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Abstract

Permeability and porosity parameters of a porous medium are known only
in a statistical sense. For risk assessment, one must perform multiple flow
simulations of a single site, varying these input parameters. Because mul-
tiple simulations of large sites are computationally prohibitive, upscaling
from fine to coarse scales 1s necessary. Traditional upscaling techniques de-
termine a new effective or upscaled permeability field defined on a coarser
scale, which is then used in a standard coarse grid discretization operator.
We develop here a method of determining a new coarse grid discretization
operator that provides an upscaled solution but bypasses the determination
of effective permeability and porosity fields. The method has two steps.
We first solve for fine scale flow information internal to each coarse grid
cell. Because the problems are small, this step is relatively fast. Then we
determine a modified coarse grid operator for solving the upscaled prob-
lem that includes the fine scale flow information from the first step. The
method is developed for single-phase flow in the context of the mixed finite
element method; therefore, the method 1s locally mass conservative. Unlike
traditional upscaling methods (such as homogenization) we do not impose
arbitrary boundary conditions on the coarse grid. We present comparisons

of our method with the harmonic average permeability upscaling technique.



1 Introduction

Modeling of physical systems requires input data which may have
significance on many different spatial scales, such as permeability
and porosity. The engineer obtains limited core sample and other
measurements, generates geostatistical extrapolation, and ends up
with a very finely resolved description of very uncertain parameters.

For risk assessment, the engineer runs a number of flow simu-
lations varying the input parameter distribution. Running a large
number of detailed simulations is not generally computationally fea-
sible in reasonable time; thus, the engineer is forced to work with a
coarser description of the input parameters. Upscaling is the process
of redefining (averaging) the physical system’s parameters up to a
coarser grid, forming effective or equivalent parameters, see [1].

Upscaling for both single and multiphase flow is currently an
active area of research (e.g., [1, 2, 3, 4, 5, 6]). For single-phase, the
simplest and cheapest method is harmonic averaging of the fine grid
permeability field. Even for this simple method, little is known about
the accuracy of the resulting coarse-grid flow simulation [7]. Simple
averaging seems most reliable when the directions of preferential flow
are parallel to the coordinate directions, and when the correlation
lengths of the permeability heterogeneity are small compared with
the size of the coarse grid cells [1]. Harmonic averaging, although
incorrect in some situations, is the most common upscaling technique.

Our method differs fundamentally from other upscaling methods
because no new effective coefficients (permeability and porosity) are
defined on the coarse grid. The method extends to multiphase flow,
but will be presented only for single-phase flow.

2 The Mixed Finite Element Method

Combining Darcy’s Law with conservation of mass gives the pressure
equation for single phase flow. Let € be the medium domain with
boundary I'. A single time step of the equation for the pressure or
head p and the Darcy velocity u is the first order system

u=—-KVp in €2, (1)
op+V - -u=4¢q in €,
where K depends on the permeability, ¢ depends on the rock com-
pressibility, porosity, and time step, and ¢ depends on the source



terms, porosity, and time step. We assume that on each fine grid cell
K is a diagonal tensor and both K and ¢ are constant. Neumann
boundary conditions are naturally imposed on the solution, so we
illustrate the essential Dirichlet conditions only: p = p” on T.

In the mixed finite element method (see [8]), we use a rectangular
grid and approximate the pressure in a finite element space W and
the velocity in V. The nodes of W are at the centers of the cells;
that is, they are the piece-wise discontinuous constant functions. The
velocity space V' consists of vectors in which the nodes are at the faces
of the cells. The first component function is a piecewise continuous
linear function in the z; direction, and it is discontinuous constant
in the x5 and z3 directions. Similar statements apply to the other
directions. Thus the velocity and consequent mass flux is continuous
normal to each cell face. On any cell, a function in V' has the form
(o1 + B1, gg + B2, azzs + [B3) for some constants oy and j3;.

It will be convenient to use the notation (f,¢) and (f, g) for the

integrals / f(x) g(x) dz and / f(x) g(x) dA(z). We write the sys-
Q r

tem in variational form by multiplying by appropriate test functions,
integrating over €2, and invoking the Divergence Theorem for one of
the terms. Then (1) reduces to finding v € V and p € W satisfying

{ (I(_lu7v) - (pvv ' U) = _<pD7U ' V>7 (2)
(¢p, w) + (V- u, w) = (¢, w),

for all basis functions v € V and w € W, where v is the unit outer
normal vector. Since this discrete problem is posed on the fine scale,
we consider its solution as the true solution.

3 Our Operator-Based Upscaling Technique

The idea is to decompose the fine scale solution into a coarse piece
plus a remainder. Recall that W and V are the function spaces for
pressure and velocity on the full fine grid. Let W, and V. be the
corresponding spaces on the coarse grid. Our goal is to capture some
of the fine grid flow internal to each coarse cell without solving the
full fine grid problem. Call the fine grid unknowns internal to each
coarse grid cell the §-problem unknowns, denoted dW and V. Then,

W =W.ao oW, (3)
W ={éw e W : [éwdx =0 on each coarse cell},



VaV.+46V,
OV ={év € V :6v-v =0 on the boundary (4)

of each coarse cell}.

We will solve a §-problem on each coarse grid cell for internal
fine grid unknowns. Line 2 of (4) is the only restrictive simplifying
assumption in the definition of our method. This closure assumption
states that we impose homogeneous Neumann boundary conditions
on the é-problems. It allows us to decouple the §-problems from
coarse grid cell to coarse grid cell and would make a parallel imple-
mentation of the method straight-forward. Note, however, that we
are not imposing arbitrary boundary conditions on the final upscaled
problem. We do not discuss other possible closure assumptions here.
We also note that in one spatial dimension, V' = V. 4+ 4§V, so no
simplifying closure assumption is imposed and our upscaling scheme
reproduces exactly the fine scale solution.

Substitute u = u.4+du, p = p.+dp, v = v.+dv, and w = w.+dw in
(2) and note that several integrals vanish. Then separate the system
into two subproblems corresponding to the d-scale (for test functions
v = dv, w = dw only) and the coarse scale (v = v, w = w. only).

3.1 The 4-Problems

On each coarse cell, du = du(pe, uc,q) € 6V and dp = dp(pe, ue, q) €
oW satisfy

(K~ (ue + 6u), dv) — (8p, V- dv) = 0, (5)
(¢(p. + 0p), dw) + (V - du, dw) = (g, dw),
for all év € 8V and dw € dW. We do not know the values of u,
and p. at this stage. We discuss the solution of these d-problems in

Subsection 3.3, where we show how to represent these functions in
terms of ¢ and the nodal values of p. and u..

3.2 The Coarse Problem

The second step of the upscaling process is to use du and dp to find
. € V. and p. € W, solving the upscaled coarse problem

{ (K~ (e + 0u(pe, ey q)); ve) = (pe, V- ve) = =(pP ve - v), (6)
(¢(pc + 5P(PC7 U, f]))7 wc) + (V U,y wc) = (% wc)7



for all v, € V. and w,. € W.. We have found a new coarse-grid linear
operator L(ue, p.) = K~ '(u, + du(u., p.)), rather than a new value
for K. Hence the designation operator-based upscaling. The effect
of the du and dp terms is to modify the entries in the matrix of the
linear system. If no upscaling were performed, this would correspond
simply to taking du = 0 and ép = 0.

3.3 Decoupling the Coarse and -Scales

For simplicity, we illustrate the solution of (5) in one spatial dimen-
sion on the coarse cell from 0 to h. On this cell, p. has 1 nodal value
N,, 80 p. = N,. Let Ny and N, be the 2 nodal values of u. (there are
4in 2-D and 6 in 3-D). Then u. = Ny (h — z)/h+ N, z/h.

Given any U, P, and @, we can find 6U = §U(P,U, Q) € 6V and
OP =0P(P,U,Q) € §W such that

(K=Y(U +6U),6v) — (6P, V - 6v) = 0, .
(G(P + 8P), 8w) + (V - U, bw) = (Q, dw), (7)

for all dv € 8V and dw € é6W. Let us solve for

(5up7 5pp) = (5U(17 07 0)7 5P(17 07 0))7
(5ulv 5])1) = (5U(07 (h - $)/h, 0)7 5P(07 (h - $)/h, 0))7 (8)
(5u7’7 5])7’) = (5U(07 $/h7 0)7 5P(07 $/h7 0) 9

(&qu(qu) = (5U(0707q)75P(0707q )

Each of these is readily solved (and in parallel) over the relatively
small coarse grid cell. The desired §-solutions are then clearly

du = Npbu, + Nidug + N,ou, + dug, ()
6p = Npopp + Nidpi + N.-6p, + dpy-

4 Numerical Experiments

We present the results of 3 numerical experiments. We consider a
2-D unit square domain, take K as a scalar, and use a fine grid of
40 x 40, upscaled to 10 x 10. In Exp. 1, we set ¢ = .1 and ¢ = 0, take
a heterogeneous K, and impose no flow boundary conditions on two
adjacent edges and a unit pressure drop across the other two edges. In
Exp. 2, we set ¢ and ¢ as above, take a streaked heterogeneous K, and
impose a unit pressure drop across opposite faces so that channeling



of the flow can occur. In Exp. 3, we set ¢ = .001 and K = 1, and
impose no flow boundary conditions on all edges. The source term
represents 2 wells of opposite strength, each with ¢ = £10 and acting
over the region of a single fine grid cell, located at the corner of a
coarse cell: injector at 7/40 < 2 < 8/40, 7/40 < y < 8/40 and
extractor at 35/40 < z < 36/40, 32/40 < y < 33/40.

We compute five solutions. Three are the full fine scale solution,
the coarse scale solution (computed with no upscaling), and the up-
scaled solution. When K is heterogeneous, we can find its harmonic
average K over the coarse scale. The harmonic coarse scale solution
is computed on the coarse scale using K. Finally, (6) is posed on the
coarse scale. We replace K by K in that equation only (i.e., not in
(5) or (7)), giving the harmonic upscaled solution.

Table 1: The coarse scale relative errors.

Harmonic | Harmonic
Exp. Coarse | Upscaled Coarse Upscaled
1-p 0.2139 0.1855 0.0236 0.0208
1-u 0.3826 0.3518 0.2310 0.2397
2-p 0.1027 0.0886 0.0264 0.0256
2—u 0.6984 0.6553 0.1063 0.1664
3-p 0.1002 0.0162 — —
3-u 0.1519 0.0672 — —

Table 2: The fine scale relative errors.

Harmonic | Harmonic
Exp. || Coarse | Upscaled Coarse Upscaled
1-p 0.2245 0.1862 2.8775 0.0331
1-u 0.5433 0.4512 1.1683 0.4200
2-p 0.1167 0.0951 0.5527 0.0901
2-u 0.8022 0.7248 0.9347 0.5779
3-p 0.1458 0.0380 — —
3-u 0.2389 0.1563 — —

We report in Tables 1-2 relative errors of p in L? and u in L',
by comparing the coarse, upscaled, harmonic coarse, and harmonic
upscaled solutions with the fine scale solution. These errors are com-
puted on either the coarse or fine scale. On the coarse scale, we
actually compare with the projection of the fine scale solution to the
coarse level; that is, with the best possible coarse scale representation



of the fine scale solution in W, x V.. Thus, we see only (p,, u.) of the
upscaled solutions. On the fine scale, we compare with the full fine
scale solution in W x V', and we include the §-problem corrections to
the upscaled solutions. It is important to note that Table 2 is more
germane to nonlinear problems, since we need accurate fine scale so-
lutions to predict relative permeabilities and capillary pressures.

Figure 1: Harmonic coarse scale Figure 2: Upscaled solution on
solution (Exp. 2) the coarse scale p.

H
Figure 3: Harmonic upscaled Figure 4: Harmonic upscaled
solution on the coarse scale p, solution on the fine scale p.+dp

One can prove from the theory of finite elements that the upscaled
solution error will be no worse than the coarse solution error. Such
an estimate is not known for harmonic averaging; it is possible for the
harmonic solution to be worse than the coarse solution. On the coarse
scale, Exps. 1 and 2 show that for heterogeneous K, the solution
improves with harmonic averaging, and that our upscaling is at best
of marginal benefit. However, on the fine scale, the combination of



harmonic averaging and our upscaling produces superior results, and
upscaling alone is better than harmonic averaging. We illustrate the
pressure of Exp. 2 in Figs. 1-4. Exp. 3 shows that it is possible and
important to resolve the location of wells in a coarse mesh.
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