)

]
, (55)

wherein K̃ is computed using the values ũi j rather than un
i j. For a second order Strang splitting, (54) is computed for

the time interval [tn, tn+1/2 = tn + ∆t/2], (55) is applied to produce ˜̃ui j, and (54) is applied to these values over the rest
of the time interval [tn+1/2, tn+1].

4.1. Example 6, rigid body rotation
The first example in two space dimensions is rigid body rotation. The governing equation is

ut − ((y − 1)u)x + ((x − 1)u)y = 0, x ∈ [0, 2], y ∈ [0, 2], t > 0. (56)

We begin with a test using an initial condition defined as the smooth, radial bump function

u(x, y, 0) = 2
5
[
ψ
(
1 + r(x, y)

)
ψ
(
1 − r(x, y)

)
+ 1

]
, r(x, y) =

√
(x − 1)2 + (y − 1)2,

where ψ(s) = e−1/s2
for s > 0 and ψ(s) = 0 otherwise.

Table 10 gives the L1
∆x and L∞

∆x errors and the corresponding orders of convergence, using ∆t = 2.5h (so the CFL
number is CFL∆t = 2.5). Third and fifth order convergence is observed for SL-WENO3 and SL-WENO5, respectively,
as expected. We used a first order in time Strang splitting for the third order results and a second order in time Strang
splitting for the fifth order results.

We next use an initial condition that includes a slotted disk, a cone, and a “smooth” hump, similar to that used by
LeVeque [19]. The initial condition is shown in Fig. 10(a).

The numerical solution after six full revolutions of the scheme using ∆t = 3∆x (CFL∆t = 3) are shown in
Fig. 10(b)–(c). One-dimensional cross-sections of the solution are given in Fig. 11, benchmarked against the ex-
act solution. There is a little oscillation for the WENO5 results using N = 100 grid elements. A refined result
removes the oscillation.

4.2. Example 7, swirling flow
A more severe test than rigid rotation is obtained by using a swirling and deforming flow field. Following [19],

we take the velocity in the form

a1(x, y) = sin2
(πx

2

)
sin(πy) g(t), a2(x, y) = − sin2

(πy
2

)
sin(πx) g(t). (57)
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Table 10: Ex. 6, rigid body rotation with smooth initial condition. SL-WENO errors and convergence order at t = 2π, using ∆t = 2.5h (CFL∆t =

2.5).
m L1

∆x error order L∞
∆x error order

SL-WENO3, first order Strang splitting
20 1.38421E-03 —— 4.27331E-03 ——
40 4.27301E-04 1.69574 5.55972E-04 2.94227
80 6.29175E-05 2.76372 1.13849E-04 2.28789

160 4.61648E-06 3.76860 9.43786E-06 3.59252
320 5.38700E-07 3.09924 1.13354E-06 3.05762

SL-WENO5, second order Strang splitting
20 8.61188E-04 —— 7.75444E-04 ——
40 4.47859E-05 4.26521 5.57405E-05 3.79822
80 1.66327E-06 4.75095 2.38691E-06 4.54551

160 5.15057E-08 5.01315 8.43301E-08 4.82295
320 2.57651E-09 4.32124 3.30820E-09 4.67193
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Figure 10: Ex. 6, rigid body rotation with a nonsmooth initial condition. (a) The initial condition and (b) SL-WENO3 and (c) SL-WENO5 solutions
at t = 12π, using ∆t = 3h (CFL∆t = 3), shown using point values (top) and a graphically smoothed contour plot (bottom).
.

This flow satisfies a1 = a2 = 0 on the boundaries of the domain (0, 2) × (0, 2).
The function g(t) is used to introduce time dependence in the flow field, and in our first test we use

g(t) = 2 cos(πt/T )

on the time interval 0 ≤ t ≤ T . The flow swirls in the clockwise direction, slows down, and reverses direction in
such a way that the initial data is recovered at time T . We use T = 1.5 and the nonsmooth initial condition Fig. 10(a)
from in the previous example. We remark that in [19], LeVeque worked over the unit square domain. Compared to
his work, we have rescaled both the velocity field and g(t). Moreover, Qiu and Shu [1] used a similar scaling over the
domain (−π, π)2.

The second order Strang splitting results are shown in Fig. 12 for time step, ∆t = 3∆x. We also report cross-
sectional slices in Fig. 13, benchmarked against the exact solution. The initial data becomes quite deformed by time
T/2. The solution is very similar to that given in [19, 1]. We remark that very similar results are obtained if one uses
the Rankine-Hugoniot jump condition to define the trace velocity (48).

As a second test using the swirling flow (57), we take g(t) ≡ 1. We also rescale the problem to the unit square and
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Figure 11: Ex. 6, rigid body rotation with a nonsmooth initial condition. Cross-sections of the numerical solution at (a) x = 1 + ∆x/2, (b)
x = 0.5 + ∆x/2, (c) y = 1.35, and (d) y = 0.5 + ∆x/2. The true solution is also shown as a solid line, circles are results of SL-WENO3, and crosses
are results of SL-WENO5. The top row uses N = 100 grid elements and the bottom uses N = 200.

0

0.5

1

1.5

2

0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

xy 0

0.5

1

1.5

2

0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

xy 0

0.5

1

1.5

2

0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

xy

(a) WENO3 solution at T (b) WENO5 solution at T (c) WENO5 solution at T/2

Figure 12: Ex. 7, swirling flow. Solutions for (a) SL-WENO3 at T = 1.5, (b) SL-WENO5 at T , and (c) SL-WENO5 at T/2 using second order
Strang splitting and ∆t = 3∆x (CFL∆t = 3), shown using point values (top) and a graphically smoothed contour plot (bottom).
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Figure 13: Ex. 7, swirling flow. Cross-sections of the numerical solution at (a) x = 1+∆x/2, (b) x = 0.5+∆x/2, (c) y = 1.35, and (d) y = 0.5+∆x/2.
The true solution is also shown as a solid line. Circles are results of WENO3, crosses are results of WENO5

apply the initial condition

u(x, y, 0) =

1 if (x − 1/2)2 + (y − 1/2)2 < 0.42,

0 otherwise.

Fig. 14 shows the computed solution at time t = 2.5 using ∆t = 3∆x, so the CFL number is CFL∆t = 3. The level of
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numerical diffusion is very low on this 200 × 200 grid.

SL-WENO3 SL-WENO5

Figure 14: Ex. 7, swirling flow (g(t) = 1). SL-WENO3 and SL-WENO5 solutions at time t = 2.5 using ∆t = 3∆x (CFL∆t = 3) and ∆x = 1/200.
Note the low level of numerical diffusion.

4.3. Example 8, 2-D Burgers’ equation

The next example is a simple two dimensional Burgers’ equation

ut + (u2/2)x + (u2/2)y = 0, x ∈ [0, 2], y ∈ [0, 2], t > 0, (58)

with the initial condition
u(x, y, 0) = sin2(πx) sin2(πy)

and periodic boundary conditions. The problem is solved using a second order Strang splitting in space. In Fig. 15
we present the SL-WENO5 solution obtained at time T = 1.5 with two different mesh spacings, 80 and 320 elements
in each coordinate direction. The time step ∆t is chosen to correspond to a CFL number of 2. One can easily see
that, although shocks develop in the solution, they are well resolved and exhibit no spurious oscillations. The result
is comparable to [20, Fig. 4.5], although in that paper it appears that the solution has been plotted in reverse in both
directions (and they show only one-quarter of what we plot here).
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Figure 15: Ex. 8, a periodic 2-D Burgers’ equation. The solution at time T = 1.5 using ∆t twice the CFL step is shown in profile and as contours
using h = 1/80 and h = 1/320 for the two plots on the left and right, respectively.

We now impose the more challenging initial condition used by Jiang and Tadmor [21] involving the “oblique”
data

u(x, y, 0) =


0.5, x < 0.5, y < 0.5,
0.8, x > 0.5, y < 0.5,
−0.2, x < 0.5, y > 0.5,
−1.0, x > 0.5, y > 0.5.

We use no-flux boundary conditions. In Fig. 16 we present the solution obtained at time T = 0.5 with mesh spacing
80 elements in each coordinate direction. The time step ∆t = 0.9∆x is chosen to correspond to a CFL number of 1.27.
The figure shows the control of spurious oscillations in this problem involving shock interaction.
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Figure 16: Ex. 8, a Burgers’ problem subject to “oblique” initial data. The initial condition is similar to an example from [21], and it is shown in
profile and as contours using h = 1/80 for the two plots on the left. The solution at time T = 0.2 is on the right, with ∆t being 1.27 of the CFL step.
The contour plot has 21 level lines.

4.4. Example 9, 2-D Buckley-Leverett equation

The final example for scalar conservation law (1) uses the Buckley-Leverett flux function in each direction,

fi(u) =
u2

u2 + (1 − u)2 , i = 1, 2,

and involves the interaction of shocks and rarefactions. The initial condition is similar to (51) used in the one-
dimensional Example 5. It is

u0(x) =


max(1 − 20x, 1 − 20y) for 0 ≤ x ≤ 0.05 or 0 ≤ y ≤ 0.05,
0.5 for 0.25 ≤ x, y ≤ 0.4,
0 otherwise.

(59)

We use m = 100 grid elements and take a small nonzero constant in place of the strict minimal value zero. As one can
observe in Fig. 17, the solution evolves cleanly.
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Figure 17: Ex. 9, 2-D Buckley-Leverett. An interaction of shocks and rarefactions, resulting from the evolution of the initial condition of two
pulses given as the tensor product of (51). The SL-WENO5 results are shown at times 0, 0.1, 0.2, 0.3, 0.4, and 0.5.
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5. Some numerical results related to plasma flow

5.1. The Vlasov-Poisson (VP) system in one space dimension

The well-known nondimensionalized Vlasov-Poisson (VP) system in one space dimension is

ft + v fx + E(t, x) fv = 0, (60)
E(t, x) = −φx, −φxx(t, x) = ρ(t, x), (61)

where x and v are the coordinates in the phase space (x, v) ∈ R × R, E is the electric field, φ is the self-consistent
electrostatic potential, and f (t, x, v) is the probability distribution function describing the probability of finding a
particle with velocity v at position x at time t. The probability distribution function couples to long ranges fields via
the relative charge density ρ. For a periodic problem in x ∈ [0, Lx],

ρ(t, x) =

∫
R

f (t, x, v) dv − ρ0, ρ0 =
1
Lx

∫ Lx

0

∫
R

f (0, x, v) dv dx, (62)

where we take the limit of uniformly distributed, infinitely massive ions in the background. We recall three classical
conserved quantities:

(a) Preservation of the Lp norm, for 1 ≤ p < ∞,
d
dt

∫∫
f (t, x, v)p dx dv = 0;

(b) Preservation of the energy,
d
dt

( ∫∫
f (t, x, v) v2 dx dv +

∫
E(t, x)2 dx

)
= 0;

(c) Preservation of the entropy,
d
dt

∫∫
f (t, x, v) log( f (t, x, v)) dx dv = 0.

We solve a periodic VP system by taking f periodic in x over a period [0, Lx]. We also restrict the velocity to
[−Vmax,Vmax] for some Vmax > 0, so the phase space domain is [0, Lx] × [−Vmax,Vmax]. As is commonly done, we
use Strang splitting to solve the problem (for details, see, e.g., [2, 13]), which requires solution of

ft + (v f )x = 0 and ft + (E f )v = 0,

both of which have constant advection. Recall that in this case, our scheme is very similar to the scheme of Qiu and
Shu [1] (only the nonlinear weighting technique differs). We report results for our fifth order SL-WENO5 scheme. A
fast Fourier transform is used to solve the Poisson equation since f (t, x, v) is periodic in space.

5.1.1. Example 10, Landau damping
Consider the example of Landau damping for the VP system with the initial condition

f (t = 0, x, v) =
1
√

2π

(
1 + α cos(kx)

)
exp

(
−

v2

2

)
. (63)

For weak damping, take α = 0.01 and k = 0.5. We solve the system using Lx = 2π/k = 4π and Vmax = 4π. We use a
rectangular mesh of Nx = 256 and Nv = 512 elements, and we use the time step ∆t = ∆x = Lx/Nx.

The correct rate of damping of the electric field is observed in Fig. 18, benchmarked with the theoretical slope γ =

0.1533. The largest variation in the conserved quantities, the L1-norm, L2-norm, energy, and entropy are 2.0 × 10−13,
5.7 × 10−7, 4.5 × 10−6, and 2.0 × 10−6, respectively.

For strong Landau damping of the VP system, take the initial condition (63) now with α = 0.5 and k = 0.5. We
use Nx = 128, Nv = 256, Lx = 2π/k = 4π, Vmax = 2π, and ∆t = ∆x. Results appear in Fig. 19. We also provide
the time evolution of the first three Fourier modes of the electric field in Fig. 20. Results show damping rates of the
electric field that agree with published values. All of our results are comparable to those in, e.g., [22, 23, 24].
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Figure 18: Ex. 10, Weak Landau damping: time evolution of the electric field in L2 (left) and L∞ (right).
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Figure 19: Ex. 10, Strong Landau damping: time evolution of the electric field in L2 (left), L∞ (middle) and phase space plot (right at time T = 30).
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Figure 20: Ex. 10, Strong Landau damping: time evolution of the amplitude of the first three modes of the electric field.

5.1.2. Example 11, Two stream instabilities
Consider the first symmetric two stream instability with the unstable initial condition

f (t = 0, x, v) =
2

7
√

2π

[
1 + α

(cos(2kx) + cos(3kx)
1.2

+ cos(kx)
)]

(1 + 5v2) exp
(
−

v2

2

)
, (64)

where α = 0.01, and k = 0.5. We use Lx = 4π, Nx = 256, Nv = 256, Vmax = 5, and ∆t = ∆x. The phase plots at times
t = 30, t = 40 (as in [24]), and t = 53 (as in [2]) are shown in Fig. 21. The results appear to show less numerical
diffusion than the results in [24, 2].

Now consider the second symmetric two stream instability with initial condition

f (t = 0, x, v) =
1

2vth
√

2π

(
1 + 0.05 cos(kx)

)[
exp

(
−

(v − u)2

2v2
th

)
+ exp

(
−

(v + u)2

2v2
th

)]
, (65)

where u = 0.99, vth = 0.3 and k = 2/13. We use Lx = 13π, Nx = 1024, Nv = 512, Vmax = 5, and ∆t = ∆x. The phase
plot is shown in Fig. 22. The result compares favorably with that in [2].
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t = 30 t = 40 t = 53

Figure 21: Ex. 11, Phase space plots of the first two stream instability using initial condition (64) at t = 30, t = 40, and t = 53.

Figure 22: Ex. 11, Phase space plot of the second two stream instability using initial condition (65) at time t = 70.

5.2. Example 12, The guiding-center (GC) model

A computationally more challenging Vlasov-type model of plasmas is given by the guiding-center (GC) model
[13, 14, 24], because the advection is not constant within the Strang splitting algorithm. The model is

ρt + E⊥ · ∇ρ = 0, (66)
E = −∇φ, −∆φ = ρ, (67)

where ρ(t, x, y) is the particle density, E(t, x, y) = (E1, E2) is the electric field, φ(t, x, y) is the electrostatic potential,
and E(t, x, y)⊥ = (E2,−E1). This model preserves the L1- and L2-norms of ρ as well as the energy, the L2-norm of E.

We pose a periodic problem on the domain [0, 4π] × [0, 2π] by using the periodic initial condition

ρ(t = 0, x, y) = sin(y) + ε cos(kx),

where ε = 0.015 and k = 0.5. We solve the transport problem using both SL-WENO3 and SL-WENO5 on various
meshes with ∆t = 0.1, and we solve for the electric field using the fast Fourier transform on a 64 × 64 grid.
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Figure 23: Ex. 12, Guiding center model: time evolution of the (log of the) energy ‖E‖L2 for two resolutions using SL-WENO3 or SL-WENO5.
The electric field E is computed only on a 64 × 64 grid, and so some oscillation appears in the SL-WENO5 results.
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Figure 24: Ex. 12, Guiding center model: time evolution of the enstrophy ‖ρ‖L2 for two resolutions using SL-WENO3 or SL-WENO5.

Our scheme is mass conservative, so the L1-norm of ρ is conserved. In Fig. 23, we show that the energy (L2-norm
of E) is conserved well to about time 20 or 30, as is typical for these problems, since the scale of the solution’s features
is unresolved on our grids at about this time [13]. The electric field E is computed only on a 64×64 grid, and so some
oscillation appears in the SL-WENO5 results. Similar results are achieved for the enstrophy (L2-norm of ρ), as seen
in Fig. 24.

Because we use a Strang splitting algorithm, we check the effect of grid orientation on the solution by solving
the periodic problem as rotated by 45◦. The domain is not square, so we double it before rotation. The results at
time t = 20 and 30 using SL-WENO3 and a grid Nx = Ny = 128 are shown in Fig. 25. The results show almost no
grid-orientation effect at time t = 20. There is some discrepancy at time t = 30, when the overall solution is starting
to break down because of the lack of resolution, as mentioned above. Of course, the splitting error could be reduced
by using the integral deferred correction method (IDC), as is done in [24].

The particle density ρ is shown in Fig. 26 at time t = 30. The results show a level of detail comparable to that in
[24]. Compared to [13], we see less numerical diffusion and better preservation of the maximal densities.

6. Conclusions

We developed a new semi-Lagrangian finite difference WENO scheme for nonlinear scalar conservation laws
in one or more space dimensions. The scheme is locally mass conservative, formally high-order accurate in space,
has small time truncation error, and is essentially non-oscillatory. It is subject to a relaxed CFL time step stability
condition (42). The scheme can be considered as an extension of the SL-WENO scheme of Qiu and Shu [1] for linear
problems, and as a finite difference version of related finite volume schemes [5, 6].

Numerical results verified that the scheme works well, achieves its formal spatial accuracy on smooth problems,
and is computationally efficient for nonlinear problems. The results showed low numerical diffusion and the ability
of the scheme to capture shocks and interactions between shocks and rarefactions in one and two space dimensions.
Application to the Vlasov-Poisson system gave good results, as well as to the guiding-center model. The latter requires
a scheme such as ours to handle the nonconstant advection, and ours appears to be the first scheme to use the proper
WENO linear weights as opposed to user defined empirical weights.
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