
ICES REPORT 14-20

August 2014

Fluid-Filled Fracture Propagation using a Phase-Field
Approach and Coupling to a Reservoir Simulator

by

Thomas Wick, Gurpreet Singh, Mary F. Wheeler

The Institute for Computational Engineering and Sciences
The University of Texas at Austin
Austin, Texas 78712

Reference: Thomas Wick, Gurpreet Singh, Mary F. Wheeler , "Fluid-Filled Fracture Propagation using a
Phase-Field Approach and Coupling to a Reservoir Simulator," ICES REPORT 14-20, The Institute for
Computational Engineering and Sciences, The University of Texas at Austin, August 2014.



Fluid-Filled Fracture Propagation using a Phase-Field

Approach and Coupling to a Reservoir Simulator

Thomas Wick Gurpreet Singh Mary F. Wheeler

July 31, 2014

Abstract

Tight gas and shale oil play an important role in energy security and in meeting an
increasing energy demand. Hydraulic fracturing is a widely used technology for recov-
ering these resources. A quantitative assessment of hydraulic fracturing jobs relies upon
accurate predictions of fracture growth during slick water injection for single and mul-
tistage fracturing scenarios. It is also important to consistently model the underlying
physical processes from hydraulic fracturing to long-term production. A recently intro-
duced thermodynamically consistent phase-field approach for pressurized fractures in
porous medium is utilized which captures several characteristic features of crack propa-
gation such as joining, branching and non-planar propagation in heterogeneous porous
media. This phase-field approach captures both the fracture-width evolution and the
fracture-length propagation; here we address the latter. In this work, we briefly describe
our phase-field fracture propagation model and then present a technique for coupling
this to a fractured poroelastic reservoir simulator. The proposed coupling approach can
be adapted to existing reservoir simulators. We presents two and three dimensional
numerical tests to benchmark, compare and demonstrate the predictive capabilities of
the fracture propagation model as well as the proposed coupling scheme.

Keywords. phase-field; pressurized fractures; iterative coupling algorithm; reservoir
simulation

Introduction

Hydraulic fracturing is a well known method for recovering oil and gas from tight gas and
shale plays. It is pivotal in meeting a continually growing energy demand. Concerns are also
being raised regarding its impact on long and short term environmental implications. Thus,
there is an imminent need for physically and mathematically consistent, accurate and robust
computational models for representing fluid field fractures in a poroelastic medium. The
simplest model description involves coupling of (1) mechanical deformation, (2) reservoir-
fracture fluid flow, (3) and fracture propagation. The rock deformation is usually modeled
using the linear elasticity theory (Biot (1941a,b, 1955)). For fluid flow modeling, lubrica-
tion theory and Darcy flow are assumed in the fracture and reservoir respectively, which are
coupled through a leakage term. Finally, for fracture propagation the conventional energy-
release rate approach of linear elastic fracture mechanics (LEFM) theory is used. We also
note some of the concurring modeling and numerical approaches for fracture propagation
currently used such as cohesive zone models (Xu and Needleman (1994)), displacement dis-
continuity methods (Crouch (1976)), partition-of-unity (Babuska and Belenk (1997)) based

1



XFEM/GFEM methods (Moes et al. (1999); de Borst et al. (2006); Secchi and Schrefler
(2012); Babuska and Banerjee (2012)), boundary element formulations (BEM) (Castonguay
et al. (2013)) and peridynamics (Silling (2000)).

Variational approaches (Francfort and Marigo (1998); Bourdin et al. (2008)) and a
thermodynamically consistent phase field formulation (C. Miehe (2010)) have been employed
in solid mechanics. An application to hydraulic fracturing is given in (Bourdin et al. (2012)).
C. Miehe (2010) extended the variational approach (Francfort and Marigo (1998); Bourdin
et al. (2008)) by modeling crack irreversibility through an entropy condition satisfying the
second law of thermodynamics and decomposing the strain tensor to account for tension and
compression. Our approach (Mikelić et al. (2013a,b)) is based upon C. Miehe (2010) with
an extension to porous media applications where solids (geomechanics) interact with fluids.
To develop a phase-field formulation for such applications, geomechanics and porous media
flows are decoupled using fixed-stress splitting (Settari and Walters (2001); Mikelić and
Wheeler (2012)). With this methodology, modeling and simulations of hydraulic fractures
in poroelasticity have been considered (Mikelić et al. (2013a,b, 2014b); Wheeler et al. (2014);
Mikelić et al. (2014a); Wick et al. (2014)).

We provide a brief recapitulation describing Griffith’s model for fracture growth in
brittle media. The classical theorem of minimum energy suggests that an equilibrium state
achieved by an elastic body deformed by surface forces is such that the potential energy
of the system is minimal. This was later augmented by Griffith (1921), in his seminal
work, assuming a different equilibrium state is possible which accounts for formation of
fractures as a mechanism for lowering potential energy. This criterion of rupture assumes
that the cohesive forces, due to molecular attraction, act close to the fracture tip. Thus,
the contribution of cohesive forces (surface potential energy) to the total potential energy
can be assumed to be negligible. Based upon these assumptions, a decrease in potential
energy is proportional to the generated surface area with the critical energy release rate
(Gc) as the constant of proportionality. In this work, we rely upon this classical work
along with its assumptions on the fracture growth criteria. As noted by Barenblatt (1962),
we do not underestimate the significance of cohesive forces at the fracture tip. However,
the contribution of these forces to the total potential energy is assumed to be significant
only during fracture nucleation which diminishes as the fracture grows. Based upon these
arguments we assume that LFEM is applicable.

Using a phase-field approach, a lower-dimensional crack surface is approximated as a
diffusive transition zone by a phase-field function ϕ. Fig. 1 shows this diffusive transition
zone (also brittle or mushy-zone) between the broken (white zone) and the unbroken (brown
zone) states of the material. A fixed-topology finite element phase-field approach is shown
where a (lower-dimensional) crack is approximated with the help of a phase-field function.
The phase-field function is an indicator function with values 0 and 1 inside and outside the
crack, respectively. The mushy-zone also provides a smooth interpolation for the interface
between a fracture and reservoir. A coupling of reservoir fluids and geomechanics allows a
comprehensive study of this multiscale problem where only few results have been published
to date (see for instance Dean and Schmidt (2008) and Lujun and Settari (2007)). Further,
we also describe an algorithm to integrate fracture growth patterns with our reservoir sim-
ulator IPARS (Implicit Parallel Accurate Reservoir Simulator). This allows for both short
term transient pressure analysis and long term recovery predictions. We note that crack or
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fracture propagation, which will be used interchangeably, implies both variation of fracture
width (or aperture) and its length.

The major advantages of using phase-field modeling for crack propagation are four-
fold: First, and most important, the model is easy to implement and uses a fixed-grid
topology in which remeshing for resolving the exact fracture location is avoided. Second,
fracture nucleation, propagation, kinking, and curvilinear path are intrinsically determined.
This avoids computational overheads associated with post-processing of quantities such as
stress intensity factors. Third, we can easily handle large fracture networks since complex
phenomena of joining and branching does not require keeping track of fracture interfaces.
Fourth, modeling crack growth in heterogeneous media does not require special treatment.
Here however, the length-scale parameter ε should be chosen accordingly. Additionally,
the crack opening displacement (fracture aperture) can be calculated using the phase-field
function. We use the pressurized crack propagation model in a poroelastic medium using a
phase-field approach proposed by Mikelić et al. (2013a,b).

Figure 1: Evolution of two pressurized fractures: first joining, then nonplanar growth and
finally branching in heterogeneous porous media.

Our focus in this paper is on the following aspects. We investigate the previously
described phase-field approach for different crack propagation scenarios including hetero-
geneous porous media including permeability and geomechanical parameters. Second, we
perform detailed studies of multi-stage fractures. Third, we consider the phase-field model
as a fractured-well approach in a reservoir and we consequently couple this approach to a
reservoir simulator. This paper concentrates primarily on the approach for fracture growth
using slick-water injection. We account for varying reservoir complexities such as natu-
ral fractures, faults and barriers using a comprehensive fractured poroelastic reservoir flow
model. This allows for a two-stage production optimization owing to (1) a well-engineered
hydraulic fracturing scheme followed by (2) an optimal fractured well placement considering
far from well-bore reservoir complexities. The paper is organized as follows: we first pro-
vide our motivation for the work and the reason for our choice of using a phase-field model
for hydraulic fracturing. In the next section, we provide the governing equations for the
fracture phase-field approach the reservoir flow equations. In the section after, we provide
details on the coupling algorithm between the fracture phase-field model and the reservoir
simulator. In the final section, numerical tests are discussed to demonstrate our method.
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Pressurized and Fluid-filled Crack Propagation Models using Phase-field

In this section, we describe the proposed model development starting by defining a two-
field problem in two unknowns: (1) a vector displacement field and (2) a scalar phase-field
variable (ϕ), assuming a known pressure field (the so-called pressurized fracture propaga-
tion). This is later extended to a three-field problem, adding scalar pressure (p) as an
unknown, accounting for flow inside the porous rock matrix and the fracture (the so-called
fluid-filled fracture propagation). Therein, a single pressure diffraction equation (see Mikelić
et al. (2014a)), derived from the mass conservation equation and Darcy’s law, is used for
local flow field calculations. The elasticity and phase-field equations are formulated as an
energy minimization problem. We obtain a weak form of the differential equations by dif-
ferentiating this energy minimization function with respect to the solution variables. This
serves as a natural setting for using a Galerkin finite element method for spatial discretiza-
tion. Before we begin, it is important to discuss the key features of the classical brittle
fracture theory (Griffith (1921)) used in this work. The theory postulates two physical
phenomena: (1) linear elasticity and (2) fracture propagation, as energy dissipation mech-
anisms, strictly separated by a threshold (critical energy release rate) assuming a sharp
transition between the fractured and non-fractured media. The Griffith’s criterion for brit-
tle fracture propagation assumes:

1. The crack growth is irreversible.

2. The energy release rate is bounded above by a critical energy release rate.

3. The crack grows if and only if the energy release rate is critical.

Let Ω be the reservoir domain, as shown in Fig. 2, with the fracture C ⊂ Ω.

Ω

C

Figure 2: Problem description.

Pressurized fracture propagation model (two-field problem) We begin by describ-
ing the pressurized fracture approach where a known pressure field is assumed on the domain
Ω. The pressure remains invariant along the fracture length varying only temporally based
upon a simple correlation. The pressure variation along the fracture length is assumed to
be negligible. Later we show that this assumption is valid if the fracture conductivity is
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substantially larger than the reservoir conductivity, which is usually the case. The energy
functional for a poroelastic material (Ω) with a crack (C) reads:

E(u, C) =
1

2

∫
Ω
σE : e(u)︸ ︷︷ ︸

Elastic energy

−
∫

Ω
αB(p− p0)∇ · u︸ ︷︷ ︸

Pore pressure contribution

+ GcHd−1(C)︸ ︷︷ ︸
Fracture energy

, (1)

with the following constitutive stress-strain equation and definition of strain e(u):

σE = 2µe(u) + λtr(e(u))I, (2)

e(u) =
1

2
(∇u+∇uT ). (3)

where µ and λ denote the Lamé parameters, σE the Cauchy stress tensor, e(u) the
strain tensor, αB the Biot coefficient, p the pore pressure, po the reference pressure, u the
displacements. Gc is the critical elastic energy release rate depending on the material and
is determined experimentally and Hd−1 is the length of the fracture. Please note that Gc
is related to stress intensity factor under certain assumptions on the material such as an
isotropic, linear elastic solid (Irwin (1958)). Further, we follow the approach presented
by Ambrosio and Tortorelli (1990) for approximating the fracture length (Hd−1) using an
elliptic functional

1

2ε
‖1− ϕ‖2 +

ε

2
‖∇ϕ‖2, (4)

thereby introducing an additional variable ϕ, referred to as the phase-field variable
hereafter. This variable is a quantity defined on the entire domain Ω for a time span
varying from 0 to T. A careful examination of Eqn. 4 shows, for a given value of ε > 0, this
functional assumes lowest values when ϕ is a constant assuming values of either 0 (fracture)
or 1 (porous rock matrix). We notice that the phase-field approach is related to gradient-
type material modeling with a characteristic length-scale. Here, the above regularization
parameter ε can be considered as such a length-scale parameter that has a physical meaning
(Pham et al. (2011); C. Miehe (2010) and references cited therein). The second term ensures
that ϕ changes smoothly between 0 and 1 allowing the representation of the fracture as a
diffuse interface. Eqn. 4 represents a mathematically-consistent approximation of the true
crack Hd−1.

In order to satisfy assumptions 2 and 3 the energy functional (Eqn. 1) is regularized
with ϕ as follows:

Eε(u, ϕ) =
1

2

∫
Ω

((1− κ)ϕ2
+ + κ)σE : e(u)−

∫
Ω
αB(p− p0)ϕ2

+∇ · u

+Gc

(
1

2ε
‖1− ϕ‖2 +

ε

2
‖∇ϕ‖2

)
(5)

Here, ϕ+ is the maximum of ϕ and 0, κ ≈ 0 (determined by machine precision) is a positive
regularization parameter for the elastic energy and the length-scale parameter ε denotes the
width of the transition zone in which ϕ changes from 0 to 1 (this width is illustrated as the
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contour lines between the white and brown regions in Fig. 1). One can see from Eqn. 5
that if ϕ is 0 (fracture), the first and second terms become zero and the energy functional
is dominated by the critical energy release rate Gc. Similarly when ϕ is 1, the third term
becomes zero. An intermediate behavior can be seen for values between 0 and 1. Finally,
we impose the irreversibility constraint (assumption (1)) on ϕ; i.e.,

∂tϕ ≤ 0, (6)

which ensures that the state variables change in the direction of energy minimization or
entropy maximization, in accord with the 2nd law of thermodynamics. Then, the final
energy functional reads:

Eε(u, ϕ) =
1

2

∫
Ω

((1− κ)ϕ2
+ + κ)σE : e(u)− 1

2

∫
Ω
αB(p− p0)ϕ2

+∇ · u

+Gc

(
1

2ε
‖1− ϕ‖2 +

ε

2
‖∇ϕ‖2

)
+ IK(ϕn−1)(ϕ), (7)

where the last term IK(ϕn−1)(ϕ
n) is a penalization term to impose the irreversibility con-

straint (6). We are now ready to derive differential equations in a Galerkin fashion that can
be easily adapted and implemented in legacy reservoir simulators using finite element dis-
cretizations. For the sake of brevity, we directly introduce these differential equations. The
reader is referred to Mikelić et al. (2013a) for a detailed derivation. The problem statement
then reads: Find u and ϕ such that,∫

Ω

(
(1− κ)ϕ2

+ + κ
)
Ge(η) : e(w)−

∫
Ω

(αB − 1)(ϕ2
+pdiv w) +

∫
Ω
ϕ2

+∇pw = 0

∀ admissible test functions w,

as well as,∫
Ω

(1− κ)(ϕ+ Ge(η) : e(η)ψ −
∫

Ω
2(αB − 1)(ϕ+ p div η)ψ + 2

∫
Ω
ϕ+∇p ηψ

+Gc

(
−
∫

Ω

1

ε
(1− ϕ)ψ +

∫
Ω
ε∇ϕ∇ψ

)
+

∫
Ω

(Ξ + γ(ϕ− ϕn−1))+ψ = 0

∀ admissible test functions ψ.

Here, Ξ and γ are a penalization function and parameter, respectively, to enforce the irre-
versibility constraint of crack growth with the help of an augmented Lagrangian formulation
(Wheeler et al. (2014)). In the last term, ϕn−1 denotes the phase-field solution to the pre-
vious time step.
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Fluid-filled fracture propagation model (three-field problem) In the previous sec-
tion, a given uniform fracture pressure was assumed for crack propagation. Here we briefly
describe an extension of this approach where a pressure field is computed by solving a
flow problem on the entire domain (both reservoir and fracture). An extended Reynold’s
lubrication equation and Darcy’s law are solved in the fracture and reservoir domains, re-
spectively along with the fluid mass conservation equations. The benefit of our proposed
approach is that both sets of equations have similar structure identified by the phase-field
variable as separate fracture (ΩF (t)) and reservoir (ΩR(t)) domains. Here, ΩF (t) is the
volume approximation of the crack C. For further details the reader is referred to Mikelić
et al. (2014a). The mass conservation equations for fluid flow are:

∂tρF +∇ · (ρF vF ) = qF − qL in ΩF (t),

∂t(ρRφR) +∇ · (ρRvR) = qR in ΩR(t).
(8)

Please note that the fracture porosity is set to one. The fracture volume is accounted for
by the spatial discretization. Here, the velocities are defined by the Reynold’s lubrication
equation and Darcy’s law for the fracture and the reservoir, respectively:

vj = −Kj

νj
(∇pj − ρjg). (9)

The term qL represents the leakage from the fracture owing to the 3D approximation of
2D Reynold’s lubrication equation for the fracture domain. Where, j = F,R denotes the
fracture and reservoir domains, φj the fluid fraction, Kj the permeability tensor, νj and
ρj the fluid viscosity and density, respectively, g the gravity and qj the source/sink term.

A comparison of Darcy’s law and Reynold’s lubrication equation shows that KF = w(u)2

12µ ,
where w(u) is the fracture width (or aperture) calculated from jump in normal displacements
u. A detailed derivation of our leakage term can be found in Mikelić et al. (2014a).

7



Discretization and solution algorithm The flow and mechanics equations are solved
using the fixed-stress iterative coupling scheme (Settari and Walters (2001); Mikelić and
Wheeler (2012)) where decoupling is achieved as illustrated in Figure 3 along with the
algorithmic flow chart 1. We then first discretize in time using a backward Euler scheme
followed by spatial discretization with a continuous Galerkin finite element method on a
hexahedral grid with grid size parameter h. Here, all variables are discretized by continuous
bilinears in space. We note that h� ε, which requires fine meshes around the fracture(s).
To this end, we use local mesh refinement with hanging nodes (see Figure 4).

Algorithm 1 Augmented Lagrangian fixed-stress solution algorithm

For each time tn

repeat
Solve augmented Lagrangian loop (outer loop)
repeat

Solve two-field fixed-stress (inner loop):
Solve the pressure diffraction Problem (8)
Solve linear elasticity in Problem (8)

until Stopping criterion

max{‖ul − ul−1‖, ‖pl − pl−1‖} ≤ TOLFS, TOLFS > 0

for fixed-stress split is satisfied
Solve the nonlinear phase-field in Problem (8)

Update
Ξk+1 = (Ξk + γ(ϕk+1 − ϕn−1))+, k = 0, 1, 2, . . .

until Stopping criterion

‖Ξk−1 − Ξk‖ ≤ TOLAL, TOLAL > 0

is satisfied
Set: (un, ϕn) := (uk, ϕk).
Increment tn → tn+1.
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pl

ul

ϕl

pl+1

ΩF

Given ul−1, ϕl−1

Pressure force in elasticity

Pressure force in phase-field

α and w

Bulk energy coefficient

ul+1

Previous step Next stepPresent step 0 Present step 1 Present step 2

Compute pl Compute ϕlCompute ul

Bulk energy term

Figure 3: Explication how the three equations for pressure, displacements and phase-field
couple together. In each iteration step (within each time step), we compute first pl, then
ul, and finally ϕl, where each variable influences the other two. Specifically, ϕl alters the
fracture domain ΩF, which influences the computation of the new pressure pl+1.

Integrating Phase-field Crack Propagation and Fractured Reservoir Flow Models

In this section, we describe the proposed coupling method while outlining a work-flow
for translating fracture location, geometry and width information between the phase-field
crack propagation model and the production reservoir code. The use of hexahedral elements
for spatial discretization in both models allows translation of fracture location and variables
from one model to another. The phase-field with crack growth and localized flow is used as
a pre-processor step for the fractured reservoir flow. This results in a forward solution with
the pertinent fracture geometry and width translated at the end of the propagation. We
consider phase-field as an independent module that can be coupled to other codes. This
assumes hydraulic fracture growth to be a local or near well bore phenomenon which is not
affected by far-field reservoir complexities such as reservoir boundaries, faults and barriers.
Under this assumption, the two processes: hydraulic fracturing and later production are
decoupled. Thus a local flow problem with appropriate boundary conditions is solved to
compute a local pressure field during fracture propagation.

This forward coupling is computationally inexpensive and adequately captures local flow
field variations effecting fracture growth. Another advantage is that the phase field crack
propagation model generates fracture growth information as a standalone module. The
spatial and temporal scales associated with fracture growth and later production from a
hydraulically fractured reservoir are widely different. Therefore, it is reasonable to treat the
two processes separately. As discussed previously, the phase-field model includes a localized
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fluid flow description and can therefore generate crack growth information as a stand alone.
We then post-process and adapt this crack geometry data for our fractured poroelastic
reservoir simulator resulting in a one-way coupling. This approach can be adapted for
other legacy reservoir simulators.

Projection of variables/ mesh reconstruction We start with the phase-field approach
and solve for p, u, ϕ. At the end of the fracturing process, the reservoir simulator needs the
pressure p as initial pressure, ϕ to detect the shape of the fracture and finally the width
w := w(u), which is computed as jump of the normal displacements. The shape of the
fracture is determined for all ϕ < thr, where thr denotes a certain threshold, say thr = 0.1
(see Figure 4). If ϕ < thr in a cell, it is marked as fracture cell. All unknown quantities
are computed at cell centers with the associated co-ordinate information to the reservoir
simulator.

Figure 4: Determination of crack shape using threshold of the phase field variable to de-
termine fracture cells (marked red). The phase-field module uses locally-refined grids with
hanging nodes, which allows to reduce the computational cost significantly.

We post-process and adapt fracture geometry from crack growth model for the fractured
poroelastic reservoir flow model. Fig. 5 shows reconstruction of a coarse, locally distorted,
hexahedral mesh which adequately captures the three characteristic length scale variations
of a typical elliptic fracture.

Figure 5: Reconstructing the fracture geometry.

Fig. 6 outlines a work-flow for reconstructing 3D fracture geometry, for reservoir flow
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simulation, from 2D fracture information generated by the fracture growth model. The first
row shows geometry information for one and three fractures (left and right, respectively)
in the YZ plane. A typical fracture growth pattern, in the XZ plane is then used to
reconstruct 3D fracture geometries. We use the fact that final fracture geometries after slick
water injection are strongly correlated to reservoir rock property data and can therefore be
scaled.
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Figure 6: Work-flow for reconstructing 3D fracture geometry from 2D information.

Fractured well model As previously described, the crack propagation model already
couples fracture flow to reservoir and is therefore complete in itself. That means, starting
with a given setting, we commence with that model and compute a fracture geometry,
which might include curvilinear growth, branching and joining. The fracture geometry is
passed to the reservoir simulator, as described in the previous section. The width and
the pressure information from the phase-field model are set as the initial conditions for
the reservoir simulator. Fig. 7 (right) shows fractured well placement (red blocks) in a
reservoir with natural fractures (shaded orange). The mesh adaption is convenient since
both models utilize hexahedral meshes thus avoiding computationally costly interpolation
between meshes with different mesh elements (tetrahedral, prisms etc.).

The key advantage of our suggested ideas is concerned with the effort in coupling.
Rather than iterating in each time step between both frameworks, the phase-field is used as
a preprocessor step and as such acts as a own module. This allows us to run different well
placement scenarios with the reservoir simulator using the same fracture geometry avoiding
redundant fracture growth calculations for each scenario. The accuracy of the phase-field
approach for modeling fracture propagation increases, as the mesh is refined. The spatial
and temporal scales associated with crack propagation are much smaller when compared to
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Figure 7: Integrating fractures generated by phase field model as a fractured well model.

reservoir flow. Therefore, the use of a fine mesh for fracture growth computations followed
by reservoir flow calculations on a coarse mesh is computationally efficient. In order to
expedite the calculations for the phase-field fracture growth model, we utilize a dynamic
mesh refinement approach with locally refined grids and hanging nodes (see Fig. 4). For
example, if we run 20 time steps, we perform the first 15 on a coarse mesh and refine the
last 5 time steps to get more accurate fracture tip and associated variable information. This
procedure keeps the computational cost very reasonable while increasing accuracy.
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Numerical Tests

We illustrate our methodology by several numerical tests in two and three dimensions.
First, we highlight the capabilities of the fractured-well phase-field model and present some
crack propagation scenarios including multi-stage fractures, stress-shadowing effects and
crack growth in heterogeneous porous media with nonplanar fractures. Second, we use one
of these scenarios, extract the fracture and run the reservoir simulator.

The fracture-well phase-field model is computed with the multiphysics template (Wick
(2013)) in combination with deal.II’s (Bangerth et al. (2012)) step-31 for the usage of two
different degree-of-freedom-handlers to build an iterative solution algorithm as needed for
the fixed-stress splitting. In the following, we provide geometry information and parameters
for the test cases.

Geometry, grid and time step parameters
The computational domain for all 2d tests is Ω = (0, 4)2. Here, two fractures each with

length 1 and midpoints x = 1.5 and x = 2.5 are prescribed. In the second test, the distance
is enlarged and the midpoints are x = 1 and x = 3. In the cases of the three multi-stage
fractures, we consider the midpoints x = 1, 2, 3. Here, in the first test all three fractures
have length 1, in the second test the middle fracture has length 0.5 and in the final test
1.5. In 3d, in the cube Ω = (0, 10)3, we prescribe a two penny-shape cracks with radius
r = 1.0 in the y = 5.0-plane with mid-points (5.0, 3.0, 5.0) and (5.0, 7.0, 5.0). The crack
is approximated as a volume by extending it with the spatial discretization parameter h
in up- and downward y-direction, respectively (for details, we refer the reader to Wheeler
et al. (2014)). As boundary conditions we set the displacements zero on ∂Ω. We compute
50 (2d) and 50 (3d) time steps with time step size ∆t = 0.01 (2d) and ∆t = 0.005 (3d),
respectively. We note that the characteristic fracture time scale is,

TF =
L2ηF cF

K̃F

=
1× 10−3 × 10−8

10−8
= 10−3,

in which we assumed a characteristic fracture length 1 and characteristic fracture perme-
ability K̃F = 10−4.

Model parameters
The augmented Lagrangian penalization parameter is γ = 104 (2d) and γ = 103 (3d).

Several parameters and geometry-related issues depend on the spatial mesh size parameter
h. Namely, for the regularization parameters we choose the relations κ = 10−6 × h, ε =
2h = 0.088 (2d) and κ = 10−6 × h, ε = 2h = 1.09 (3d).

Flow parameters In all examples, the gravity g is set to zero and the fluid is only
driven by the point source injection q. We inject fluid at a constant rate into the frac-
tures. In 2d and 3d, we use q = 1. Furthermore, the permeability in the reservoir is
KR = 10−12. In the the second example, Test 2, we use a randomly varying permeability
between 5 × 10−12 and 10−13. Next, M = 2.5 × 10−8, cF = 10−8, νR = νF = 1.0 × 10−3,
ρ0
R = ρ0

F = 1. Regarding the Biot coefficient, we perform computations with α = 0 because
it has been shown in Mikelić et al. (2014a) that α = 0 and α = 1 yield the same crack
patterns if the characteristic time scale of the fracture is taken into account.
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Elasticity and phase-field parameters
The fracture toughness is chosen as Gc = 1.0. The mechanical parameters are µ =

4.2 × 107 and λ = 2.8 × 107. In the second example, we employ randomly varying Lamé
parameters µ = 4.2× 106 − 9.4× 107 and λ = 2.6× 106 − 9.3× 107.

Comparing fracture propagation in 3D and 2D domains In this example, we first
show a numerical experiment simulating simultaneous propagation of two penny-shaped
fractures in a 3D domain. This is followed by a 2D experiment, in a similar setting, to
compare 2D and 3D results. Fig. 8 shows fracture patterns during growth at T = 0, 15
and 25 seconds for the 3D case. Similarly, Fig. 9 shows fracture locations at T = 0, 20
and 30 seconds for the 2D case.

Figure 8: Crack pattern for simultaneous propagation of two penny-shaped fractures at T=
0, 15 and 25 seconds in 3D domain.

Figure 9: Crack pattern for simultaneous propagation of two fractures at T=0, 20 and 30
seconds in a 2D domain.

Since the two cases presented here are symmetrical the temporal variation of pressures
at the centers of the two fractures, for each case, are similar. Fig. 10 shows the time
evolution of pressure at the center of one of the fractures for the 3D (left) and 2D (right)
domains. Note that the pressure builds up to threshold value and then starts dropping
as the fracture starts growing. The results show resemblance of the fracture growth and
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transient pressure for the 3D and 2D cases.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  10  20  30  40  50

P
re

s
s
u
re

Time[5 x 10
-3

]

h=0.27

 0

 5000

 10000

 15000

 20000

 25000

 0  10  20  30  40  50

P
re

s
s
u
re

Time[10
-2

]

h=0.044

Figure 10: Transient pressure at the center of the fractures for 3D (left) and 2D (right)
cases.

Effect of fracture spacing on fracture growth In this section, we present a numerical
experiment, similar to the 2D case presented earlier, with a larger initial fracture spacing
and studying the resulting effect on the fracture pattern. The fracture locations at time T
= 0, 20 and 20 seconds are shown in Fig. 11. It can be observed by comparing Figs. 10
and 11 that as the spacing is reduced the fracture pattern becomes diverging. This result
demonstrates that an optimal fracture spacing can be achieved which maximizes reservoir
fracture interface area and therefore productivity.

Figure 11: Crack pattern for simultaneous propagation of two fractures, with larger spacing,
at T=0, 20 and 30 seconds.
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Effect of discrete fractures on fracture growth In this example, we study the effect
of an existing fracture on the propagation of another fracture. This setting is devised to
provide insight into growth patterns for sequential hydraulic fracturing. In Fig. 12 the left
fracture is stationary whereas the right fracture grows due to injection of hydraulic fluids.
The stationary fracture (left) is given a higher material stiffness property compared to the
reservoir in order to replicate a propped fracture. As it can be seen, the hydraulic fracture
does not show considerable pattern change due to the presence of an adjacent discrete
fracture. Although a more detailed study can be conducted to evaluate the combined effect
of orientation, we restrict ourselves to the case of parallel fracture for the sake of brevity.
Fig. 13 shows the stress fields (Frobenius norm) at times T = 0, 20 and 40 seconds.

Figure 12: Crack pattern for sequential hydraulic fracturing at T=0, 20 and 40 seconds.

Figure 13: Stress field for sequential hydraulic fracturing at T=0, 20 and 40 seconds.

Effect of heterogeneity on fracture growth In this set of tests, we extend the case of
two simultaneous fracture propagation in a 2D domain to a heterogeneous porous media
Fig. 15 and non-constant reservoir permeabilities Fig. 16. Fig. 15 and Fig. 16 show
fracture growth with branching and joining for different times.
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Figure 14: Initial crack pattern (left), randomly distributed Lamé coefficients (middle) and
non-constant permeability (right). In the two latter figures, red denotes high values and
blue/green low values.

Figure 15: Crack pattern for fracture propagation in a heterogeneous medium at T =
20, 30, 50 seconds.

Figure 16: Crack pattern for fracture propagation in a heterogeneous medium and non-
constant permeability at T = 5, 10 and 15 seconds.
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Effect of stress shadowing on fracture growth Here, we investigate the effect of
stress-shadowing and initial fracture nucleation lengths on fracture growth for simultane-
ous propagation of three fractures. The material properties (Lameé parameters) are kept
homogenous to accentuate observations and are by no means restrictive. Three cases were
considered: a) equal fracture nucleation lengths (Fig. 17), b) shorter nucleation length for
middle fracture (Fig. 19) and c) longer nucleation length for middle fracture (Fig. 21).
Please note that although boundary conditions play an important role in fracture growth
the emphasis here is solely on fracture-fracture interaction.

Figure 17: Example 3, Test 1, crack pattern at T = 0, 20, 30, 50.

Figure 18: Example 3, Test 2, stress distribution at T = 0, 20, 30, 50.

Figs. 18, 20 and, 22 show the stress-fields (Frobenius norm) for the aforementioned
three cases. In, Fig. 17 we observe that the growth of the middle fracture is shunned
due to the stress shadowing from the outer two fractures. Similar behavior is observed for
the case with shorter nucleation length for middle fracture. However, the case with longer
nucleation length for middle fracture shows contrasting behavior. Here the stress shadow
owing to the middle fracture shuns the growth of outer fractures. This numerical test shows
that a careful evaluation of stress shadowing effects is pivotal for planning a hydraulic
fracturing job, beginning from perforation to propagation using slick water injection.
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Figure 19: Example 3, Test 2, crack pattern at T = 0, 20, 30, 50.

Figure 20: Example 3, Test 2, stress distribution at T = 0, 20, 30, 50.

Figure 21: Example 3, Test 3, crack pattern at T = 0, 20, 30, 50.

Figure 22: Example 3, Test 3, stress distribution at T = 0, 20, 30, 50.
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TABLE 1—Reservoir properties, Multistage fractures

φ 0.15-0.22 Kx 6= Ky = Kz 0-3800 mD
cw 1.E-7 psi−1 co 1.E-4 psi−1

ρw 62.4 lbm/ft3 ρo 56 lbm/ft3
νw 1 cP νo 2 cP
S0
w 0.31 P 0

w 1500 psi

Coupling the phase-field model to a reservoir simulator: a fractured well-bore
model In this section, we present an example to demonstrate the aforementioned approach
for an explicit coupling of fracture growth to a reservoir simulator based upon general hex-
ahedral discretization. A synthetic case is generated from Brugge field geometry (see e.g.
Peters et al. (2009); Chen et al. (2010)) where the wells are augmented with hydraulic frac-
tures. Here the use of fractured wells reduces the number of injection wells while improving
sweep efficiency. The phase field fracture propagation model, followed by production eval-
uation of reservoir, allows us to develop an intuitive understanding of recovery predictions
and serves as a decision making tool for design, evaluation and long term field developments.

Figure 23: Coarse fracture mesh after adaptation.

Although not restrictive, for the sake of simplicity, we consider the fracture pattern as
shown in Fig. 8. The geometry information from the phase field fracture propagation model
is post-processed and adapted to obtain a coarser mesh while maintaining mesh quality. This
reduces time-step size restrictions and numerical errors associated with mesh elements. Fig.
23 shows the reconstructed, coarse, structured fracture mesh with quadrilateral (hexahedral
in 3D) elements. This fracture pattern is integrated with a well-bore model and is used as
a fractured well model in our reservoir simulator IPARS.
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Figure 24: Brugge field geometry with fractured injection wells (top) and original Brugge
field case (bottom).

Table 1 provides material and fluid properties required for solving flow and geomechan-
ics. The values presented in the table provide typical values used for this simulation run.
Fig. 24 (left) shows the fractured Brugge field geometry with 20 bottom-hole pressure
specified production wells at 1000 psi. Here a pressure profile after 2 days is used to aid
in visualizing the location of the fractured injection wells. The three red regions show the
hydraulically fractured, injection wells with a bottom-hole pressure specification of 2600 psi.
The original Brugge field case is shown in Fig. 24 (right) with 30 bottom-hole pressure
specified wells with 10 injectors at 2600 psi and 20 producers at 1000 psi where injectors
are located at a higher elevation compared to the producers. The distorted reservoir ge-
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ometry and fractures are captured using 9×48×139 general hexahedral elements and then
discretized using a MFMFE scheme (Singh et al. (2014)). Fig. 25 displays permeability
fields in the X (left) and Y (right) directions. The Z direction permeability is equal to the
Y direction permeability.

Figure 25: X (left) and Y (right) direction permeability fields.

Fig. 26 shows pressure (left) and saturation (right) profiles at the end of 1000 days.
The fractured injection wells are placed at greater depths compared to production wells so
that the gravity assists in oil recovery. A comparison between the pressure and saturation
profiles for the two cases show that a lower number of fractured wells are required for
improved sweep efficiencies compared to conventional wells.

Figure 26: Pressure (left) and saturation (right) profiles after 1000 days for fractured (top)
and original (bottom) Brugge field cases.
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Conclusions

In this work, we first presented a fracture propagation model and its numerical solution
scheme for treating slick water hydraulic fracturing based on a phase-field approach. This
adequately describes crack propagation and associated pressure variation during growth.
First, this phase-field model is employed to compute various fracture propagation scenarios
in two and three dimensions and crack growth in an anisotropic, heterogeneous, poroelastic
medium. In particular, the pressure profile shows a buildup until a critical energy rate
is reached resulting in fracture growth. Second, we successfully coupled this phase-field
approach with a reservoir simulator. The integration is based on a computationally efficient
one-way coupling which allows the use of the phase-field approach as a pre-processor step.
With our proposed approach we are able to simulate hydraulic fracturing and production
stages. An extension to black-oil and compositional models for the reservoir flow description
can also be achieved.

Nomenclature

Ω = reservoir domain

C = fracture domain

E(u, C) = energy functional

σE = stress tensor

e(u) = strain tensor

αB = Biot coefficient

p = fluid pressure

p0 = reference pressure

u = displacement vector

Gc = critical energy release rate

Hd−1(C) = length of fracture, Hausdroff measure

µ, λ = Lamé parameters

ν = fluid viscosity

I = identity tensor

ϕ = phase field variable

κ, ε = regularization parameters

w(u) = fracture aperture or width

K = absolutre permeability

ρ = fluid density

g = acceleration due to gravity

qF,R = source/sink for fracture (F) or reservoir (R)

qL = fracture leakage term
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