SIAM J. NUMER. ANAL. @© 1989 Society for Industrial and Applied Mathematics
Vol. 26, No. 06, pp. 1474-1486, December 1989 014

A FINITE DIFFERENCE METHOD FOR
A TWO-SEX MODEL OF POPULATION DYNAMICS*

TODD ARBOGASTY} anpD FABIO A. MILNERf{}
This paper is dedicated to Jim Douglas, Jr., on the occasion of his 60th birthday.

Abstract. An explicit finite difference scheme is developed to approximate the solution of a
nonlinear and nonlocal system of integro-differential equations that models the dynamics of a two-sex
population. The scheme is unconditionally stable. The optimal rate of convergence of the scheme
is demonstrated for the maximum norm. Results from a numerical simulation of U.S. population
growth from 1970 to 1980 are presented; these compare favorably with the actual data.
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1. Introduction. In the year 1202 L. Fibonacci [5] tried to model the growth of a
population (of rabbits in this case) by the well-known sequence of integers that carries
his name. The first serious attempt to describe human population dynamics took
place almost 600 years later when Malthus [12] introduced his mathematical model
for population growth. Malthus’ model assumed constant birth and death rates and
is based on the assumption that the rate of change of the population is proportional
to its size, p(t); that is,

dp

where (3 is the birth rate and 0 the death rate. This leads to the well-known exponential
model

p(t) = ple70,

where p° is the size of the initial population. This model is not valid for large time ¢
since it leads to a population growing without bound.

Forty years later Verhulst [16] introduced a model that imposes a maximum size
on the population based on the assumption that the rate of change of the population
is proportional both to its size and to the difference between some maximal level M
and the current size; that is,

dp

o = (M = p) = (kM — kp) p.

So here it is assumed that the birth rate § = kM is constant and the death rate
6 = kp is proportional to the size of the population. This leads to the well-known

logistic model
M

M —p° '
1+ (J)ﬁ
p

p(t) =
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It was only in 1922 that Lotka [11] finally introduced the idea of an age-dependent
model. This was taken over by McKendrick [13] who first derived the model presented
below and later by von Foerster [17] who made a mathematical analysis of that model.
Let u(z,t) be the age distribution function, where = denotes the age and ¢ the time.
The number of individuals in the age bracket [z, z2] is given by

xo
[ uteod
1
where pg is a scaling factor such as the initial population or a power of ten. Let
B8 = B(z,t) and § = §(z,t) be, respectively, the (prescribed) age-specific fertility and
age-specific death rates of the population. The McKendrick-von Foerster model is
given by

ou Ou
E+a—x——6u, z>0,t>0,
(1.1) u(0,t) = B(t) = / Blw, hu(w,t)de,  t>0,
0
w(z,0) =u(z), >0,

where B(t) is the birth rate and «°(z) is the initial age distribution (a probability
density function if pg is the size of the initial population). If the function B(t) were
known, one would have the explicit solution of (1.1) given by

t
u®(x —t) exp [—/ 6(x—t+7',7')d7'}, T >t
u(z,t) = 0

B(t—w)exp[—/ 6(T,t—$+T)dT:|, t>m.
0

Substituting this expression into the integral that defines B(t), one arrives at the
following integral equation for B(t):

B(t) = f(¥) -I-/O K(z,t)B(t — z) dz,

where the functions f and K involve only the data 3, 6, and u°. When 3 and § are
time-independent (then so is K') one has the renewal equation

B(t) = f(¥) +/0 K(t — z)B(z) dx

which can be solved using Laplace transforms.

A vast bibliography on a variety of models and their properties exists (see, for
example, [2], [6], [14], [15]), but very little work on numerical methods for the approx-
imation of their solutions has been done. Among the few papers in the literature, [1]
and [4] discuss various methods for the approximation of B(t), [3] analyzes a finite dif-
ference scheme along the characteristic direction for (1.1) with population-dependent
death rate, and [10] a numerical scheme for a simplified version of (1.1) based on the
explicit solution (with prescribed birth rate, but population dependent death rate).

The plan of this paper is as follows. In §2 we describe a model for the dynamics of
a two-sex population such as that of humans. In §3 we propose a numerical method for
the approximation of its solution, and we prove that this method converges optimally
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to the exact solution. Finally, in §4 we present results from a numerical simulation
run using this method and compare them with actual demographic statistics.

2. A two-sex model. The major defect common to all of the preceding models
is that they do not consider the partition of the population into sexes. When this is
done, a coupled system of partial differential equations of McKendrick type results (see,
for example, [7]). Let w,,(z,t) and uy(y,t) denote, respectively, the age distributions
of males and females in the population, where  and y refer to the ages of males
and females, respectively. These age distributions must satisfy the following integro-
differential systems:

ou,,  Ougy,

W‘l‘ﬁz—&m(x,t)um, x>0, t>0,
(2.1) U (0,8) = By () = / / B, y,0)c(z,y, t) dudy, ¢ >0,
0 0
( um(2,0) =ud(z), x>0,
an an _
ot Ty dr(y, t)uy, y>0, t>0,
(2:2) ug(0,1) = By(t) = / / By(w,y, O)e(w,y, t) dudy, >0,
0 0
up(y,0) =u$(y), y>0,

where ¢(xz,y,t) is the distribution of couples with male of age = and female of age
Y, Om(2x,t) and d¢(y,t) are, respectively, the age specific death rates, and 8, and f;
give, respectively, the productivity of such couples for male and female progeny (that
is, Bm(z,y,t) is the average number of “sons” and ff(x,y,t) the average number of
“daughters” born at time ¢ to a couple with male of age = and female of age y). The
function ¢ = ¢(x,y, t) is the solution of the following nonlinear initial-boundary value
problem:

%+%+§_; = —U(Sﬂ,y,t)c-|-,u(£13,y,t;8m,8f), ZE>0, Y >0; t>07

2:3) c(@,0,t) = ¢(0,4,1) =0, x>0, y>0, t>0,

c(z,y,0) = (z,y), >0,y>0,

where the first term on the right hand side of the differential equation describes the
change in ¢ due to the separation of couples (by death, annulment, or divorce) while
the second term describes the source of couples, which depends on the distribution of
“single” males and females,

Sm(@,t) = U (x,t) — /OO c(x,y,t)dy,
(2.4) 0

sp(y,t) = uyp(y,t) — /000 c(z,y,t) de.

The function p is called the marriage function and is empirically chosen in several



A FINITE DIFFERENCE METHOD FOR TWO-SEX POPULATIONS 1477

papers (for example see [6], [8], and [9]) as homogeneous of degree one in s,, and s;.
In this model the total population p(t) is given by

o0 o0
(2.5) p(t) = po [/0 um(z,t) de +/0 us(y,t) dy] .
The initial and the boundary conditions must be compatible:
(uY = B,,(0) and u(} = B#(0),
A(0,y) = °(z,0) = 0, z,y >0,

m?

&, ud u(} >0,
(2.6)

/ A(z,y) dy < ud, (2) (ie., s >0),
0

oo
\ / A(x,y)de < u(}(y) (i.e.,s(} > 0).
0

The initial age-distributions of individuals and couples, u? , u(}, c®, must be compactly
supported (for biological reasons). These conditions clearly imply that ¢ > 0, which
in turn implies that u,,,uy > 0 and that u,,,us have compact support. If we set
w(sm,sy) = 0 for sy, or sy < 0, then in fact sp,,s; > 0. To see this for s,,, for
example, note that

O08m | Osm &
Bt + Bz —Omsm + (1 - 5m)/0 dp(y, t)c(w,y,t) dy

o0

o0
+/ a(z,y,t)c(z,y,t) dy—/ w(@,y,t, sm, s5) dy,
0 0

where a(z,y,t) = o(x,y,t) — 6 (x,t) =I5 (y, t) + 0 (2, t)d s (y, t) is the annulment and
divorce rate; since s, > 0 and the characteristic slope is positive when s, is negative,
S, must stay nonnegative. Finally, then, ¢ has compact support for any ¢.

3. The numerical method. For 0 <t < T we shall consider the approximation
of the age distribution functions um,(z,t) and us(y,t) and of the couple distribution
function ¢(z,y,t) in a two-sex population with population dependent birth and death
rates. We shall, therefore, replace B, ff, 6m, 07, and o in (2.1) by

ﬁg = ﬁg(xayﬂf;p); g (gender) =m, f;
(3.1) 0y = 04(2,t;p),  (g,2) = (m,z) or (f,y),
o =o(x,y,t;p).

For simplicity we shall take py in (2.5) to be one.

We shall assume that the initial-boundary value problem (2.1)—(2.5), (3.1) has
a unique solution which has all the regularity necessary for the approximation and
analysis of the scheme we define below.

We shall discretize the differential equations (2.1)—(2.3) by using finite difference
schemes in the characteristic direction 7. Note that 7 = %(1, 1) in (2.1) and (2.2)
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and that 7 = %(1, 1,1) in (2.3). Let N be a positive integer and let At = T'/N and

t"™ = nAt. The approximation will be made using a uniform age-time grid

G={z; =iAt : i >0} ={y; = jAt : j >0}

that is, we use the same time increment for the ages as for the time. For a function
Y =Y(x,y,t;7,5) we let

Zj(’I“,S) = ¢(miayj7tn;r7 8)7 r,s € Ra

where i, j, 7, or s will be suppressed as appropriate.
Our scheme will compute simultaneously approximations U
uf . O of ¢ n..oof 7

n n
g ofup ;. UP of

(g = m, f), and P™ of p" as follows. Initialize the

4,J7 29,1, 958,
scheme by
r U’S’lﬂ = u(r]n,i’ i 2 05
Up;=uy; 520,
(3.2) Cﬁj = CZJ" i,j >0,

SO S? given by (3.6) below with n = 0,

{ PY given by (3.7) below with n = 0.
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For n > 0, use the following (explicit) scheme:

(Ur:rll _U;;zll :_617, (Pn 1)Un
At

m,is 12>1

(3.3) X
7?170:2/877117]13”10”( )

\ 3,j=1

(Up. - UMt
e U [ Y S

At
(3.4) 3 .
Ufo= 3 Bfa;(P" 1) CF (A1,
\ i,j=1
cno—Crt N
(3.5) — L or (P O (S ST, i 2 1,
Ci;j=Cry=0, 4,j>0,
= Uni Z%At, i>0,
(3.6)
o0
Sﬁszﬁj_ZCZjAt’ Jj >0,
o0 [e’e]
(3.7) P =3"Un  At+ Y U, At
i=0 =0

To advance a time step, equation (3.5) must be solved first, (3.3)—(3.4) next, and
(3.6)—(3.7) last.
It is not hard to see from (3.2)—(3.5) that
C’n

7,57 mw

Up; >0,  i,j,n>0,

and that there are only finitely many 4, j for which they are nonzero. However, it is
the case that
SO

m,i’

S‘%j Z —O(At), Z;.] Z ]-7

which may be negative, so that the extension of the marriage function p by zero
mentioned at the end of §2 is necessary.

This scheme converges at the optimal rate At to the solutions of the two-sex
model.

THEOREM. Let the solutions wn,, uy, and c(z,y,t) of (2.1)—(2.5), (3.1) be twice
continuously differentiable with bounded derivatives through the second order. Denote

E=c—-C, vy = ug — Uy, and Ny =84 — Sy, g=m,f.



1480 T. ARBOGAST AND F. A. MILNER

Then there exists a constant ) independent of At such that the error bound

. = nl <
(338) 1Glhmrmy =y 2max  max |G| < Q¢

holds for ¢ =&, vy, ny (9 =m, [).
Proof. Note that the characteristic derivatives can be approximated as follows:

6_¢ 8_1/} 6_¢ . Lo3m) 7?] i— 17] 1
<6t+6x+8 >($z,y],t) + 0

)

At), Zgp = &; OT Yj.
LOC

(3.9)

o N R iy 0%
(E*a_>("”“”_T+O<HW

Also, the following quadrature is obvious:

)

Lee H Oy

(3.10) / / d)acydacdy—Zd)m (At)? +0<<Hg

i,j=1

with a similar result holding for functions of one variable.
We can derive from (2.1)—(2.5), and (3.1)-(3.10) the following error equations:

(3.11) Up i =03, =& =
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and, for n > 1,

( ’U;{lni —_ U;7i£1 - ne1
T - _6 (P ) m i
+ [ (P = 0 (0] g + O(AD, i1,
(312) Z i 27] P’n 1 61] (At)
- 2 [ mz,](Pn 1) 71;1,Lj(pn)] CZ]’ (At)2 + O(At)a
ij=1
n n—1

Ve, — Vg
£ TV ~
= = 0y (PR

At
+[07,(P" ) = o ;)] i +0(AY), > 1,

(3.13) Vo = Z 5?71',1'(13”71)52]‘ (At)*

1,j=1
- Z [B?7i,j(Pn_1) — Bti;0M)] ¢ (At)? + O(At),
L i,j=1
n _ ¢n—1
v7' _17_1 n— n n n
= Ait = = —ol';(P Her P g (s st ) — ivi (S pl 1aS}LJ11)]
3.14 . o
314 +[ (PP = ot ()] ¢l + O(A t), i1,
6&]‘:620:07 ;.] ZOJ
Mmi = Vi — Zfﬁj At + O(At), 1> 0,
(3.15) -
n — ., n .
M = Vfj— Zgz] At + O(At), Jj =0,
i=1
(3.16)  p"—P"=> wp At+ > v, At+O(A?).
i=0 j=0

Note that (3.16) implies that
(3.17) p" = P < gl + l0f]],, +O(AL),  n >0,
where

[l =D [wil At or > Jabi 5] (At)
i i.j

We shall also use the notation

[ lly =D gl At and [l [l = D I ] At
i J

It is also clear that

(3.18) p" —p"t=0(AY).
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Easily (3.12)—(3.13) and (3.17)—(3.18) lead to, for k,n > 1 and k =i or j,
[1+ 5g7k(P”_1)At] Vg = Uy ot

1ol ~ .
! O<Ha_g L°°||ug”Loo [Hvz 1”’1 + ”Uf 1||11:|At> +0 ((At)Q) ’ g = m,fa

which implies that

(3819) gl < okl + @ (o s + ll0f 0, ) AL+ 0 ((A02), g =m.f,

where () is a constant that is independent of i, j,n, and At but its value may vary
from place to place below. It also follows from (3.12)—(3.13) and (3.17)—(3.18) that

(3200 Jopol <Q (1€, + i + g L) + 0D, g=m, 1.
Multiplying (3.19) and (3.20) by At and summing over k we arrive at the estimate
(3:21) gl < llog ="l
+Q (5 + ey M, + i) A0 (A1), g=m.f.
For a similar analysis of £, we first see that

(322) [1 + O-ZJ(Pn_l)At] = gz 1,j—1 + [ul,]( Sm i7s7fz,]) uz,](srrrlz zl 175?]11)]At
+0 (llvg Ml + 110770, ) At + 0 ((A02).

Next note that

(323) |/l’2j(87ni’5?]) :uzj(S;lz zl 175}1]11)|

al.at n— n n
(L ——
Os

Lo sy
(3.24) sy, —SPt =il + O(‘ 5

and

A). (k)= ) or (7d)
LOO
We see now from (3.15) and (3.22)—(3.24), that

€251 <1651+ @ (Innaal + 2y
o M+ 107 ) A+ 0 ((40)?)
(3.25)
<1t ymal+ Q (ot + oyt + 1€
T+ Do e+ llp L, ) A+ O ((A8)2)

We sum now on ¢ and j to show that

(3:26) 116", <IE" MMy +Q (o e + oy~ N + 11670 ) A+ 0 ((AD2).
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Combining (3.21) and (3.26) we see that, since At < T,
(327) lloglly < llogll,,
+ QA1+ QT) (Jlon ™l + oyl + 1€, ) +0 ((40?).
Now a combination of (3.27) and (3.26) shows that
(3-28) Mlopll, + w71l + 1€ M
< (14+Qa0) (g, + o, + €™, ) +0 ((802)

Since
N-1

Q> (1+QAnk (A2 = [(1 + QAN - 1] At < Q'At,
k=0

recursive use of (3.28) and (3.11) leads to the preliminary estimate
(3.20) ol s, + 1071, + Il ) < QAL
Using this estimate in (3.19)—(3.20), we arrive at

log il < 0Pty [+ 0 (A1), (g,k) = (m,i) or (f.)),
vy | = O(Ab),

which used recursively yields the theorem for ¢ = v,, and vy.
Combining the completed estimates in (3.8) with (3.25) and (3.29) we see that

(3.30) € <16+ @ (IS Nl + 11755 1) A+ 0 ((A02).
Summing on j and using (3.29) again leads to the bound
e 11, < @+ QAN (1€ I, + 0 ((A1)?),

which used recursively shows that || ||, < QAt. Similarly, [|€7;]],, < QAt. Hence
(3.30) becomes
|€it5] < |§zn:11,j—1| +0 ((At)?),

and the rest of the theorem follows from a final recursion argument.

Remark. As a corollary to the theorem, if the differential solution is smooth,
the approximate solution is uniformly bounded. This result can be easily obtained
directly independently of the smoothness of the differential solution. Moreover, full
unconditional stability under small perturbations of the approximate solution can be
shown by an entirely similar argument to that given above.

4. Some numerical results. To check the validity of the model and to test
our approximation scheme, we ran a simulation of the growth of the population of
the United States from 1970 to 1980 using the initial distributions of males, females,
and couples from the 1970 population census!-?. Vital statistics for births, deaths,

1 U.S. Bureau of the Census, Census of Population: 1970, Detailed Characteristics, Final Re-
port PC(1)-D1, U.S. Summary, U.S. Government Printing Office, Washington, D.C., 1973.

2U.S. Bureau of the Census, Census of Population: 1970, Marital Status, Final Report PC(2)-
4C, U.S. Summary, U.S. Government Printing Office, Washington, D.C., 1972.
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marriages, and marriage annulments/divorces were taken from the U. S. Department of
Health and Human Services (and its precursor the Department of Health, Education,
and Welfare)3-4. Based on these figures, we constructed the functions needed by the
two-sex model.

A few brief remarks on the construction of these functions are in order since they
are not always available in the form needed. Each of these functions was taken to be
population independent. The time dependence was simply taken to be a linear inter-
polation of the figures from 1970 to those of 1980. (Of course, in practical situations
one would need to extrapolate data from earlier times.) In some cases, data cross
tabulated by ages of males and females is needed. Where such data was unavailable,
it was constructed by forming the products of the data tabulated by the age of either
sex alone. The marriage function given by Keyfitz [8] was used:

Sm (2, 1)57(y, 1) <Sm(~’v,t)>7

Sm(wat) + Sf(y,t) S (yat)

where p is a function used to bias the harmonic mean, with p(0) = p(c0) = 1. We
took p to be identically one.

Because the fertility of unmarried females is significant (and known), we modified
the scheme to include a source of births from single females. In the model, this source
for males consists of the addition of the term

/0 85 (y, )55 (y, 1) dy

H(l’:yat; Sm,Sf) = V(ﬁ,y,t)

to the births in (2.1), where (2, (y,t) is the fertility rate of unmarried women for
the birth of males. A similar term is needed for the births of females in (2.2). The
modification to the approximation scheme is straightforward, and the convergence
theorem can be demonstrated with only minor changes in the proof.

We ran our simulation with a time step At = 0.125 years to obtain the predicted
distribution of males, females, and couples in 1980. We compare these figures with
the actual distributions (given by the 1980 census®®) in Tables 1 and 2.

Note that the model, as stated, does not take into account migration into and out
of the United States. Therefore, we must at least add to the figure obtained from the
simulation the net number of immigrants during the decade simulated. This number,
according to figures from the Immigration and Naturalization Service”, is 4,336,001.
We should note further that the population figures given by the 1980 census are quite

3 Health Resources Administration, National Center for Health Statistics: Vital Statistics of the
United States, 1970, Vols. I-11I, DHEW publication nos. (HRA) 75-1100 to 75-1103, Public Health
Service, U.S. Government Printing Office, Washington, D.C., 1974-75.

4 National Center for Health Statistics: Vital Statistics of the United States, 1980, Vols. I-III,
DHHS publication nos. (PHS) 85-1100 to 85-1103, Public Health Service, U.S. Government Printing
Office, Washington, D.C., 1984-85.

5 U.S. Bureau of the Census, Census of Population: 1980, Vol. 1, Characteristics of Population,
PC 80-1-B1, U.S. Government Printing Office, Washington, D.C., 1981.

6 U.S. Bureau of the Census, Census of Population: 1980, Vol. 2, Subject Reports: Marital
Characteristics, PC 80-2-4C, U.S. Government Printing Office, Washington, D.C., 1984.

7U.S. Department of Justice, Immigration and Naturalization Service, 1981 Statistical Yearbook
of the Immigration and Naturalization Service.
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TABLE 1
Distribution of males and females

Males Females
Age bracket Calculated Actual Error Calculated Actual Error

(yrs.) (1000’s) (1000°s) (%) (1000’s) (1000’s) (%)
04 8510 8362 1.8 8088 7986 1.3
5-9 8964 8539 5.0 8537 8161 4.6
10-14 8661 9316 7.0 8346 8926 6.5
15-19 10122 10755 5.9 9787 10413 6.0
20-24 10467 10663 1.8 9997 10655 6.2
25-29 9538 9705 1.7 9155 9816 6.7
30-34 7596 8677 12.5 8181 8884 7.9
35-39 6417 6862 6.5 6748 7104 5.0
40-44 5425 5708 5.0 5756 5961 3.4
45-49 5194 5388 3.6 5564 5702 2.4
50-54 5419 5621 3.6 5915 6089 2.9
55-59 5214 5482 4.9 5886 6133 4.0
60-64 4493 4670 3.8 5254 5418 3.0
65-69 3667 3903 6.0 4576 4880 6.2
70-74 2748 2854 3.7 3773 3945 4.4
75-79 1766 1848 4.4 2268 2946 23.0
80-84 1030 1019 1.1 425 1916 77.8
85 and over 758 682 11.1 426 1559 72.7
Total 105989 110053 3.7 108682 116493 6.7

difficult to compare with those from the 1970 census due, among other factors, to
the great number of illegal immigrants during that decade which were counted in the
1980 census. It is sufficient to subtract the 19,264,000 deaths from the 33,308,000
births recorded in the U.S. in those ten years® to obtain the intrinsic increase of the
population, 14,044,000 (where we have rounded the figures to the nearest thousand).
If we add this figure to the total population recorded by the 1970 census (203,210,000),
the difference between this figure and the total population recorded by the 1980 census
(226,546,000) should give the net migration into the U.S. in that decade: 9,292,000.
Even without considering emigration, the immigration figure given by the INS falls
short by about 5 million. Hence, a percentage error of at least 4.1% is to be expected.

As we can see from Table 1, the model describes quite accurately the age distri-
bution of both sexes as they evolve in time, which is the object of this model. The
distribution of couples by age of the partners is used as a tool to try to better model
the births in the population. As is very well known [7], modeling the evolution of
the couples distribution function in time is extremely difficult, mostly for lack of an
accurate description of the marriage function p. As can be seen in Table 2, there is
a substantial error in the distribution of couples by cross tabulated ages; however,
the distribution of couples by the age of one partner only is quite reasonable. This is
related to the fact that we were forced by lack of data to construct the age specific
marriage rate function v(z,y,t) as a product of the data for each sex alone. In con-
clusion, then, these results show the overall validity of the two-sex model, as well as
the usefulness of our approximation scheme.

8 U.S. National Center for Health Statistics, Vital Statistics of the United States, annual, and
unpublished data.
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TABLE 2
Distribution of couples
(numbers in thousands)

Age of wife (yrs.)
15-24 25-34 35-44 45-54 55-64 All ages

Age of hus-
band (yrs.)
1681.0 993.2 103.9 34.6 41.3 2865.7 Calculated
15-24 2638.8 332.5 14.4 5.0 3.1 2995.6 Actual
36.3% 198.7%  621.5% 586.2%  1232.3% 4.3% Error
2680.8 7007.7 416.5 36.8 32.8 10182.4
25-34 2226.7 9010.4 479.9 28.5 5.9 11754.4
20.4% 22.2% 13.2% 29.1% 455.9% 13.4%
284.9 2602.3 5685.1 243.4 25.1 8845.6
35-44 119.9 3094.9  6346.1 374.3 26.7 9967.1
137.6% 15.9% 10.4% 35.0% 6.0% 11.3%
71.9 181.6 2397.4 5169.9 407.4 8258.3
45-54 18.5 263.8 2725.4 54234 495.8 8965.5
288.6% 31.2% 12.0% 4.7% 17.8% 7.9%
60.6 61.1 181.3 2442.4 4533.3 7648.2
55-64 7.2 44.5 263.7 2725.8 4900.6 8392.3
741.7% 37.3% 31.2% 10.4% 7.5% 8.9%
4797.0 10858.2  8811.6  8133.2 7045.1 43937.4
All ages 5014.5 12756.1 9868.7 8827.4 7720.8 49513.9

4.3% 14.9% 10.7% 7.9% 8.8% 11.3%

REFERENCES

[1] R. BELLMAN AND K. COOKE, Differential-difference equations, Academic Press, New York,
1963.
[2] A.J. CoALE, The growth and structure of human populations, a mathematical investigation,
Princeton University Press, Princeton, New Jersey, 1972.
[3] J. DouGLAS, JR., AND F. A. MILNER, Numerical methods for a model of population dynamics,
to appear in Calcolo.
[4] W. FELLER, On the integral equation of renewal theory, Ann. Math. Statist., 12 (1941), pp. 243—
267.
[5] L. FiBoNAccl, Liber abbaci di Leonardo Pisano pubblicati da Baldasani Boncompagni, Ti-
pografia delle Scienze Math. e Fisiche, Romalla, 1202.
[6] T.N.E. GREVILLE (EDITOR), Population Dynamics, University of Wisconsin Press, Madison,
‘Wisconsin, 1973.
[7] F. HOPPENSTEADT, Mathematical Theories of Populations: Demographics, Genetics, and Epi-
demics, STAM, Philadelphia, 1975.
[8] N. KEYFITZ, The Mathematics of Sex and Marriage, 6th Berkeley Symp. Math. Stat. Prob.,
Biology-Health Section, Part II, 1972.
[9] N. KEYFITZ AND W. FLIEGER, Populations, Facts and Methods of Demography, W.H. Freeman,
San Francisco, 1971.
[10] T. KosTova, Numerical solutions of some hyperbolic differential-integral equations, Comput.
Math. Applic., 15 (1988), pp. 427-436.
[11] A.J. LoTKA, The stability of the normal age distribution, Proc. Nat. Acad. Sci., 8 (1922),
pp. 339-345.
[12] T.R. MALTHUS, An essay on the principle of population, printed for J. Johnson in St. Paul’s
Churchyard, London, 1798.



A FINITE DIFFERENCE METHOD FOR TWO-SEX POPULATIONS 1487

[13] A.G. McKENDRICK, Applications of mathematics to medical problems, Proc. Edinburgh Math.
Soc., 44 (1926), pp. 98-130.

[14] S. RuBINOW, A maturity-time representation for cell populations, Biophysical J., 8 (1968),
pp- 1055-1073.

[15] D. SmiTH AND N. KEYFITZ, Mathematical Demography, Biomathematics, 6 (1977).

[16] P.F. VERHULST, Notice sur la Loi que la Population suit dans son Accroisement, Correspon-
dance mathématique et physique publiée par A. Quételet, Brussels, X, 1838, pp. 113-121.

[17] H. vON FOERSTER, The Kinetics of Cellular Proliferation, Grune and Stratton, New York, 1959.



