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Abstract

We present a subgrid-scale numerical technique for upscaling
waterflood simulations. We scale up the usual parameters
porosity and relative and absolute permeabilities, and also
the location of wells and capillary pressure curves. Some of
these are critical nonlinear terms that need to be resolved
on the fine scale, or serious errors will result. Upscaling is
achieved by explicitly decomposing the differential system
into a coarse-grid-scale operator coupled to a subgrid-scale
operator. The subgrid-scale operator is approximated as an
operator localized in space to a coarse-grid element. An influ-
ence function (numerical Greens function) technique allows
us to solve these subgrid-scale problems independently of the
coarse-grid approximation. The coarse-grid problem is modi-
fied to take into account the subgrid-scale solution and solved
as a large linear system of equations. Finally, the coarse scale
solution is corrected on the subgrid-scale, providing a fine-
grid scale representation of the solution. In this approach, no
explicit macroscopic coefficients nor pseudo-functions result.
The method is easily seen to be optimally convergent in the
case of a single linear parabolic equation. The method is sev-
eral times faster than solving the fine-scale problem directly,
generally more robust, and yet achieves good results as it re-
quires no ad hoc assumptions at the coarse scale and retains
all the physics of the original multiphase flow equations.

Introduction
There is a large and growing literature on upscaling tech-

niques. We will not attempt a literature review here, but
merely mention a few of the main techniques. The first and
basic techniques developed involved in an essential way av-
eraging or homogenization of physical parameters such as
permeability (see, e.g., [1], [2], [3]). While such upscaling
techniques can be very effective for purely linear problems,
they are less satisfactory for nonlinear problems. They suffer
from the elementary observation that a nonlinear function of
an average is not the average of the nonlinear function. For
example, over a coarse grid-block, the value of capillary pres-
sure evaluated at the average saturation is not at all the same
as the average over the grid-block of the capillary pressure.

More sophisticated techniques have been developed to cir-
cumvent the inadequacies of simple averaging (see, e.g., [4],
[5], [6], [7]), including the development of renormalization
techniques to successively upscale to coarse levels, pseudo-
functions, modified finite element basis functions, and ex-
plicit subgrid techniques that seek to improve the resolution
of the coarse solution after it has been computed. These
techniques all attempt in some way to represent fine-scale
information on coarse scales in an indirect way, and some-
times require at least some information about the nature
of the flow that is expected under field management con-
ditions. Although most upscaling techniques are dynamic
in that they respond to the changing state of the reservoir,
many do so through anticipation of the possibilities. Often
one needs some kind of closure assumption such as the im-
position of local boundary conditions, the expected primary
flow direction, or expected limits on certain parameters such
as flow rates.

To handle the dynamic and sometimes unanticipated na-
ture of reservoir conditions, we present in this paper an im-
plicit subgrid technique that allows us to upscale the pres-
sure equation, and discuss its implementation in a sequen-
tial two-phase water-flood research simulator. We maintain
a fully implicit (as opposed to an explicit) coupling between
the coarse and fine or subgrid scales, and we obtain a fine-
scale representation of the reservoir state. As a consequence,
we make use of the capillary pressure and relative permeabil-
ity curves directly and accurately on the fine-scale on which



2 T. ARBOGAST AND S.L. BRYANT

they are defined. No pseudo-functions are needed, nor do any
arise in our technique. Our technique allows us to upscale
heterogeneous absolute permeability and porosity, the non-
linear functions relative permeability and capillary pressure,
and even the fine scale position of wells.

The idea is to consider the simulation as defined on a fine
grid, and to de-refine this grid to form a reasonable coarse
grid over which we can compute the solution. We break the
solution into two parts, the coarse-scale representation of the
solution plus the subgrid part. The subgrid part is defined
inside the coarse grid blocks. In order to be able to com-
pute it efficiently, it must involve only the coarse solution
itself and local information. Because of this computational
restriction and the need to maintain accuracy, we compute
the coarse-scale Darcy velocity using a second order accurate
method. Thus, even though the coarse part of the velocity
has accuracy based on the coarse-scale resolution H (the
diameter of a coarse grid block), the expected accuracy is
actually proportional to H2. Thus the coarse-scale velocity
is accurate from the point of view of the subgrid-scale, for
which we use a more standard first order accurate method
such as cell-centered finite differences. The use of a low order
method for the solution on the subgrid scale is natural, since,
e.g., heterogeneities in the permeability are likely to produce
solutions with large spatial gradients. It is well-known that
higher order methods do not in general improve such solu-
tions much, and certainly not enough to justify the added
cost.

Because we insist upon an implicit coupling between the
coarse and subgrid scales, there will be a mixture of these two
parts of our solution in the equations. Some kind of static
condensation or Schur complement technique is needed to
eliminate the subgrid unknowns from the equations. We do
this using a technique involving numerical Greens functions
(also called influence functions). This technique allows us
to treat the subgrid and coarse scales in completely separate
parts of the computer code. It is also relatively memory
efficient.

To maintain local mass conservation, our procedure is
based on mixed finite element methods [8], [9]. It is known
that the lowest order Raviart-Thomas method [10], RTO,
when combined with numerical quadrature to evaluate some
of the integrals that arise, is the same as cell-centered finite
differences. A similar method that gives higher order veloc-
ities uses the finite element spaces defined in 2-D by Brezzi,
Douglas, and Marini [11], BDM1, and generalized in 3-D by
Brezzi, Douglas, Duran and Fortin [12], BDDF1.

The Numerical Subgrid Upscaling Method for the
Pressure Equation

In this section we present in some detail the technique de-
scribed briefly in the Introduction. Because of the need for
a higher order accurate coarse solution, we must present
the technique in a finite element context rather than a cell-
centered finite difference context.
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The pressure equation. In order to simplify the presen-
tation, we illustrate our ideas on the differential equations

aP+V-u=b, (1)
u=—-d(VP —¢), (2)

where a, b, ¢ and d are constants. The pressure equation is
an example of such a system, as we will see later.

The finite element basis functions. In a mixed finite
element method, finite element basis functions are used to
approximate both the pressure P and the Darcy velocity u.
The Darcy velocity is not defined from the pressure as a
simple finite difference involving nearby pressures; in fact, it
is defined from all the pressures in the reservoir, although
the nearby ones are the most important. That is, u is not
defined from P through a finite stencil or molecule, and so
the method does not reduce to finite differences. (However,
as noted in [13] and [14] for RT0, we can approximate u as a
finite stencil of the pressures, and recover the usual 7 point
stencil, or even a 19-point stencil if the permeability is a full
tensor [15].)

Pressure basis functions. In both the RTO and BDDF1 (or
BDM1) spaces, the pressure is approximated by a piecewise
discontinuous constant function. That is, the pressure is ap-
proximated on each grid block by a constant value, just like it
is in cell-centered finite differences. Such functions are linear
combinations of simpler basis functions. Let us number the
coarse grid blocks 1,2, ..., N. For the ith coarse grid block,
there is a pressure basis function, call it @;, which takes the
value 1 on the block and 0 everywhere else. Within each
coarse grid block are similar subgrid-scale basis functions.
Suppose that there are M; fine grid blocks in the ¢th coarse
grid block. For each k = 1,2,..., M;, we let @¢ be 1 on the
kth subgrid block and 0 everywhere else.

In a finite element method, we approximate the pressure
in the finite element space; thus, defining both a coarse and
subgrid pressure, we have that for any point x in the reser-
voir,

A z;l Mi N

P(x) =YY B (x), (4)
i=1 k=1

P(x) = P(x) + P(x) , (5)

where the coefficients a; and B,i are to be determined. Even
though our intent is to upscale, we have in fact a pressure
value for each fine grid block, as illustrated in Fig. 1.

Velocity basis functions. The velocity is a vector, so the ve-
locity basis functions are also vector functions. We describe
the basis functions as if the grid block was simply the unit
cube 0 <2 <1,0<y <1, and 0 < z < 1. There are 6
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basis functions common to RT0 and BDDF1, which have a
nonzero divergence. These are given by

\71 = (1 —a:)el ;

‘72 =zre; ,
vi=(1-yles,
V4 = yes

\75 = (1 —Z)eg s

‘76 = ze3 .

There is one function for each face of the grid block, and each
represents a unit flow either into or out of the block across
that face, and no flow across the other faces. For example v,
gives a unit flow into the block across the face « = 0, while
va gives a unit flow out of the block across x = 1.

The BDDF1 spaces have the 12 additional basis functions

Vi =(1-2)(2y — Der+ (y° —ylez,

Vs =z(2y — Der + (y —y°)es ,

Vo = (27 —2)e; + (1 —y)(2z — 1)ey ,

Vio = (z — z%)ey + y(2z — ey

Vi1 = (% —x)e; + (1 — 2)(2z — 1)es
Vie = (z — 2%)e; + 2(2z — 1)es

Viz = (1 —2)(2z — ey + (2% — 2)es ,
Via =222 — D)e; + (z — 2%)es ,

Vis = (1—9)(2z — ey + (22 — 2)es ,
Vie = y(2z — ey + (2 — 2%)es

Vir = (y? —yles + (1 - 2)(2y — L)ey
Vis = (y —y%)e2 + 2(2y — 1)es .

Each has vanishing divergence, so these basis functions rep-
resent no net flow. They merely redistribute flow across the
face from one side to the other. For example, the v; repre-
sents a redistribution of flow on the = = 0 face, by allowing
flow into the block on the y = 0 side and taking it back out
on the y = 1 side. The function vi3 is similar, except that
flow is redistributed in the z direction.

For an arbitrary rectangular grid block, we translate and
scale these functions. It should be noted that v; to vig must
be scaled so that the divergence remains zero. For example,
vz becomes

vi=(1—-a/hy)(2y/hy — 1)er + (92/hy —y)/hees .

For consistency of flow, these basis functions are paired
across grid blocks. For example, two blocks that share an z
face would have v, on the left and vy on the right, or vg on
the left and v7 on the right. Thus there are 3 basis functions
per grid block face for BDDF1, and 1 for RT0. (In 2-D, the
RTO and BDM1 spaces are similar, except that only v; to
V4 and V7 to vy arise.)
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In our subgrid approach, we need 3 BDDF1 basis func-
tions defined for each coarse grid block face. Call these basis
functions v;, j = 1,2,...,,N'. Within coarse grid block 1,
we need RTO basis functions defined for each fine grid block
face, which we denote by vi, £ = 1,2, ..., M/. Finally, defin-
ing both a coarse and subgrid velocity, we have that

N

66 = 3229509 ©)
o

a(x) =) ) ovix), (7)
i=1 (=1

u(x) = a(x) + u(x) , (8)

where the coefficients v; and & are to be determined.

As illustrated in Fig. 1, the velocity has 3 fluxes (2 in 2-D)
on each coarse grid block face representing flow between the
grid blocks that varies linearly over the face, and a single
constant flux across fine grid block faces that lie within the
coarse grid blocks. Thus we have good resolution. It is the
special placement of these fluxes, i.e., these finite element
nodal values, that allows us to upscale.

The direct finite element formulation. Multiply each
equation (1)—(2) by a finite element basis function, which is
called a test function, and integrate. Let w be any of the
w; or @}, and v be any of the v; or vi. This results in the
equations

/andV—i—/V-ude:/bde, 9)

/d_lu-vdV:—/VP-vdV+/c-vdV

:/PV-vdV+/c-vdV, (10)

where we have made use of the divergence theorem to replace
—[VP -vdV by [PV -vdV, since there is no flow on
the external boundary of the reservoir (if other boundary
conditions are used, certain boundary terms appear at this
stage, but otherwise no particular complications arise later).

Combining (9)-(10) with (3)-(5) and (6)—(8) results in
a fully implicit system of linear equations, a square matrix
problem of size N + 3>, M; + N'+ 3. M/, for the unknowns
@i, Bi, vj, and 6% This system is too large to solve as for-
mulated, so we will not discuss its implementation. It has
nearly as many unknowns as the fine scale solution itself:
the same number of pressures, and as many velocity fluxes
within the coarse blocks. On the faces of the coarse blocks,
we have fewer velocity fluxes than one would have in a fine
scale solution, but these fluxes are higher-order accurate and
so give a good approximation of the velocity.

The system is actually underdetermined, since the pres-
sure basis functions sum to 1, i.e., 2221 1[)}€ = w;. That is,
the decomposition of P into P and P is not unique. The
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removal of this ambiguity depends on the nature of a. For
each coarse block 4, if a = 0 on the block, we cannot solve
our subgrid problems below as they are written. Instead,
we remove, say, the test function w = @{ and replace that
equation by the requirement that

/Pw,dV:O. (11)

If, however, a # 0 on the block, then we can solve our subgrid
problems below as written (i.e., we do not replace the w = w}
equation as above), and we require either (11) or instead

/af?widV:O, (12)

as we will make clear later. In both cases, however, we can
solve our equations, and the decomposition P = P + P is
unique.

Our goal now is to exploit our choice of basis functions
so that the system can be solved in smaller steps, with the
last step being the solution of a substantially reduced matrix
problem of size (N + N') x (N + N') involving only the coarse
scale unknowns «; and «y;. That is, we upscale to the coarse
level. We emphasize that we are not changing the method
below, but merely describing how to obtain the solution. Our
solution technique requires 3 steps; no iteration is performed.

Numerical Greens Functions. The key is to use numeri-
cal Greens functions, also known as influence functions. The
idea can be illustrated in a trivial example. Suppose we want
to solve ax + by + ¢z = d for ¢ in terms of y and z, which are
not known. The solution is obviously z = (d — by — ¢z)/a.
We can arrive at this same result by solving three problems
that involve neither y nor z as follows. First set y = 2 =0
and solve azy = d. Next set the nonhomogeneous terms to
0 (i.e., d=0), set y = 1 and z = 0, and solve axz; = —b.
Finally, set d = 0, y = 0, and z = 1 and solve azs = —c.
Then the solution is the combination of these simple solu-
tions: ¢ =z + T1Y + x22.

Note that 1 gives the influence of y on z (x; = dx/dy)
and z» gives the influence of z on x (2, = Jz/0z). Alter-
natively, one can view z; as the response of the system to a
unit stimulus in y, that is, a Greens function, and similarly
for z2 and z.

This technique works even when z is a vector, a is a ma-
trix, and b, ¢, and d are vectors.

In our case, we apply the idea to each coarse grid block.
On the ith block, = refers to the subgrid unknowns i and
%, and y and z refer to the coarse block unknowns «; and
all v; for which v; lives (i.e., is not zero) on the ith block.
We have arranged that there are very few such coarse block
unknowns.

The upscaled finite element formulation. We begin by
solving the subset of equations (9)-(10) for which the test
functions live on the subgrid scale. These subgrid equations
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are coupled to the coarse-scale. On coarse block i, the sub-
grid is affected only by the coarse coefficients «; and the 18
«y; for which v; lives on the block. Because of (11)—(12), we
have arranged the computation so that «;, i.e., the coarse
pressure P, does not affect the subgrid scale. Thus only 18
parameters affect the subgrid scale, and we can determine
the influence of each through the numerical Greens function
approach.

Step 1: The subgrid problems. For coarse block i, consider
(9)-(10) with test functions w = @}, and v = v{,. In the
numerical Greens function approach, we first solve assuming
the coarse scale information is set to zero. Solve for

M;
By =" Byt (13)

k=1

M;
=89 (14)

=1

the equations represented by
/aﬁgw;;, dV+/V ) wl, dV = /bwk, (15)
:/ng-vf,;,dv+/c-o;2,dv. (16)

In matrix form, these equations are

M; M|
Zﬂéyk/aw;cw;c dV+Z§37£/V-\7}}w};, dv
k=1 =1

M
> 6 / A=V v dv

M;
:ZIBOk/ka V[/dV+/C-\72,dV. (18)
k=1

We then solve for the influence of each v; living on the
ith block. There are 18 such j. We solve for

M;
Pl =>"pi i, (19)
k=1

M;
=> 8,9, (20)

=1

the equations represented by
/ap;'us;;, dv+/v- (@ +a)aL dv =0, (21)

/d*l(vj+ﬁ;i) -V dV:/P;’V-o;', dv . (22)
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In matrix form, we have

M;
Zﬂ;’k/awkwk,d‘/wLE [/V Vil dvV
k=1

——/v-vjw;'c,dv, (23)
M}
Zéé,z / AV} -V dV

_Z,@]k/wkv Vi dV — /d Vv dV . (24)

k=1

We must insist that the normalization (11) applies to 153,
and that (11) or (12) apply to each P/, depending on whether
a = 0 or not. This normalization is done either before trying
to solve the equations if ¢ = 0 on the block, or otherwise
after obtaining the solution.

We use a direct solver in this step, since there are multiple
right-hand sides (19 in all), and these problems are generally
small (at most the subgrid is perhaps 10 x 10 x 10). These
problems also parallelize trivially.

Once this step is complete, then we have the formal rep-
resentation of the subgrid solution on coarse block ¢ as

M;

P=Pé+27jpj_z</80k+2% ]k)wka (25)
j k=1

1
i

=i+ Y= Y (4 St )i 26)
j =1

J
Thus

Bi=Box+ > VB (27)
j

8= 53,z + Z’Yj ;z . (28)

J

We know every quantity above except the 7;, so these are
not yet computable. However, these formulas can be used in
the coarse scale equations to obtain a linear system for the
a; and y; only.

Step 2: The upscaled coarse problem. In the second step, we
solve the upscaled coarse problem, which is given by (9)—(10)
with the test functions which live on the coarse scale w = wy
and v = ¥;,. This system, when combined with (25)—(26),
gives a matrix problem for the a; and ~;. It is derived in
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detail in the Appendix. The system is

N N’
Eai/au‘)iu‘;i/deLZ%’/V-VﬂDi'dV
i=1 j=1

= /(b — aﬁo) Wy dV (29)

_Za,/w,v Vi dV+/(c—d Lig) - v dV (30)

=1

where, of coarse, Pj is 15; and 1 is ﬁ;
over the ¢th coarse grid block.

If the subgrid scale influence functions are set to zero, this
is a BDDF1 mixed finite element discretization of the pres-
sure equations representing conservation of mass and Darcy’s
law. The upscaled equations represent a coarse grid conser-
vation of mass and a coarse grid Darcy law, with the matrix
coefficients modified by the subgrid-scale influence functions.
Thus to implement, one first develops a code to handle the
BDDF1 method on the coarse-grid, and then modifies the
integration routines to solve (29)—(30).

Step 3: The fine-scale representation of the solution. Finally,
we construct a fine-scale representation of our solution by
combining the previous results to obtain

N
P=p+ Y (Bi+ b))
=1 1
N j
Z <ﬂo kT Z%ﬂ] k>wk:| (31)
k=1
u=a+ )y (ﬁg +Z%ﬁ;ﬁ>

whenever we integrate

= |:aiu_)z
i=1

i=1 J

N M;
—Z’YJVJ"'ZZ(‘SOZ"'Z% M) Vi (32)

i=1 (=1

This is precisely the solution to (9)—(10).

In summary, in Step 1, we solve in parallel (17)—(18) and
(23)—(24), possibly modified as mentioned in (11) for solv-
ability, for each coarse grid block ¢ for the coefficients of the
numerical Greens functions (or influence functions). We then
construct Pi, i, 15;, and @} using (13)-(14), and normalize
by (11) or (12) if this was not already done for solvability.
In Step 2, we solve the upscaled equations (29)—(30) for the
coarse coeflicients o; and ;. This gives part of our solution
P and . Finally, in Step 3, we construct a fine-scale rep-
resentation of our solution from (31)—(32). This is precisely
the solution to (9)—(10).
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Application to Two-Phase Incompressible, Immisci-
ble Flow

We can easily adapt our upscaling technique to two-phase im-
miscible flow if the system is written as a pressure equation
coupled to a saturation equation. While our technique could
be adapted for a fully implicit system, we chose to develop
a research simulator that used a sequential approach. Thus
both the pressure and saturation equations are individually
fully implicit, but they are decoupled in time. We solve for
the pressure using the saturation at the previous time, up-
date the velocities, and then advance the saturation.

The formulation of the equations. We use the standard
two-phase flow equations; however, they are formulated in
a somewhat nonstandard way. This has no bearing on the
numerical upscaling technique, but we mention it for com-
pleteness.

The global pressure formulation. The formulation of the pres-
sure equation that we use is due to Chavent [16]. When the
fluids are incompressible, we can define a “global” pressure
P from one of the phase pressures and the saturation S as

" Au(s)
P:Po+/ L Pl(s)ds , 33
Bl (33)
where Ay, (S) = krw(S)/pw and Ao(S) = kyo(S) /1o are the
relative mobilities, and A\(S) = Ay (S) + Ao (S). Then

AVP = Ay VP, + A VP, ,

and, with u = u,, + u, being the total velocity, we have the
pressure equation
0
a—(f-l-V-u:q(P), (34)
u=—KA(S)(VP — p(S)es) (35)

where ¢(P) = ¢, + ¢, represents the total flow of the wells
and the density is

Aw(S) Ao (S)

p(S) = A(S) Pw + A(S) Po -

(36)

With S being fixed in the equation to its value at the pre-
vious time step, this equation is the same as (1)—(2) if the
time derivative is replaced with a backward finite difference
and ¢(P) is an affine function. Generally one assumes the
rock compressibility is constant, so ¢ = ¢(P) is itself affine.
If ¢(P) is not affine, we linearize it in a Newton-Raphson
procedure to obtain an equation of the form (1)—(2).

The Kirchhoff saturation formulation. The saturation equa-
tion is formulated so as to use a standard fractional flow, but
with the diffusive terms modified with a Kirchhoff transfor-
mation [17]. That is, we have

09S
% +V-uy, = qu(S) , (37)

u, = —KVQ(S) + ¢(u,S) , (38)
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where the “complementary” potential ) and ¢ are given by

S
) =~ [ 20 pyas (39)

[u— KN(S)(po — pu)ges| . (40)

In the sequential approach, we have already solved for u, and
we use its fine-scale representation here. After replacing the
time derivative with a backward finite difference, and after
a Newton linearization, this equation is also of the form (1)—
(2).

We can adapt our upscaling idea to the saturation equa-

tion, and did so in [18] with a good deal of success. However,
because the saturation equation is diagonally dominant, we
found that the time savings were marginal when using our
particular upscaling technique for the saturation part of the
solution. Moreover, in certain difficult problems [19], we
found that the use of a higher order method prevented us
from satisfying the maximum principle that requires the sat-
uration to lie between its residual and one minus the residual
of the other fluid. It is well known that such monotone meth-
ods must necessarily be of the first order (if the method itself
is linear). Thus, we chose to solve the saturation equation
on the fine scale. For simplicity, we used one-point upstream
weighting.
Bottom-hole pressure wells. All terms associated with
constant rate injection wells have been treated in our de-
scription of the upscaling technique, since ¢ is known and
fixed. Bottom-hole pressure wells, as modeled by Peaceman
[20], present no difficulties either for the upscaling technique
or for the global pressure formulation. We have along the
well at depth level &,

Qi = —FKw,k(Puwk — Pye k) ,
Qo = —Ko,k(Pok — Pwell k)
Pye,k = Pup + pweng(2r — 2Bup) ,
puet = 2olGw kP + do.kpo)
Zk(Qch + QO,k)

where the k,, and k, are given by Peaceman. Thus, using
(33),

(41)

Qk = Quw,k + 9o,k
= —(Kuw,k + Kok) (Pe — PBaP — pweng(zi — 2BHP))
- Kw,ka (Sk) - Ho,kFO(Sk) 3 (42)

where
P, =P+ F,(9),
P, =P+ F,(9),

R =~ [ 2 rsds,

Fw(S) = FO(S) - PC(S) .
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We found it convenient to use the numerical Greens func-
tion approach to solve the bottom-hole pressure wells. We
let pwenn be our influence parameter and solve for the pres-
sure with pyen set to 0, and then solve for the pressure again
with the nonhomogeneous terms set to 0 and pyen set to 1.
Inspection of (42) shows that both of these equations are lin-
ear in P, so they simply result in a modification of ¢ and b
in (1)=(2). Finally a nonlinear iteration on (41) determines
pwell and completes the solution.

We have one additional pressure solve for each additional
bottom-hole pressure well, so this technique is feasible only
for a small number of wells. This implementation of the
wells would not be practical in a full field simulation. In
the general case, we would need to include the well terms as
linearized for a Newton-Raphson procedure. Again, only a
and b need to be modified.

Due to the evolution of the simulator, we found it conve-
nient for the saturation equation to incorporate bottom-hole
pressure wells in a somewhat unusual way. We took the total
injection rate as determined from the pressure equation and
divided it into the phases according to their relative mobility.

General Numerical Performance

Before presenting our reservoir simulation examples, we men-
tion a few general features of the upscaling method, and an
important modification.

Convergence rate for smooth solutions. We tested the
convergence rate of the method in [18] by solving the pressure
equation (1)—(2) in cases for which the solution is smooth and
known. When the number of subgrid blocks per coarse block
is held fixed, the errors in the velocities display second order
convergence. This is to be expected for the BDDF1 method,
however the RT0 method is only linearly convergent. Thus,
the use of higher order coarse elements is indeed sufficient to
maintain accuracy, and in fact this higher order is reflected
in the subgrid computation.

Savings in computation time. The speed of the upscaling
method is difficult to quantify, as it depends on so many fac-
tors. In our test cases, we used simply Jacobi preconditioned
conjugate gradients. It is well known that such a solver is
very easy to implement, but also that it does not perform
particularly well. However, we have consistently observed a
reduction in the solution times of about a factor of 2 to 10
for our upscaling method compared to solving the fine-scale
pressure equation with RT0 (which is essentially standard
cell-centered finite differences). Since our method is second
order accurate compared to first order for RTO0, this is quite
a savings in time. The savings in solution time compared to
solving the second order accurate fine-scale BDDF1 is much
more than a factor of 100 in most cases.

A more nearly optimal solver should close the timing gap
somewhat, so these reduction factors should not be taken too
literally. What is clear is that it is easier to precondition a
smaller, coarser system than a larger, finer one. This is due
partly to the reduced size, but also more importantly to the
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reduction in condition number that an averaged or upscaled
problem exhibits. The performance of Jacobi preconditioned
conjugate gradients is very sensitive to the condition num-
ber, and thus we see good speedup for the upscaled system.
Even a more efficient solution strategy will benefit from the
improved condition number of the upscaled problem com-
pared to the fine-scale problem. We note in passing that if
one wanted to solve the fine-scale problem, one could also
use our upscaling technique as a type of preconditioner. In
that case, perhaps one would be content with RTO on the
coarse scale.

One additional remark about the computational speed
should be made. The upscaling method improves data lo-
cality, so there is the potential to reuse more data within
high-speed memory caches than one might find in a fine-scale
solution technique.

Average permeability for nonsmooth solutions. When
solutions are not so smooth, it is possible that the coarse
flow is not quite of the proper magnitude. This is due to
using the fine-scale permeability in the upscaled equation
(30), coefficient d. To remedy this, we can use an aver-
aged permeability d in place of d on the left-hand side of
the equality. That is, replace [d~'(v; +1;) - (vj + ;) dV
by [(d)~'(¥%; +1;) - (¥; + ;) dV, but leave d alone in ev-
ery other term, especially in the subgrid equations. As we
will see in our two reservoir examples, this can bring about
an improvement in the overall performance of the upscaling
method.

A 3-D Numerical Example

In this section we present numerical results that demonstrate
the application of the method described above to some sim-
ple test cases. We will compare various upscaled computa-
tions against a fine scale computation which we treat as the
true solution. We consider a rectangular domain 500m X
250m x 40m with a water injector and a single producer,
discretized into 1600 fine scale cells (20 x 10 x 8). We up-
scale on a 4 x 2 x 2 coarse grid, corresponding to a 100-fold
reduction in the number of cells. The porosity is assumed
constant, at 0.25 and the permeability field is a realization of
a spatially correlated distribution derived from observations
on an outcrop. A constant-rate injector fully penetrates the
reservoir at (z = 100, y = 75), while a constant-bottomhole-
pressure producer at x = 400, y = 200 is completed only in
the upper 30m of the reservoir. Fig. 2 shows the saturation
distribution in a vertical plane containing the injector and
a horizontal plane at the bottom of the producer after 0.22
pore volumes of water have been injected. The influence of
zones of low permeability is evident in the “islands” of high
and low saturation. The upscaled solution (using the fine-
scale permeabilities directly for coefficient d in (30)) captures
many of these small scale features, as illustrated in Fig. 3.
Fig. 4 compares the computed water-oil ratio as a function of
pore volumes injected for several schemes for averaging the
fine-scale permeabilities to obtain d. The arithmetic average
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is denoted by ual; taking the harmonic average in the flow
direction and the arithmetic average in the direction perpen-
dicular to flow is denoted ua2; the root mean square average,
ua3; and the one-third power average, ua4. The latter does
the best job of capturing the behavior, though it predicts
slightly earlier water breakthrough.

An SPE Comparative Solution Example

Our second numerical example is based on the 2-D model
described in the 2001 SPE comparative solution project for
upscaling. The differences are relatively minor, and consist
mainly in not being able to set the bottom-hole pressure
properly and setting gravity to zero. The latter was done
to avoid complications with the saturation solver, and not
due to the pressure equation. Thus our results, though not
strictly comparable, do show the potential of numerical sub-
grid upscaling of the pressure equation.

Fig. 5 shows the fine scale solution after 1000 days of injec-
tion. The upscaling approach u captures several of the water
channels on the left side of the domain and several of the by-
passed regions on the right side, Fig. 6. Using the root mean
square averaging scheme in the upscaling smears the satura-
tion profiles, Fig. 7. The horizontal component of the total
velocity at 1000 days shows good qualitative agreement be-
tween the three computations as shown in Figs. 8, 9, and 10.
The straight upscaling approach yields a slightly wider range
of velocities than the true solution, while the approach using
average permeability yields a somewhat narrower range.

Conclusions

We presented a subgrid upscaling approach that decomposes
the governing differential equations into a coarse-grid-scale
operator that is coupled to a subgrid-scale operator. The
subgrid-scale problems can be solved independently of the
coarse-grid approximation thanks to a numerical Greens func-
tion technique. The global problem is solved only at the
coarse scale, and this solution is corrected at the subgrid
scale to obtain the fine-scale representation of the problem.
In this way no explicit macroscopic coefficients (e.g., effec-
tive permeabilities or pseudo-functions) arise, and thus no
assumptions about the physics or the expected flow behav-
ior are required.

We illustrated the implementation of this technique for the
flow of two immiscible, incompressible phases. For simplicity
the implementation is sequential, solving the flow equation
fully implicitly with saturation-dependent quantities evalu-
ated at the previous time step, then solving the saturation
equation fully implicitly and on the fine scale. We observed
a reduction in pressure solution times by a factor of 2 to
10, though we note that we obtain second order accuracy
while the fine-scale solution used for timing comparison is
only first-order accurate. Good agreement between the up-
scaled and fine-scale solutions is observed for test cases in
which the the coarse grid contains two orders of magnitude
fewer grid blocks. Using an appropriate average of the fine
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scale permeabilities may improve the fidelity of the upscaled
solution under some conditions.

Nomenclature
BDDF1 = first order Brezzi-Douglas-Duran-Fortin mixed fi-

nite element function space
BDM1 = first order Brezzi-Douglas-Marini mixed finite el-
ement function space
dV = differential of volume
e; = unit vector in the z-direction
ey = unit vector in the y-direction
e3; = unit vector in the z-direction
H = coarse-grid block diameter
fine-grid block diameter
grid block length in the x direction
grid block length in the y direction
grid block length in the z direction
absolute permeability
relative permeability
number of fine grid blocks in coarse grid block ¢
= number of fine grid block faces internal to coarse
grid block ¢
= number of coarse grid blocks
= 3 times the number of coarse grid block faces
= pressure
= capillary pressure
= Kirchhoff “complementary” potential
external well sources and sinks
= lowest order Raviart-Thomas mixed finite ele-
ment function space
= water (or gas) saturation
= Darcy velocity
velocity test function
velocity test function on the unit cube
pressure test function
spatial point
spatial point
finite element coefficients of coarse pressure
finite element coefficients of subgrid pressure
finite element coefficients of coarse velocity
finite element coefficients of subgrid velocity
relative mobility
viscosity
density
porosity
Subscripts and superscripts
1 = coarse grid block
j = coarse grid block face
k = subgrid block (or the depth index)
¢ = subgrid block face
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Appendix—Derivation of the Upscaled Coarse Prob-

lem

To upscale the problem (9)—(10), we choose coarse-scale test
functions. It is easier to describe the derivation if our choice
of test functions is actually w = wy and v = v; + 4y,
since it more readily results in a symmetric problem with
respect to the velocity unknowns. Thus, using our coarse
and subgrid decomposition (5) and (8) and the numerical
Greens functions as in (25)—(26), we have that

/G<P+p0+2’}/jpj> wy dV
J
+/V <ﬁ+ﬁ0+2’yjﬁj> wy dV
J

:/bwirdv,

/dil (ll + 1y + Z’Yjﬁj) (Vi +ay)dV

J

= / <P+150 +Zyj15j> V- (¥ 4 a,)dV

+ /C - (\7]'/ + fl]/) dV . (A*2)
Note that in all cases
/wv-odvzo, (A-3)
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since v has no flux external to the coarse block. Thus several
terms cancel above. For either normalization (11) or (12),

/anu_)i/ dv =0,
50 (A-1) combined with (3) and (6) gives (29).
Next we note that (21), with test function w = P,
implies that
/aﬁjzﬁjdeL/V-(Vj/ +ﬁj/)deV =0,
S0

/Pjv-(vj, +ﬁjl)dvz—/aﬁjﬁj, dv . (A-4)

Similarly, (16) with test function v = @ yields

/d*lﬁo e dV
:/Pov-ﬁjldv+/c-ﬁjfd‘/- (A-5)
Finally,
/ PV v, dV =0 (A-6)

by normalization (11). Combining (A-2)-(A-6) results in
/d—1 <ﬁ + Z%ﬁj> (¥ g dV
J
+ Z’yj/afjj le dv
J

:/Pv-vjldv+/c-vjldv

- /d*1ﬁ0 Y dV (A7)

Combining now (A-7) with (3) and (6) gives (30).

SPE 66375
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Fig. 1—A 2-D example of a 12 x 12 fine grid decomposed into a 3 x 3 coarse grid with 4 x 4 subgrids. The dots represent the
pressure values, one per fine grid block. The crosses represent the grid block face velocity fluxes. The circled crosses apply
to the coarse grid block faces, and represent linear flux variation across the face. The other crosses represent constant fluxes
across the subgrid block faces internal to the coarse blocks.

Saturation distribution, fine scale solution. t=0.22 PVI

Fig. 2—Slices through a 3-D waterflood example solved on a 20 x 10 x 8 grid, which we take to be the true solution. Spatial
correlation in the permeability field gives rise to significant small-scale heterogeneities in the saturation distribution.
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Saturation distribution, u solution. t=0.22 PVI

Fig. 3—Same example as in Fig. 2 solved on a 4 x 2 x 2 grid. The upscaling procedure captures much of the fine-scale
behavior.

1.2
— f0
--u
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PVI

Fig. 4—Computed ratio of water production rate to oil production rate (WOR) as a function of pore volumes water injected
(PVI) for a 3-D waterflood example. The fine-scale solution f0 is taken to be the true solution. Case u is the subgrid
upscaling technique using the fine-scale permeabilities directly in coefficient d in (30). Cases ual through ua4 replace d with
an average d; the average is the arithmetic (ual); harmonic in flow direction and arithmetic in the transverse direction (ua2);
one-half power average (ua3); one-third power average (ua4).
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S, at 1000 days, fO solution

o 100 200 300 400 500 600 700 800

BT [ T T T T T 7 [ [
Saturation: 0.04 0.12 0.20 0.29 0.37 0.45 0.53 0.61

Fig. 5—Saturation distribution after 1000 days injection in a 2-D example based on the SPE comparative solution project.
The solution was obtained on a 100 x 20 grid.

S, at 1000 days, u solution

300 400 500 600 700

BT [ T T T T T 7 [ [
Saturation: 0.04 0.12 0.20 0.29 0.37 0.45 0.53 0.61

Fig. 6—Solution to the 2-D example of Fig. 5 after 1000 days injection obtained with the subgrid upscaling scheme on a 5 x 5
grid.
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S, at 1000 days, ua3 solution
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Saturation: 0.04 0.12 0.20 0.29 0.37 0.45 0.53 0.6

Fig. 7—Solution to the 2-D example of Fig. 5 after 1000 days injection obtained on a 5 x 5 grid, using the one-third power
average permeability in the upscaling scheme.
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Vv, at 1000 days, fO solution

Fig. 8—Fine-scale computation of the horizontal component of the total velocity after 1000 days injection in the 2-D example
of Fig. 5.

v, at 1000 days, u solution

Fig. 9—Computation of the horizontal component of the total velocity after 1000 days injection in the 2-D example of Fig. 5,
computed on a 5 x 5 grid with the upscaling scheme w.

Vv, at 1000 days, ua3 solution

Fig. 10—Computation of the horizontal component of the total velocity after 1000 days injection in the 2-D example of Fig. 5,
computed on a 5 x 5 grid with the coarse-averaged permeability upscaling scheme ua3.



