
ICES REPORT 11-33

November 2011

Robust DPG Method for Convection-Dominated Diffusion
Problems

by

Leszek Demkowicz and Norbert Heuer

The Institute for Computational Engineering and Sciences
The University of Texas at Austin
Austin, Texas 78712

Reference: Leszek Demkowicz and Norbert Heuer, Robust DPG Method for Convection-Dominated Diffusion
Problems, ICES REPORT 11-33, The Institute for Computational Engineering and Sciences, The University of
Texas at Austin, November 2011.



in context of wave propagation problems was undertaken in [7, 13] and has recently resulted in
a “pollution free” DPG method for the Helmholtz equation [6]. The so-called quasi-optimal test
norm (analyzed in this paper) for the confusion problem was recently investigated numerically
by Niemi, Bollier and Calo [11,12]. The concept of optimal testing has also been recently pursued
by Dahmen, Schwab, Cohen, Welper and Huang in [1, 2].

Given a test norm, the Petrov-Galerkin method with optimal test functions [5] delivers the
best approximation error in the corresponding energy norm,

‖u− uhp‖E = inf
whp∈Uhp

‖u− whp‖E (1.1)

where the energy (residual) norm is implied by the very problem we solve, i.e. the bilinear form
b(u, v) and the choice of the test norm ‖v‖V ,

‖u‖E = sup
v∈V

|b(u, v)|
‖v‖V

. (1.2)

The optimal test function êi corresponding to a trial function ei ∈ Uhp, is determined by solving
an auxiliary variational problem dictated by the choice of the test norm,

êi ∈ V : (êi, δv)V = b(ei, δv) ∀δv ∈ V. (1.3)

Variational problem (1.3) can rarely be solved exactly and it is solved approximately using the
standard, Bubnov-Galerkin method and an “enriched” subspace of V . If the corresponding error
is negligible, the method delivers its promise.

Obviously, different choices of the test norm lead to different energy norms, and different
versions of the method. So, the natural question to ask is,

What test norm to use ?

The purpose of this paper is an attempt to answer the question for an important singular
perturbation model problem – convection-dominated diffusion, hereafter called the “confusion
problem”. In fact, the proposed general strategy applies to any perturbation problem involving
a parameter, singular or not.

Given a domain Ω covered with a finite element mesh, we introduce the DPG bilinear form
corresponding to the confusion problem [4,8],

b((u,σ, û, σ̂n), (v, τ )) =
(
σ, ε−1τ +∇v

)
Ωh

+ (u,∇· τ − β · ∇v)Ωh
− 〈[τ · n], û〉 − 〈σ̂n, [v]〉

where σ̂n :=
(
(σ−βu) ·n

)
|Γh

with Γh being the mesh skeleton and n being a unit normal vector
on Γh in a certain direction (exterior to Ω on Γ). Furthermore, [·] denotes the jump across Γh
(reducing to the trace on Γ).

The functional setting is now well understood. Field variables come from L2(Ω) (possibly
weighted), the trace û comes from the trace of the space H1

0 (Ω) to Γh, and the flux (or rather
another trace) σ̂n lives in the trace of the spaceH(div,Ω) to the mesh skeleton Γh. Test functions
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come from “broken” Sobolev spaces, τ ∈ H(div,Ωh), v ∈ H1(Ωh). L2-inner product notation
(·, ·)Ωh

emphasizes that operators of gradient and divergence are to be understood element-wise.

Finally, 〈·, ·〉 denotes the duality pairing between the trace spaces H1/2 and H−1/2 defined over
Γh. The trace spaces are equipped with minimum energy extension norms inherited from H1(Ω)
and H(div,Ω).

While we set the spaces, we do not fix at this moment any particular norms.

Robustness. Intuitively speaking, we say that a discretization method applied to a singular
perturbation problem is robust, if the approximate solution does not change much as we vary the
perturbation parameter. A precise meaning of robustness is more difficult as we have to decide on
which components of the solution we want to look at, and what norms to use. In context of the
confusion problem, we typically look at the “density” u, and expect its approximate counterpart
to vary a “little”, as we decrease ε. The “little” is typically quantified in terms of the L2-norm
of u that is insensitive to steepening of the boundary layer as ε → 0. It is already much less
clear whether the same should be expected for the “stress” σ = ε∇u.

Mathematically, we consider the discretization method to be robust, if the stability constant
relating actual approximation error and the best approximation error is independent of the
perturbation parameter. Ideally, the two errors should be measured in the same norm. Most of
the time, the perturbation parameter does not “disappear” but is hidden in the definition of the
norm.

We outline now our general strategy for designing the test norm for the confusion problem.

Step 1: Decide what you want. Notice that the DPG method is automatically robust in
the energy2 norm. Indeed, it delivers the best approximation error in the energy norm, so the
stability constant is simply equal to one. We are a bit more demanding though, as we want the
robustness in the norm of our choice. As mentioned above, in context of the confusion problem,
we want at least the L2-robustness for u. This implies that we need to have

‖u‖ . ‖(u,σ, û, σ̂n)‖E . (1.4)

Here, a . b indicates existence of a constant C, of order one (independent of ε), such that
a ≤ Cb. When applied to the FE error, the inequality above allows for bounding the L2 error in
the field variable u, by the best approximation error of all involved unknowns and, ultimately,
possibly leading to a robust version of the method. Certainly, if the constant C blows up with
ε→ 0, our chances for a robust method are lost. So we can view assumption (1.4) at least as a
necessary condition for designing the test norm.

Given a function u ∈ L2(Ω), we now select special test functions v, τ that solve the following
variational problem,

(v, τ ) ∈ V = H1
0 (Ω)×H(div,Ω) :

ε−1τ +∇v = 0,
∇· τ − β · ∇v = g.

(1.5)

2For any choice of the test norm.
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Selecting g = u, we have (for any test norm)

‖u‖2 = b((u,σ, û, σ̂n), (v, τ )) =
b((u,σ, û, σ̂n), (v, τ ))

‖(v, τ )‖V
‖(v, τ )‖V

≤ sup
(v,τ)

|b((u,σ, û, σ̂n), (v, τ ))|
‖(v, τ )‖V

‖(v, τ )‖V = ‖(u,σ, û, σ̂n)‖E ‖(v, τ )‖V . (1.6)

An obvious sufficient condition to request is that the solution to the adjoint problem (1.5) is
bounded by ‖g‖ uniformly in ε,

‖(v, τ )‖V . ‖g‖. (1.7)

Dividing then (1.6) sidewise by ‖u‖, we get the inequality (1.4).
The first step in estimating the DPG error has thus been reduced to the stability estimate

for a classical, strong version of the adjoint equation. Notice that the assumption on global
conformity of the test functions “killed” the trace terms.

Step 2: Study the stability of the adjoint problem. We will establish the following
stability estimates,

‖v‖, ‖β · ∇v‖φ,
√
ε‖∇v‖, 1

ε
‖β · τ‖φ,

1√
ε
‖τ‖, ‖∇· τ‖φ+ε . ‖g‖

where φ = O(1) is a weight function to be introduced later, and

‖ · ‖φ := ‖
√
φ · ‖.

These are now our “Lego blocks” with which we can build different test norms. One obvious
choice is the quasi-optimal test norm (cf. [13]),

‖(v, τ )‖2V,qopt = ‖v‖2 + ‖ 1

ε
τ +∇v︸ ︷︷ ︸

=f

‖2 + ‖∇· τ − β · ∇v︸ ︷︷ ︸
=g

‖2.

Another choice, following the original version of the method used in [8], is a weighted test norm,

‖(v, τ )‖2V,1 = ε‖v‖2 + ε‖∇v‖2 + ‖β · ∇v‖2φ+ε + ‖τ‖2φ+ε + ‖∇· τ‖2φ+ε.

It turns out that, for both test norms, we also have a robust estimate for the stress:

‖σ‖ . ‖(u,σ, û, σ̂n)‖E .

One major difference between the two test norms is their effect on optimal shape functions.
Element-wise inversion of the Riesz operator corresponding to the quasi-optimal test norm results
in optimal test functions with boundary layers of width equal to the element Peclet number. As
we will see, effective resolution of such test functions requires the use of special techniques.
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The weighted test norm involves the parameter ε as well. Notice, however, that the small
diffusion in the cross-wind derivative of v is balanced with a small reaction term for v (even
though we can afford the “full” L2 norm of v). Similarly, the weight in the norms of τ and ∇· τ
is the same. This produces optimal test functions with no boundary layers, whose resolution
is straightforward. Also, components v and τ are decoupled which makes the inversion of the
Riesz operator more efficient.

Step 3: Estimate the best approximation error in the energy norm. Once the test
norm has been fixed, we can proceed with the estimate of the best approximation error in the
energy norm. The choice of the test norm implies now specific norms for σ and u.

For the quasi-optimal test norm, we will show that one can select norms for traces and fluxes
in such a way that we have a two sided estimate:

(‖u‖2 + ‖σ‖2 + ‖û‖2? + ‖σ̂n‖2?)
1
2 . ‖(u,σ, û, σ̂n)‖E . (‖u‖2 + ‖σ‖2 + ‖û‖2? + ‖σ̂n‖2?)

1
2

A similar result has recently been established for another singular perturbation problem – the
Helmholtz equation [7].

Thus, for the quasi-optimal norm, the best approximation error for both field variables
is measured in the L2-norm. For the weighted norm, however, the best approximation error
estimate involves terms

1

ε
‖σ‖1/(φ+ε), ‖u‖1/(φ+ε)

Clearly, we will need many more d.o.f. to control these terms. This is the price we pay for
eliminating the boundary layers from the optimal test functions.

Definition of the appropriate norms for the traces and fluxes and the corresponding best
approximation error estimates will be explained later.

The rest of this paper is organized as follows. In the next section we formulate the model
problem, define specific spaces and norms, recall the DPG method, define several test norms
and present the main results (Theorem 1), namely error estimates for the DPG method and
any of the test norms. In Section 2.1 we provide stability estimates for the adjoint problem.
They are essential for the proofs of the main results which are given in Section 2.2. Numerical
experiments with two of the analyzed test norms and are reported in Section 3. We end with
some conclusions.

2 Model problem and robustness of the DPG method

First, let us recall the precise setting of the convection-dominated diffusion problem, its DPG
discretization, and the involved spaces and norms. We introduce several test norms and formulate
the main results, namely error estimates for the resulting (abstract) DPG approximations. In
Section 2.1 we analyze the stability of the adjoint problem and in Section 2.2 we prove norm
equivalences that imply our main results, Theorem 1 below.
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Model problem. The convection-dominated diffusion (“confusion”) problem is

−ε∆u+∇· (βu) = f in Ω,

u = 0 on Γ.
(2.8)

Here, Ω ⊂ R3 is a bounded simply connected domain with piecewise smooth boundary Γ := ∂Ω.
The two-dimensional case can be dealt with analogously with corresponding error estimates. In
fact, in Section 3 we report on numerical experiments for a 2D problem.

Introducing σ := ε∇u, (2.8) turns into the first order system

ε−1σ −∇u = 0 in Ω,

−∇·σ +∇· (βu) = f in Ω,

u = 0 on Γ.

(2.9)

Let Ωh be a non-overlapping partitioning of Ω into open elements with Lipschitz boundary,
Ω̄ = ∪{K̄; K ∈ Ωh}, and let us recall the following notation. The mesh skeleton is Γh =
∪{∂K; K ∈ Ωh}, n denotes a unit normal vector on Γh, σ̂n =

(
(σ − βu) · n

)
|Γh

, and û is the
trace of u on Γh.

Now, testing (2.9) with appropriate functions τ and v, and integrating by parts on elements,

leads to the ultra-weak formulation: Find u ∈ L2(Ω), σ ∈ L2(Ω), û ∈ H
1/2
00 (Γh), and σ̂n ∈

H−1/2(Γh) such that(
ε−1σ, τ

)
Ωh

+ (u,∇· τ )Ωh
− 〈[τ · n], û〉 = 0 ∀τ ∈H(div,Ωh),

(σ,∇v)Ωh
− (u,β · ∇v)Ωh

− 〈σ̂n, [v]〉 = (f, v)Ω ∀v ∈ H1(Ωh).
(2.10)

The left-hand side of system (2.10) is the DPG bilinear form:

b((u,σ, û, σ̂n), (v, τ )) :=
(
σ, ε−1τ +∇v

)
Ωh

+(u,∇· τ − β · ∇v)Ωh
−〈[τ · n], û〉−〈σ̂n, [v]〉 . (2.11)

Having injectivity of the dual problem under standard assumptions on β, existence and unique-
ness of the solution of (2.10) is guaranteed by the inf-sup condition. This inf-sup condition is
immediate for the “optimal test norm” (defined by duality via b(·, ·)). Under certain conditions
on β, we show equivalence of this “norm” to other test norms so that the optimal test norm is
indeed a norm.

Let us recall definitions of some spaces. We use standard (scalar) L2(Ω), (vector) L2(Ω) and
H1(Ω) spaces with L2,L2(Ω)- and H1(Ω)-norms denoted by ‖ · ‖ and ‖ · ‖1,Ω, respectively. We
have the broken spaces

H1(Ωh) := {v ∈ L2(Ω); v|K ∈ H1(K) ∀K ∈ Ωh},
H1

0 (Ωh) := {v ∈ H1(Ωh); v|Γ = 0},
H(div,Ωh) := {τ ∈ L2(Ω); τ |K ∈H(div,K) ∀K ∈ Ωh}
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with respective product norms, and

H
1/2
00 (Γh) := H1

0 (Ω)|Γh
, (2.12)

H−1/2(Γh) := {η; ∃τ ∈H(div,Ω) : (τ · n)|Γh
= η} (2.13)

with “generic” (canonical) trace norms

‖v‖1/2,Γh
:= inf

w∈H1
0 (Ω), w|Γh

=v
‖w‖1,Ω, (2.14)

‖η‖−1/2,Γh
:= inf

τ∈H(div,Ω), (τ ·n)|Γh
=η
‖τ‖H(div,Ω). (2.15)

Note that, by definition, any v ∈ H1/2
00 (Γh) vanishes on Γ. Below, we need the restriction onto

Γ0
h := Γh ∩ Ω of the latter norm, denoted by ‖ · ‖−1/2,Γ0

h
.

To analyze the jumps of (τ , v) ∈H(div,Ωh)×H1(Ωh) across Γh we define the norms of the

dual spaces of H
1/2
00 (Γh) and H−1/2(Γh):

‖ [τ · n] ‖Γ0
h

:= sup
w∈H1/2

00 (Γh)

〈[τ · n], w〉
‖w‖1/2,Γh

= sup
w∈H1

0 (Ω)

〈[τ · n], w〉
‖w‖1,Ω

, (2.16)

‖ [v] ‖Γh
:= sup

η∈H−1/2(Γh)

〈η, [v]〉
‖η‖−1/2,Γh

= sup
η∈H(div,Ω)

〈η · n, [v]〉
‖η‖H(div,Ω)

. (2.17)

DPG method. As discussed in the introduction, the DPG method for the confusion problem
consists in

1. selecting a norm with inner product (·, ·)V in V = H(div,Ωh)×H1(Ωh),

2. selecting a piecewise polynomial space induced by the mesh Ωh and chosen polynomial

degrees, Uhp ⊂ L2(Ω)×L2(Ω)×H1/2
00 (Γh)×H−1/2(Γh), with basis {ei, i = 1, . . . ,dof},

3. determining test functions êi ∈ V (i = 1, . . . ,dof) such that

(êi, δv)V = b(ei, δv) ∀δv ∈ V,

4. and calculating the DPG approximation (uhp,σhp, ûhp, σ̂n,hp) ∈ Uhp defined by

b((uhp,σhp, ûhp, σ̂n,hp), êi) = (f, êi)Ω , i = 1, . . . ,dof.

Remark 1 In order to obtain a practical method, it is essential to work with a localizable norm
in V . In this way, the calculation of test functions are local problems, defined on individual
elements. Note that, by considering standard boundary norms for û and σ̂n, norms for [τ · n]
and [v] on interfaces defined by duality with respect to the bilinear form b(·, ·) (2.11) are not
local a priorily. Therefore, critical for the DPG method is to measure the errors of û and σ̂n in
appropriate norms so that the corresponding V -norm is equivalent to a localizable one.
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Main results. Recall that the DPG method delivers the best approximation in the energy
norm defined by the chosen norm in V , cf. (1.1), (1.2). Therefore, proving norm relations in

U := L2(Ω)×L2(Ω)×H1/2
00 (Γh)×H−1/2(Γh)

‖ · ‖U1 . ‖ · ‖E . ‖ · ‖U2 (2.18)

which are robust in ε, one immediately obtains the robust estimates

‖(u,σ, û, σ̂n)− (uhp,σhp, ûhp, σ̂n,hp)‖U1 . inf
whp∈Uhp

‖(u,σ, û, σ̂n)− whp‖E (2.19)

. inf
whp∈Uhp

‖(u,σ, û, σ̂n)− whp‖U2 . (2.20)

To establish these estimates and to introduce the test norms we need some more notation and
have to make some assumptions. We define

Γ− := {x ∈ ∂Ω; β(x) · n < 0} (inflow),

Γ+ := {x ∈ ∂Ω; β(x) · n > 0} (outflow),

Γ0 := {x ∈ ∂Ω; β(x) · n = 0}.

Throughout, φ ∈ C2(Ω̄) will be a fixed weight function that satisfies

0 ≤ φ ≤ 1 in Ω, φ = 0 on Γ−.

We will need L2(Ω)-norms of components of vector fields in directions perpendicular to β. To
this end we formally extend, in any point of Ω, β to an orthogonal basis (β,β⊥1 ,β

⊥
2 ) of R3 where

all three vectors are of equal length. Then we use the generic notation

‖β⊥ · η‖2 := ‖β⊥1 · η‖2 + ‖β⊥2 · η‖2, η ∈ L2(Ω).

For our analysis we need to make some assumptions. Throughout we will assume that ε > 0
is small enough. There are several conditions β has to satisfy. Throughout we require that
β ∈ C2(Ω̄) and β = O(1), ∇·β = O(1). Furthermore, depending on the objective, we need one
or more of the following properties.

(A1) ∇× β = 0, 0 < C ≤ |β|2 +
1

2
∇·β, C = O(1)

(A2) Ξ := ∇(φβ) +∇(φβ)T −∇· (φβ)I = O(1)

(A3) ∇·β = 0

We will analyze the DPG method for the following test norms:

‖(v, τ )‖2V,qopt := ‖v‖2 + ‖ε−1τ +∇v‖2 + ‖∇· τ − β · ∇v‖2,

‖(v, τ )‖2V,0 := ε‖v‖2 + ε‖∇v‖2 + ‖β · ∇v‖2φ+ε +
1

ε2
‖β · τ‖2φ+ε +

1

ε
‖τ‖2 + ‖∇· τ‖2φ+ε,

‖(v, τ )‖2V,1 := ε‖v‖2 + ε‖∇v‖2 + ‖β · ∇v‖2φ+ε + ‖τ‖2φ+ε + ‖∇· τ‖2φ+ε,
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with corresponding energy norms ‖·‖E,qopt, ‖·‖E,0 and ‖·‖E,1, respectively. For the analysis with
test norm ‖ · ‖V,qopt we need a specific norm measuring the jumps [τ · n] and [v] of (v, τ ) ∈ V ,

‖(v, τ )‖Γh
:= ‖ṽ‖. (2.21)

Here, (v, τ ) = (v0, τ 0) + (ṽ, τ̃ ) with (v0, τ 0) ∈ H1
0 (Ω)×H(div,Ω) being the solution of

ε−1τ 0 +∇v0 = f := ε−1τ +∇v,
∇· τ 0 − β · ∇v0 = g := ∇· τ − β · ∇v.

Also, let us define the dual norm

‖(w, η)‖Γ′h := sup
(v,τ )∈V \{0}

〈[τ · n], w〉+ 〈η, [v]〉
‖(v, τ )‖Γh

∀(w, η) ∈ H1/2
00 (Γh)×H−1/2(Γh). (2.22)

Our main results are as follows.

Theorem 1

(i) (DPG method with quasi-optimal test norm ‖ · ‖V,qopt, ‖ · ‖E = ‖ · ‖E,qopt.)
If β satisfies (A1) then there hold (2.19) and (2.20) with

‖u,σ, û, σ̂n)‖U1 := ‖u,σ, û, σ̂n)‖U2 :=
(
‖u‖2 + ‖σ‖2 + ‖(û, σ̂n)‖2Γ′h

)1/2
.

If β satisfies (A1) and (A3) then there holds (2.19) with

‖u,σ, û, σ̂n)‖U1 :=
(
‖u‖2 + ‖σ‖2 + ε2‖û‖21/2,Γh

+ ε‖σ̂n‖2−1/2,Γh

)1/2
.

(ii) (DPG method with weighted test norm ‖ · ‖V,0, ‖ · ‖E = ‖ · ‖E,0.)
There holds (2.20) with

‖u,σ, û, σ̂n)‖U2 :=
(
‖u‖21/(φ+ε) + ‖β · σ‖21/(φ+ε)

+
1

ε
‖β⊥ · σ‖2 +

1

ε
‖û‖21/2,Γh

+
1

ε
‖σ̂n‖2−1/2,Γh

)1/2
.

If β satisfies (A1), (A2) and (A3) then there holds (2.19) with

‖u,σ, û, σ̂n)‖U1 :=
(
‖u‖2 + ‖σ‖2 + ε2‖û‖21/2,Γh

+ ε‖σ̂n‖2−1/2,Γh

)1/2
.

(iii) (DPG method with weighted test norm ‖ · ‖V,1, ‖ · ‖E := ‖ · ‖E,1.)
There holds (2.20) with

‖u,σ, û, σ̂n)‖U2 :=
(
‖u‖21/(φ+ε) +

1

ε2
‖σ‖21/(φ+ε) +

1

ε
‖û‖21/2,Γh

+
1

ε
‖σ̂n‖2−1/2,Γh

)1/2
.

If β satisfies (A1), (A2) and (A3) then there holds (2.19) with

‖u,σ, û, σ̂n)‖U1 :=
(
‖u‖2 + ‖σ‖2 + ε2‖û‖21/2,Γh

+ ε‖σ̂n‖2−1/2,Γh

)1/2
.
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Proof. It is enough to prove the respective equivalence (2.18). These are given by Lemmas 6, 4
and 5, respectively, in Section 2.2. 2

Remark 2 In Section 3 we will present numerical results for a two-dimensional model problem
with quasi-optimal test norm and the weighted test norm ‖ · ‖V,1, among others. Under the
conditions of separating norms for v and τ , and robustness for ‖u‖, the theoretical result for the
weighted norm ‖ · ‖V,0 is the best we could achieve, i.e. the corresponding norm ‖ · ‖U2 for the
error estimate in (2.20) deteriorates least when ε → 0. In particular, the upper bound resulting
from ‖ · ‖V,0 is stronger than the one corresponding to ‖ · ‖V,1, cf. Theorem 1(ii), (iii). From the
point of view of practicality, however, the latter case is superior since its test functions in τ do
not suffer from boundary layers whereas the ones from the former case do.

2.1 Stability of the adjoint problem

As discussed before, stability estimates for the adjoint problem are vital to prove robust L2 error
estimates for the field variables, cf. (1.7). The stability will be analyzed in this section.

Considering the bilinear form (2.11) one finds that the adjoint problem of (2.9) is

ε−1τ +∇v = f , (2.23)

∇· τ − β · ∇v = g, (2.24)

in L2(Ω) and L2(Ω), respectively. Furthermore, the function v solves

−ε∆v − β · ∇v = g − ε∇·f on Ωh. (2.25)

Here, ∇·f ∈ (H1
0 (Ω))′ by defining the divergence operator as the adjoint operator of

−∇ : H1
0 (Ω)→ L2(Ω).

Lemma 1 Let v ∈ H1
0 (Ω) satisfy (2.25). If β satisfies (A1) then there holds for sufficiently

small ε > 0
ε ‖∇v‖2 + ‖v‖2 . ‖g‖2 + ε‖f‖2.

Proof. Since ∇× β = 0 and Ω is simply connected, β has a scalar potential ψ, β = ∇ψ, and
we adjust the constant such that eψ = O(1). We consider the transformed function w := eψv
and calculate

∇w = eψ(∇v + βv),

eψ∇v = ∇w − βw,
∆w = eψβ · (∇v + βv) + eψ(∆v +∇·β v + β · ∇v)

= eψ(∆v +∇·β v + |β|2 v + 2β · ∇v),

β · ∇w = eψ(β · ∇v + |β|2 v).
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Using these relations and equation (2.25) it follows that

ε∆w + β · ∇w = eψ
(
ε∆v + ε∇·β v + ε |β|2 v + 2εβ · ∇v + β · ∇v + |β|2 v

)
= eψ(ε∇·f − g) + (1− ε) |β|2w + ε∇·βw + 2εβ · ∇w

that is,

−ε∆w − (1− 2ε)β · ∇w +
(

(1− ε) |β|2 + ε∇·β
)
w = eψ(g − ε∇·f).

We multiply by w and integrate to deduce that

ε

∫
Ω
|∇w|2 − (1− 2ε)

∫
Ω
β · ∇ww +

∫
Ω

(
(1− ε) |β|2 + ε∇·β

)
w2 =

∫
Ω
eψ(g − ε∇·f)w. (2.26)

Since w ∈ H1
0 (Ω), integration by parts proves that∫

Ω
β · ∇ww = −1

2

∫
Ω
∇·βw2

so that (2.26) is equivalent to

ε

∫
Ω
|∇w|2 +

∫
Ω

(
(1− ε) |β|2 +

1

2
∇·β

)
w2 =

∫
Ω
eψ(g − ε∇·f)w

=

∫
Ω
eψgw + ε

∫
Ω
eψf · (βw +∇w). (2.27)

Now, for ε > 0 sufficiently small, the assumptions about β and Young’s inequality show that for
δ > 0 there holds

ε ‖∇w‖2 + ‖w‖2 .
1

δ
‖g‖2 + δ‖w‖2 +

ε

δ
‖f‖2 + εδ‖w‖2 +

ε

δ
‖f‖2 + εδ‖∇w‖2.

Selecting δ small enough this yields

ε ‖∇w‖2 + ‖w‖2 . ‖g‖2 + ε‖f‖2.

The assertion is proved by bounding

‖v‖2 = ‖e−ψw‖2 . ‖w‖2 . ‖g‖2 + ε‖f‖2

and
ε‖∇v‖2 = ε‖e−ψ(∇w − βw)‖2 . ε‖∇w‖2 + ε‖w‖2 . ‖g‖2 + ε‖f‖2.

2

Lemma 2 Let β satisfy (A1) and (A2). Then there holds

‖β · ∇v‖φ . ‖g‖

for any solution v ∈ H1
0 (Ω) of (2.25) with ∇·f = 0, and sufficiently small ε > 0.
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Proof. Let vβ := β · ∇v. We multiply (2.25) by φvβ and integrate over Ω to obtain

‖vβ‖2φ = −
∫

Ω
φgvβ − ε

∫
Ω

∆vφvβ. (2.28)

Integration by parts yields

−
∫

Ω
∆vφvβ =

∫
Ω
∇v · ∇(φβ)∇v +

∫
Ω
∇v · ∇∇v(φβ)−

∫
∂Ω
φ
(
n · ∇v

)
vβ. (2.29)

Now ∫
Ω
∇v · ∇∇v(φβ) =

1

2

∫
Ω
φβ · ∇ |∇v|2 = −1

2

∫
Ω
∇· (φβ) |∇v|2 +

1

2

∫
∂Ω
φβ · n |∇v|2 .

Using this relation for (2.29), substituting in (2.28) and using that φ = 0 on Γ− and β · n = 0
on Γ0 yields

‖vβ‖2φ +
ε

2

∫
Γ+

φβ · n |∇v|2 = −
∫

Ω
φgvβ +

ε

2

∫
Ω
∇v ·

(
2∇(φβ)−∇· (φβ)I

)
∇v.

Here, I denotes the identity tensor and we also used that, due to the homogeneous boundary
condition for v, there holds ∇v =

(
n · ∇v

)
n on ∂Ω.

Recalling the notation Ξ := ∇(φβ) +∇(φβ)T −∇· (φβ)I, and using the fact that β ·n > 0
on Γ+, we eventually obtain

‖vβ‖2φ ≤ −
∫

Ω
φgvβ +

ε

2

∫
Ω
∇v ·Ξ∇v.

By assumption, Ξ = O(1). Therefore, Young’s inequality and an application of Lemma 1 prove
the assertion. 2

Lemma 3 Let β satisfy (A1) and (A3). Then there holds

‖∇v‖ =
1

ε
‖τ‖ . 1

ε
‖ [τ · n] ‖Γ0

h
+

1√
ε
‖ [v] ‖Γh

for any solution τ ∈H(div,Ωh), v ∈ H1(Ωh) of (2.23), (2.24) with f = 0 and g = 0.

Proof. We follow the proof of [4, Lemma 4.3] and use Lemma 1 rather than standard stability
results.

There is z ∈H(curl,Ω) and ψ ∈ H1
0 (Ω) such that

τ = (ε∇ψ − βψ) +∇× z (2.30)

is a stable decomposition of τ . In particular, ψ can be chosen as the solution of

−ε∆ψ +∇· (βψ) = −∇· τ in Ω.
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Since ∇·β = 0, this equation is of the form (2.25) with opposite sign of β and f = 1
ετ . Again,

since ∇·β = 0, assumption (A1) is invariant with respect to a sign change of β and Lemma 1
is applicable to the problem defining ψ. This gives

ε‖∇ψ‖2 + ‖ψ‖2 .
1

ε
‖τ‖2, (2.31)

and by the triangle inequality this estimate proves that

‖∇× z‖ ≤ ‖ε∇ψ‖+ ‖βψ‖+ ‖τ‖ . 1√
ε
‖τ‖. (2.32)

Now, using the decomposition of τ , equation (2.23), integrating by parts on Ωh and using (2.24),
we obtain

‖τ‖2 = (τ , ε∇ψ − βψ +∇× z)Ωh
= (τ , ε∇ψ)Ωh

+ (ε∇v,βψ)Ωh
− (ε∇v,∇× z)Ωh

= −ε (∇· τ , ψ)Ωh
+ ε 〈[τ · n], ψ〉+ ε (∇· (βv), ψ)Ωh

− ε 〈n · ∇× z, [v]〉
= ε 〈[τ · n], ψ〉 − ε 〈n · ∇× z, [v]〉 . ε‖ [τ · n] ‖Γ0

h
‖ψ‖1,Ω + ε‖∇× z‖‖ [v] ‖Γh

. (2.33)

In the last step we made use of the definition of the dual boundary norms (2.16), (2.17). An
application of (2.31) and (2.32) yields

‖τ‖ . ‖ [τ · n] ‖Γ0
h

+
√
ε‖ [v] ‖Γh

.

Since ∇v = 1
ετ by (2.23) this finishes the proof. 2

2.2 Energy norm equivalences.

For the proof of Theorem 1 we need several norm equivalences in the solution space

U := L2(Ω)×L2(Ω)×H1/2
00 (Γh)×H−1/2(Γh).

They are proved in this section. Recall that, for a given norm in the test space

V = H1(Ωh)×H(div,Ωh),

the energy norm ‖ · ‖E is defined by duality with respect to the bilinear form b(·, ·), cf. (1.2).
Throughout we will use that the V -norm is recovered by duality from ‖ · ‖E (see [13, (2.11)]):

‖(v, τ )‖V = sup
(u,σ,û,σ̂n)∈U\{0}

b((u,σ, û, σ̂n), (v, τ ))

‖(u,σ, û, σ̂n)‖E
∀(v, τ ) ∈ V. (2.34)

Here and in the following lemmas, and misusing notation, (u,σ, û, σ̂n) denotes any element of
the solution space U , and not necessarily the solution of (2.10). Also, without further indication,
(v, τ ) ∈ V will always be related to f ∈ L2(Ω) and g ∈ L2(Ω) through the adjoint problem
(2.23), (2.24).

The equivalences needed for the three parts of Theorem 1 are proved following identical lines.
We start proving the relations needed for Theorem 1(ii) (Lemma 4) and re-use estimates for the
proofs of (iii) and (i), in this order (Lemmas 5, 6).
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Lemma 4 Let (u,σ, û, σ̂n) ∈ U be arbitrary. There holds

‖(u,σ, û, σ̂n)‖E,0 . ‖u‖1/(φ+ε) +‖β ·σ‖1/(φ+ε) +
1√
ε

(
‖β⊥ ·σ‖+‖û‖1/2,Γh

+‖σ̂n‖−1/2,Γh

)
. (2.35)

Furthermore, if β satisfies (A1), (A2) and (A3) then there holds

‖u‖+ ‖σ‖+ ε‖û‖1/2,Γh
+
√
ε‖σ̂n‖−1/2,Γh

. ‖(u,σ, û, σ̂n)‖E,0. (2.36)

Proof. We first prove (2.35). Let us denote

‖(u,σ, û, σ̂n)‖2U,0 := ‖u‖21/(φ+ε) + ‖β · σ‖21/(φ+ε) +
1

ε
‖β⊥ · σ‖2 +

1

ε
‖û‖21/2,Γh

+
1

ε
‖σ̂n‖2−1/2,Γh

.

Using (2.34) and the definition of the bilinear form (2.11), we see that the relation

‖(u,σ, û, σ̂n)‖E,0 . ‖(u,σ, û, σ̂n)‖U,0

is equivalent to

‖(v, τ )‖V,0 & sup
(u,σ,û,σ̂n)6=0

b((u,σ, û, σ̂n), (v, τ ))

‖(u,σ, û, σ̂n)‖U,0
(2.37)

' ‖g‖φ+ε + ‖β · f‖φ+ε +
√
ε‖β⊥ · f‖+

√
ε sup

(û,σ̂n)6=0

〈[τ · n], û〉+ 〈σ̂n, [v]〉
‖û‖1/2,Γh

+ ‖σ̂n‖−1/2,Γh

.

The bound
‖g‖φ+ε + ‖β · f‖φ+ε +

√
ε‖β⊥ · f‖ . ‖(v, τ )‖V,0

is immediate by the triangle inequality and the definition of the norms. To estimate the supre-
mum we integrate by parts to represent the boundary dualities and to bound:

〈[τ · n], w〉+ 〈(η − βw) · n, [v]〉
= (η,∇v)Ωh

+ (∇·η, v)Ωh
− (w,β · ∇v)Ωh

− (∇· (βw), v)Ωh
+ (w,∇· τ )Ωh

+ (∇w, τ )Ωh

.

(√
ε‖β⊥ · ∇v‖+ ‖β · ∇v‖φ+ε +

√
ε‖v‖+ ‖∇· τ‖φ+ε +

1

ε
‖β · τ‖φ+ε +

1√
ε
‖β⊥ · τ‖

)
( 1√

ε
‖β⊥ · η‖+ ‖β · η‖1/(φ+ε) +

1√
ε
‖∇·η‖

+ ‖w‖1/(φ+ε) +
1√
ε
‖w‖+

1√
ε
‖β · ∇w‖+ ε‖β · ∇w‖1/(φ+ε) +

√
ε‖β⊥ · ∇w‖

)
. ‖(v, τ )‖V,0

1√
ε

(
‖η‖H(div,Ω) + ‖w‖1,Ω

)
(2.38)

for any w ∈ H1
0 (Ω), η ∈H(div,Ω). Here, we used that |1/(φ+ ε)| ≤ 1/ε and ∇·β = O(1).
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Now, for given ρ ∈ H1/2
00 (Γh) and ϕ ∈ H−1/2(Γh) there are w ∈ H1

0 (Ω) and η̃ ∈ H(div,Ω)
such that w|Γ0

h
= ρ and (η̃ · n)|Γh

= ϕ. Defining η := η̃ + β · w and using the definition of the

trace norms (2.14), (2.15), we obtain

sup
(ρ,ϕ)6=0

〈[τ · n], ρ〉+ 〈ϕ, [v]〉
‖ρ‖1/2,Γh

+ ‖ϕ‖−1/2,Γh

= sup
(w,η)6=0

〈[τ · n], w〉+ 〈(η − βw) · n, [v]〉
‖w‖1,Ω + ‖η̃‖H(div,Ω)

. (2.39)

Estimate (2.38) and the triangle inequality yield

〈[τ · n], w〉+ 〈(η − βw) · n, [v]〉 . ‖(v, τ )‖V,0
1√
ε

(
‖η̃‖H(div,Ω) + ‖w‖1,Ω

)
so that

sup
(w,η)6=0

〈[τ · n], w〉+ 〈(η − βw) · n, [v]〉
‖w‖1,Ω + ‖η̃‖H(div,Ω)

.
1√
ε
‖(v, τ )‖V,0.

Referring to (2.39) this finishes the proof of (2.37) and, therefore, of (2.35).
To prove (2.36) we note that, as before,

‖u‖+ ‖σ‖+ ε‖û‖1/2,Γh
+
√
ε‖σ̂n‖−1/2,Γh

. ‖(u,σ, û, σ̂n)‖E,0

is equivalent to

‖(v, τ )‖V,0 . sup
(u,σ,û,σ̂n)6=0

b((u,σ, û, σ̂n), (v, τ ))

‖u‖+ ‖σ‖+ ε‖û‖1/2,Γh
+
√
ε‖σ̂n‖−1/2,Γh

' ‖g‖+ ‖f‖+
1

ε
sup
û6=0

〈[τ · n], û〉
‖û‖1/2,Γh

+
1√
ε

sup
σ̂n 6=0

〈σ̂n, [v]〉
‖σ̂n‖−1/2,Γh

= ‖g‖+ ‖f‖+
1

ε
‖ [τ · n] ‖Γ0

h
+

1√
ε
‖ [v] ‖Γh

. (2.40)

Now, for given (v, τ ) ∈ H1
0 (Ωh)×H(div,Ωh) we decompose (v, τ ) = (v1, τ 1)+(v2, τ 2)+(v0, τ 0)

with v1, v2 ∈ H1
0 (Ω), τ 1, τ 2 ∈H(div,Ω) and (v0, τ 0) = (v, τ )− (v1, τ 1)− (v2, τ 2). Here, (v1, τ 1)

and (v2, τ 2) solve

ε−1τ 1 +∇v1 = 0 in Ω,

∇· τ 1 − β · ∇v1 = g = ∇· τ − β · ∇v in Ω

and

ε−1τ 2 +∇v2 = f = ε−1τ +∇v in Ω,

∇· τ 2 − β · ∇v2 = 0 in Ω,

respectively. Moreover, by construction,

ε−1τ 0 +∇v0 = 0 in Ωh,

∇· τ 0 − β · ∇v0 = 0 in Ωh
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and

[n · τ ] = [n · τ 0] on Γ0
h, [v] = [v0] on Γh. (2.41)

We finish the proof by bounding each of the three pairs.
(i) Bound of ‖(v1, τ 1)‖V,0. Throughout we use the relations defining (v1, τ 1). Lemma 1

proves √
ε‖∇v1‖+

√
ε‖v1‖ . ‖g‖.

Again by Lemma 1, and Lemma 2:

‖β · ∇v1‖φ+ε . max{
√
ε‖β · ∇v1‖, ‖β · ∇v1‖φ} . ‖g‖.

By Lemmas 1, 2:

‖∇· τ 1‖φ+ε . max{
√
ε‖∇· τ 1‖, ‖∇· τ 1‖φ} = max{

√
ε‖g + β · ∇v1‖, ‖g + β · ∇v1‖φ} . ‖g‖

and

1

ε
‖β · τ 1‖φ+ε . max{ 1√

ε
‖β · τ 1‖,

1

ε
‖β · τ 1‖φ} = max{ 1√

ε
‖εβ · ∇v1‖,

1

ε
‖εβ · ∇v1‖φ} . ‖g‖.

And finally by Lemma 1:
1√
ε
‖τ 1‖ =

√
ε‖∇v1‖ . ‖g‖.

Therefore,
‖(v1, τ 1)‖V,0 . ‖g‖.

(ii) Bound of ‖(v2, τ 2)‖V,0. As before, we use the relations defining (v2, τ 2), and Lemma 1
to bound the individual terms of ‖(v2, τ 2)‖V,0. Specifically,

√
ε‖∇v2‖+

√
ε‖v2‖ . ‖f‖,

‖β · ∇v2‖φ+ε . ‖∇v2‖ . ‖f‖,
‖∇· τ 2‖φ+ε = ‖β · ∇v2‖φ+ε . ‖f‖,

1

ε
‖β · τ 2‖φ+ε =

1

ε
‖εβ · (f −∇v2)‖φ+ε . ‖f‖+ ‖∇v2‖ . ‖f‖,

and
1√
ε
‖τ 2‖ =

√
ε‖f −∇v2‖ . ‖f‖.

This proves that
‖(v, τ )‖V,0 . ‖f‖.

(iii) Bound of ‖(v0, τ 0)‖V,0. By Lemma 3 and (2.41) there holds

‖∇v0‖ =
1

ε
‖τ 0‖ .

1

ε
‖ [τ · n] ‖Γ0

h
+

1√
ε
‖ [v] ‖Γh

.
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Moreover, by [4, Lemma 4.2],
‖v0‖ . ‖∇v0‖+ ‖ [v] ‖Γh

. (2.42)

Therefore,

‖(v0, τ 0)‖V,0 =
√
ε‖v0‖+

√
ε‖∇v0‖+ ‖β · ∇v0‖φ+ε +

1

ε
‖β · τ 0‖φ+ε +

1√
ε
‖τ 0‖+ ‖∇· τ 0‖φ+ε

.
√
ε‖v0‖+ ‖∇v0‖+

1

ε
‖τ 0‖+ ‖∇· τ 0‖ .

1

ε
‖ [τ · n] ‖Γ0

h
+

1√
ε
‖ [v] ‖Γh

.

2

Lemma 5 Let (u,σ, û, σ̂n) ∈ U be arbitrary. There holds

‖(u,σ, û, σ̂n)‖E,1 . ‖u‖1/(φ+ε) +
1

ε
‖σ‖1/(φ+ε) +

1√
ε

(
‖û‖1/2,Γh

+ ‖σ̂n‖−1/2,Γh

)
. (2.43)

Furthermore, if β satisfies (A1), (A2) and (A3) then there holds

‖u‖+ ‖σ‖+ ε‖û‖1/2,Γh
+
√
ε‖σ̂n‖−1/2,Γh

. ‖(u,σ, û, σ̂n)‖E,1. (2.44)

Proof. The proof is analogous to the one of Lemma 4. Using (2.34) and the definition (2.11)
of the bilinear form, one sees that estimate (2.43) is equivalent to

‖(v, τ )‖V,1 & ‖g‖φ+ε + ε‖f‖φ+ε +
√
ε sup

(û,σ̂n)6=0

〈[τ · n], û〉+ 〈σ̂n, [v]〉
‖û‖1/2,Γh

+ ‖σ̂n‖−1/2,Γh

. (2.45)

The bound
‖g‖φ+ε + ε‖f‖φ+ε . ‖(v, τ )‖V,1

is immediate by the triangle inequality and the definition of the norms. To estimate the supre-
mum we integrate by parts to represent the boundary dualities and to bound:

〈[τ · n], w〉+ 〈(η − βw) · n, [v]〉
= (η,∇v)Ωh

+ (∇·η, v)Ωh
− (w,β · ∇v)Ωh

− (∇· (βw), v)Ωh
+ (w,∇· τ )Ωh

+ (∇w, τ )Ωh

.
(√

ε‖β⊥ · ∇v‖+ ‖β · ∇v‖φ+ε +
√
ε‖v‖+ ‖∇· τ‖φ+ε + ‖τ‖φ+ε

)
(

1√
ε
‖β⊥ · η‖+ ‖β · η‖1/(φ+ε) +

1√
ε
‖∇·η‖+ ‖w‖1/(φ+ε) +

1√
ε
‖w‖+

1√
ε
‖∇w‖+ ‖∇w‖1/(φ+ε)

)
. ‖(v, τ )‖V,1

1√
ε

(
‖η‖H(div,Ω) + ‖w‖1,Ω

)
(2.46)

for any w ∈ H1
0 (Ω), η ∈ H(div,Ω). The last factor is the same as in (2.38). Therefore, exactly

as in the proof of Lemma 4, we find that

sup
(û,σ̂n)6=0

〈[τ · n], û〉+ 〈σ̂n, [v]〉
‖û‖1/2,Γh

+ ‖σ̂n‖−1/2,Γh

.
1√
ε
‖(v, τ )‖V,1.
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This finishes the proof of (2.43). To prove (2.44) we show the equivalent estimate (cf. (2.40))

‖(v, τ )‖V,1 . ‖g‖+ ‖f‖+
1

ε
‖ [τ · n] ‖Γ0

h
+

1√
ε
‖ [v] ‖Γh

.

From the proof of Lemma 4 we already have the estimate

√
ε‖v‖+

√
ε‖∇v‖+ ‖β · ∇v‖φ+ε + ‖∇· τ‖φ+ε . ‖g‖+ ‖f‖+

1

ε
‖ [τ · n] ‖Γ0

h
+

1√
ε
‖ [v] ‖Γh

so that it remains to bound ‖τ‖φ+ε. For a given (v, τ ) ∈ H1
0 (Ωh) ×H(div,Ωh) we make use

of the decomposition from the proof of Lemma 4: (v, τ ) = (v1, τ 1) + (v2, τ 2) + (v0, τ 0) with
v1, v2 ∈ H1

0 (Ω), τ 1, τ 2 ∈H(div,Ω) and (v0, τ 0) = (v, τ )− (v1, τ 1)− (v2, τ 2).
From the definitions of τ 1 and τ 2, and Lemma 1 we obtain

‖τ 1‖φ+ε = ε‖∇v1‖φ+ε . ‖g‖

and
‖τ 2‖φ+ε = ‖ε(f −∇v2)‖φ+ε . ‖f‖.

Lemma 3 and (2.41) prove that

‖τ 0‖φ+ε . ‖ [τ · n] ‖Γ0
h

+
√
ε‖ [v] ‖Γh

.

The triangle inequality yields the wanted bound for ‖τ‖φ+ε and finishes the proof. 2

Lemma 6 Let (u,σ, û, σ̂n) ∈ U be arbitrary. If β satisfies (A1) then there holds

‖u‖+ ‖σ‖+ ‖(û, σ̂n)‖Γ′h ' ‖(u,σ, û, σ̂n)‖E,qopt. (2.47)

If β satisfies (A1) and (A3) then there holds

‖u‖+ ‖σ‖+ ε‖û‖1/2,Γh
+
√
ε‖σ̂n‖−1/2,Γh

. ‖(u,σ, û, σ̂n)‖E,qopt. (2.48)

Proof. Using duality as in the proof of Lemma 4, and the equivalence

sup
(u,σ,û,σ̂n) 6=0

b((u,σ, û, σ̂n), (v, τ ))

‖u‖+ ‖σ‖+ ‖(û, σ̂n)‖Γ′h
' ‖g‖+ ‖f‖+ ‖(v, τ )‖Γh

= ‖g‖+ ‖f‖+ ‖ṽ‖,

cf. (2.21), (2.22), we see that (2.47) is equivalent to

‖g‖+ ‖f‖+ ‖ṽ‖ ' ‖(v, τ )‖V,qopt = ‖g‖+ ‖f‖+ ‖v‖.

Both estimates are immediate by the triangle inequality and by bounding ‖v0‖ . ‖g‖ + ‖f‖
with Lemma 1 and the superposition principle.
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To show (2.48) we prove the equivalent estimate

‖(v, τ )‖V,qopt . sup
(u,σ,û,σ̂n)6=0

b((u,σ, û, σ̂n), (v, τ ))

‖u‖+ ‖σ‖+ ε‖û‖1/2,Γh
+
√
ε‖σ̂n‖−1/2,Γh

' ‖g‖+ ‖f‖+
1

ε
‖ [τ · n] ‖Γ0

h
+

1√
ε
‖ [v] ‖Γh

,

that is, it is enough to bound

‖v‖ . ‖g‖+ ‖f‖+
1

ε
‖ [τ · n] ‖Γ0

h
+

1√
ε
‖ [v] ‖Γh

. (2.49)

Exactly as in the proof of Lemma 4 we decompose (v, τ ) ∈ H1
0 (Ωh) ×H(div,Ωh) like (v, τ ) =

(v1, τ 1) + (v2, τ 2) + (v0, τ 0) with v1, v2 ∈ H1
0 (Ω), τ 1, τ 2 ∈ H(div,Ω) and (v0, τ 0) = (v, τ ) −

(v1, τ 1)− (v2, τ 2). Then,
‖v‖ ≤ ‖v0‖+ ‖v1‖+ ‖v2‖

and by Lemma 1,
‖v1‖+ ‖v2‖ . ‖g‖+ ‖f‖.

Finally, combining (2.42) and Lemma 3, we obtain

‖v0‖ . ‖∇v0‖+ ‖ [v] ‖Γh
.

1

ε
‖ [τ · n] ‖Γ0

h
+

1√
ε
‖ [v] ‖Γh

.

This proves (2.49). 2

3 Numerical experiments

In this section, we report on numerical experiments with the DPG method for a 2D model
problem introduced by Eriksson and Johnson [10],

−ε∆u+
∂u

∂x
= f in Ω = (0, 1)2,

u = u0 on ∂Ω,

with coordinates (x, y) so that β = (1, 0)T in Ω. We shall study numerically the case with f = 0
and boundary condition

u0(x, y) =

{
u0(y), x = 0, y ∈ (0, 1),
0, otherwise.

We use separation of variables to compute the exact solution,

u(x, y) =
∞∑
n=1

Cn
er1,n(x−1) − er2,n(x−1)

e−r1,n − e−r2,n
sin(nπy) (3.50)
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where

u0(y) =
∞∑
n=1

Cn sin(nπy), r1(2),n =
−1±

√
1 + 4ε2n2π2

−2ε
.

We will use a manufactured solution corresponding to the leading term n = 1 of the series,

u(x, y) =
er1(x−1) − er2(x−1)

e−r1 − e−r2
sin(πy)

with

r1,2 =
−1±

√
1 + 4ε2π2

−2ε
.

The solution is displayed in Fig. 1.

Figure 1: 2D model problem, ε = 10−2. Velocity u and “stresses” σx, σy (using scale for σy).

Meshes. We shall use quadrilateral (rectangular) meshes and focus on h-adaptivity. Our stan-
dard choice is going to be bilinear elements for the field variables σ1, σ2, u. The logic of the code
is based on the exact sequence, so the corresponding H1-conforming element is Q(2,2) = P2⊗P2

(tensor products of quadratic polynomials) which implies the default polynomial degree for
traces to be p = 2. In turn, the corresponding Raviart-Thomas element is (P2⊗P1)×(P1⊗P2),
and this implies the linear approximation of fluxes, p = 1. All the experiments are done in
the context of adaptive meshes. For h-adaptivity, we use the standard greedy algorithm with
coefficient 0.5, i.e. all elements which contribute with an error that is above 50 percent of the
maximum element contribution, are selected for refinement. For all other details on adaptivity
we refer to [8].

3.1 Experiments with the quasi-optimal test norm

Recall the definition of the quasi-optimal test norm:

‖(τ , v)‖2V,qopt = ‖ε−1τ +∇v‖2 + ‖∇· τ − ∂v

∂x
‖2 + ‖v‖2.
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We did not implement an adaptive solver for determining optimal test functions. In view of
our 1D experiments [9], the examples that we present are thus rather limited. We start with a
diffusion dominated regime, ε = 0.1. The optimal test functions were determined using standard
enriched spaces with polynomial degree increment ∆p = 5, 6. Moreover, we use only h-adaptivity.
Results for the first six meshes are reported in Fig. 2.

Figure 2: 2D model problem, quasi-optimal norm, ε = 10−1,∆p = 5, 6. Left: convergence of the
error in energy norm. Right: convergence in relative L2-norm for the field variables (in percent
of their L2-norm).

The small difference between the two energy- and L2-norm curves indicates that the optimal
test functions have practically been resolved. The ratio of the L2 to the energy error, displayed
in Fig 3, is no longer one as in the 1D case (cf. [9]), but varies between 0.02 and 0.12. The
method does deliver a picture perfect solution. For illustration, Fig. 4 presents the error in σ1

on the mesh after six h-refinements. The method delivers 3 digits in the solution.

Experiments with Shishkin meshes for ε = 10−2. An attempt to resolve the optimal test
functions for ε = 10−2 using the simple enrichment with ∆p = 6 has failed. The optimal test
functions are clearly underresolved which manifests itself for instance in a loss of monotonic de-
crease of the error with refinements. Following [11], we have implemented Shishkin sub-meshes to
resolve optimal test functions. The Shishkin-type sub-element tensor product mesh corresponds
to a 1D master element sub-mesh consisting of three subelements with nodes placed at

x0 = 0, x1 =
ε

h
p̂, x2 = 1− ε

h
p̂, x3 = 1

where h is the element size and p̂ is the degree of polynomials employed in the sub-mesh. Upon
transforming to the actual element of length h, the sub-mesh nodes are placed at

0, εp̂, h− εp̂, h.

It is assumed, of course, that ε
h p̂ <

1
2 , so that the experiments with just Shishkin meshes can be

performed only in the preasymptotic regime.
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Figure 3: 2D model problem, quasi-optimal norm, ε = 10−1,∆p = 5, 6. Ratio of L2 and energy
norms.

Resolution of optimal functions involves discretization of the H1-component v, and the
H(div) component τ . We have used a Nedéléc-like space corresponding to the Shishkin sub-
mesh to resolve τ . In other words, if W p̂ denotes the H1-conforming space of order p̂ in 1D, for
the corresponding H(div)-conforming space in 2D we choose

(W p̂ ⊗W p̂−1)× (W p̂−1 ⊗W p̂).

We have tried to run the adaptive code with p̂ = 1, 2, 3, 4. The results for different p̂ differ
significantly from each other, and the behavior of the energy error in none of the cases was
monotone.

In view of the results, we conclude that the use of Shiskin meshes does not guarantee the
resolution of optimal mesh functions. The problem may be related to the use of irregular meshes.

3.2 Experiments with weighted test norms

We have experimented with three weighted test norms. The first one is

‖(v, τ )‖2V,1 := ε‖v‖2 + ‖β · ∇v‖2φ+ε + ε‖∇v‖2 + ‖τ‖2φ+ε + ‖∇· τ‖2φ+ε

and corresponds to the one covered by Theorem 1(iii). We select the weight function φ(x, y) = x.
Recall the reasoning used to construct the norm. The stability estimates for the adjoint equation
tell us that we have a robust control of the streamline component of ∇v, i.e. simply ∂v/∂x in
the case of our model problem. The stability comes from the convection, not diffusion. In fact,
the weight reflects a “compromise” between the convection and diffusion. Without the diffusion,
we would have had the control of the streamline component of the gradient in the standard L2
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Figure 4: 2D model problem, quasi-optimal norm, ε = 10−1,∆p = 5. Pointwise error in σ1, and
optimal mesh corresponding to 0.04 percent relative L2-error. Range: ±0.002.

(unweighted) norm. Stability of the crosswind component of ∇v comes from the diffusion and
it depends upon ε. This is reflected by the third term of the test norm. The L2 term is also
prescaled with ε. This is not because of the stability results, we do have a robust control of ‖v‖.
By scaling the L2 term though, we avoid boundary layers in the optimal test functions. Indeed,
without the ε scaling of the L2-norm of v, some of the optimal test functions develop boundary
layers along north and south boundaries of elements, and their resolution is as problematic as
for the quasi-optimal test norm. With the prescaling, there is no conflict between the lower and
higher order terms in the definition of the norm, and the boundary layers are avoided.

A similar reasoning is used to define the norm for the τ component. From the control of
β · ∇v in norms with weights φ and ε, it follows the use of weight φ+ ε in the norm for ∇· τ .
The same weight is then used to define the lower order term to avoid possible boundary layers.

In essence, the weighted norm reflects everything we have learned on the stability, and an
attempt to avoid test functions with boundary layers.

The second weighted norm is the one used in [8]. At that point, we had little understanding
of robustness in multi-dimensions and the choice represented an extrapolation of our 1D results.
The norm is defined as follows.

‖(τ , v)‖2V,2 = ‖∇· τ‖2φ+ε + ‖τ‖2φ+ε + ‖∇v‖2φ+ε + ‖v‖2φ+ε.

The third weighted norm is tailored for this specific example,

‖(v, τ )‖2V,3 := min{ ε
h2

2

, 1}‖v‖2 + ‖∂v
∂x
‖2φ+ε + ε‖∂v

∂y
‖2 + min{1

ε
,

1

h1h2
}‖τ‖2φ+ε + ‖∇· τ‖2φ+ε.

With the use of rectangular meshes aligned with coordinates, h1, h2 denote the element lengths
in x and y directions. The definition reflects the fact that the conflict between diffusion and
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reaction terms (producing boundary layers in optimal test functions) diminishes with element
size, and rescales the reaction terms accordingly to the scaling of the crosswind diffusion term
for v, and divergence for τ . The norm changes with the mesh (it depends upon the element
size) but it satisfies the criteria implied by the stability analysis for the adjoint equation. By
rescaling the L2 terms with mesh dependent constants, we not only fight off the round-off error
but improve the best approximation error estimates. The norm can be defined in a similar way
for a general advection vector β and arbitrary meshes.

All results for the weighted norms have been obtained using the (anisotropic) hp-adaptive
strategy described in detail in [8]. In short, we use the greedy strategy combined with a switch
from h-refinement to p-refinement when the element size (in any direction) reaches ε. The mini-
mum element size is thus limited by ε. To control the round-off error, we also impose a limit on
the order of approximation, p ≤ pmax = 4.

Fig. 5 presents the convergence history for the first weighted norm and three values of the
diffusion coefficient ε = 10−2, 10−3, 10−4. As predicted by the theory, the energy error decreases
monotonically in the whole range of refinements. For ε = 10−4, the convergence stalls which we
attribute to the round-off effects for the smallest elements (cf. [8]).

Figure 5: 2D model problem, weighted test norm ‖ · ‖V,1, ε = 10−2, 10−3, 10−4. Left: convergence
of the error in energy norm. Right: convergence in relative L2-norm for the field variables (in
percent of their L2-norm).

Fig. 6 shows the ratio of the L2-error for the field variables σ1, σ2, u and the energy error. The
ratio stays uniformly bounded not only from above, as predicted by the theory, but also from
below. Contrary to 1D experiments in [9], it does not converge asymptotically to any number.

Finally, Figures 7 and 8 present results for the “non-kosher” weighted norm ‖ · ‖V,2. Consis-
tently with the experience reported in [8], the overall performance of the method is as good as for
the weighted norm ‖ ·‖V,1 justified by the theory. However, the ratio of the L2 and energy norms
does not stay uniformly bounded from above as it begins to grow in the end of the convergence
process.

Finally, Figures 9 and 10 present results for the rescaled “kosher” weighted norm ‖ · ‖V,3.
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Figure 6: 2D model problem, weighted test norm ‖ · ‖V,1, ε = 10−2, 10−3, 10−4. Ratio of L2 and
energy norms.

Clearly, the results are the best out of the three norms. We were able to complete the com-
putations for all three values of ε. Notice the sudden drop in both energy and L2-errors for
ε = 10−3, 10−4 due to p-refinements in the boundary layer. Consistently with the theory, the
ratio of L2 and energy errors stays bounded uniformly in ε.

3.3 An Extra Example.

In order to pin down better the difference between the three weighted norms, we have considered
again the model problem of Eriksson and Johnson but with an inflow boundary condition corre-
sponding to the first twenty terms of the Fourier expansion (3.50) of a discontinuous piecewise
linear function. The exact (manufactured) solution for ε = 10−2 is displayed in Fig. 11.

Case: ε = 10−2

We start with a moderate diffusion constant ε = 10−2. Comparison of results for the three
weighted norms is presented in Figures 12 and 13. As predicted by theory, the ratio of the L2

and energy norms shoots higher for the non-kosher norm ‖ · ‖V,2. The overall performances of
the three methods, though, are quite comparable.

Case: ε = 10−4

We now turn to a more demanding and interesting case for ε = 10−4. Recall that this was
the smallest value of the diffusion constant for which we have managed to solve the previous
example. Solution for smaller values of ε requires the use of mesh-dependent norms [8].
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Figure 7: 2D model problem, weighted test norm ‖ · ‖V,2, ε = 10−2, 10−3, 10−4. Left: convergence
of the error in energy norm. Right: convergence in relative L2-norm for the field variables (in
percent of their L2-norm).

Kosher norm ‖ · ‖V,1. Figures 14 and 15 present results obtained with the test norm ‖ · ‖V,1
and enriched spaces with ∆p = 2, 3. The computations with ∆p = 2 were stopped shortly after
the energy error began to increase, a behavior inconsistent with theory and indicating that
the optimal test functions had not been resolved. The two curves begin to diverge from each
other only after 16 iterations. This could be explained with an observation that most of the
refinements in the first steps take place near the inflow boundary where the weight φ = x is
small and, consequently, the anisotropy present in the test norm of v is less pronounced. The
ratio of L2 and energy error shoots a bit higher for ∆p = 2 but the difference between the two
plots is not dramatic.

Non-kosher test norm ‖ · ‖V,2. The results for the “non-kosher” test norm ‖ · ‖V,2 are shown
in Figures 16 and 17. The norm is less sensitive to ∆p, the two convergence curves overlap with
each other. This is consistent with the results reported in [8]. The two curves begin to slightly
diverge from each other by the end of the process. The convergence for ∆p = 3 eventually breaks
down which indicates round-off error problems with the smallest elements. In [8], we were able to
finish the convergence process for ε = 10−4. There are essentially only two differences between the
codes. With linear elements for field variables, we use now continuous quadratics to approximate
traces, whereas in [8], we used discontinuous linears. The second difference is in the solution of
local problems for the optimal test functions. In [8] we used H1-conforming shape functions for
τ . In the present work, we use the H(div)-conforming shape functions.

The ratio of L2 and energy norms, presented in Fig. 17, shoots up for both values of ∆p,
consistently with the theory.

Rescaled kosher test norm ‖ · ‖V,3. The results for the rescaled kosher norm ‖ · ‖V,3 are
presented in Figures 18 and 19. Similarly as for the second norm, we were able to push the
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Figure 8: 2D model problem, weighted test norm ‖ · ‖V,2, ε = 10−2, 10−3, 10−4. Ratio of L2 and
energy norms.

computations to an error level that guarantees the resolution of the boundary layer. Notice that,
for the smaller constant ε, this requires reaching a smaller value of the L2 error. The difference
in convergence histories indicates some sensitivity to the resolution of optimal test functions.
The acceleration in convergence that occurs when the p-refinements occur, happens later with
∆p = 3. We cannot claim thus that the optimal test functions have been fully resolved with
∆p = 2.

Finally, Fig. 20 presents the L2-convergence history for all three weighted test norms and
∆p = 2. Clearly, the performance of the rescaled norm ‖ · ‖V,3 supported by the theory is the
best. First of all, we were able to finish the computations all the way to a full resolution of the
boundary layer. The rescaling in the small element regime not only successfully fights off the
round-off error but it also delivers lower approximation error. This is in agreement with the best
approximation error estimates.
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Figure 9: 2D model problem, weighted test norm ‖ · ‖V,3, ε = 10−2, 10−3, 10−4. Left: convergence
in energy norm. Right: convergence in relative L2-norm for the field variables (in percent of their
L2-norm).

Figure 10: 2D model problem, weighted test norm ‖ · ‖V,3, ε = 10−2, 10−3, 10−4. Ratio of L2 and
energy norms.
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Figure 11: 2D model problem II (with “discontinuous” inflow data), ε = 10−2. Velocity u and
“stresses” σx, σy (using scale for σy).

Figure 12: 2D model problem II, ε = 10−2. Comparison of three weighted norms. Left: conver-
gence in energy norm. Right: convergence in relative L2-error for the field variables (in percent
of their L2-norm).
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Figure 13: 2D model problem II, ε = 10−2. Comparison of three weighted norms. Ratio of L2

and energy norms.

Figure 14: 2D model problem II, ε = 10−4, kosher weighted norm ‖ · ‖V,1. Comparison of results
for ∆p = 2, 3. Left: convergence in energy error. Right: convergence in relative L2-error for the
field variables (in percent of their L2-norm).
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Figure 15: 2D model problem II, ε = 10−4, kosher weighted norm ‖ · ‖V,1. Comparison of results
for ∆p = 2, 3. Ratio of L2 and energy norms.

Figure 16: 2D model problem II, ε = 10−4, non-kosher weighted norm ‖ · ‖V,2. Comparison of
results for ∆p = 2, 3. Left: convergence in energy norm. Right: convergence in relative L2-error
for the field variables (in percent of their L2-norm).
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Figure 17: 2D model problem II, ε = 10−4, non-kosher weighted norm ‖ · ‖V,2. Comparison of
results for ∆p = 2, 3. Ratio of L2 and energy norms.

Figure 18: 2D model problem II, ε = 10−4, rescaled kosher weighted norm ‖·‖V,3. Comparison of
results for ∆p = 2, 3. Left: convergence in energy norm. Right: convergence in relative L2-error
for the field variables (in percent of their L2-norm).
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Figure 19: 2D model problem II, ε = 10−4, rescaled kosher weighted norm ‖ · ‖V,3. Comparison
of results for ∆p = 2, 3. Ratio of L2 and energy norms.

Figure 20: 2D model problem II, ε = 10−4. Convergence history in L2-norm for the three weighted
norms.
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4 Conclusions

We have presented a general strategy aiming at the construction of an optimal test norm for
the DPG method applied to singularly perturbed problems. The strategy requires a stability
analysis of the classical adjoint problem accounting for the dependence upon the perturbation
parameter, i.e. robust error estimates.

We have applied the strategy to the important model problem of convection-dominated
diffusion. The obtained stability estimates for the adjoint problem extend earlier results from
Eriksson and Johnson [10].

Given the stability results, one can construct many test norms that guarantee bounding the
L2-error in the field variables by the DPG energy (residual) error in a robust way, i.e. uniformly
in the diffusion coefficient ε. The quasi-optimal test norm, implied by the Banach closed range
theorem [13] and proposed in context of the confusion problem in [12], admits also a robust
upper bound, i.e. the energy error can be bounded uniformly in ε by the best approximation
error involving the L2-norm for the field variables.

Unfortunately, the optimal test functions corresponding to the quasi-optimal test norm ex-
hibit boundary layers whose resolution is very demanding.

Based on the stability analysis, we have proposed two new weighted test norms that are
consistent with theory and produce test functions that can be easily resolved with enriched spaces
and ∆p = 2. Especially attractive is the rescaled norm that presents an optimal compromise
between three conditions:

• it satisfies robust stability estimate (1.7) and, therefore, guarantees a robust bound of the
L2-error in the field variables with the energy error;

• it enables resolution of the optimal test functions in the small elements limit;

• it implies better best approximation error estimates than the unscaled weighted norm.

Presented numerical results illustrate and confirm our theory.
In conclusion, we believe that the weighted test norm presents an optimal compromise be-

tween robustness and practicality of the DPG method for convection-dominated diffusion prob-
lems.

Current work. The methodology presented in this paper opens up doors for a systematic
construction of robust DPG methods for different singularly perturbed problems. There is no
miracle, without a systematic analysis of the stability of classical, strong formulations, we act
blind folded, and may only try to guess appropriate test norms. Construction of such test norms
is clearly very problem dependent. Our current efforts focus on generalizing presented results to
linearized compressible Navier-Stokes equations.

The main ambition of the DPG method is to provide a framework for fully automatic adap-
tive methods that allow for a full resolution of boundary layers and other irregularities related to
the nature of singularly perturbed problems. The unprecedented feature of the method is that
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it offers stability for a very general class of grids including hp-adaptive meshes. This enables
anisotropic hp-adaptivity, a technique which is crucial for the resolution of boundary layers,
(smeared) shocks and singularities. The use of highly irregular hp grids presents several chal-
lenges. We mention just two:

• The round-off error limitations are critical, and result in limiting both element size and
order of approximation, possibly also aspect ratios. For ε ≤ 10−5, one has to use rescaled
test norms proposed in [8]. Stability and convergence analysis for such norms remains an
open issue.

• We need a genuine hp-adaptive strategy. The strategy proposed in [8] and used in this
paper, is limited to a rather narrow class of problems and has been intended mostly to
illustrate the stability of the DPG method.

Acknowledgments

Demkowicz was supported by the Department of Energy [National Nuclear Security Adminis-
tration] under Award Number [DE-FC52-08NA28615]. Heuer was supported by Fondecyt-Chile
under Grant Number 1110324. We thank for the J.T. Oden fellowship supporting a visit of the
second author to ICES.

References

[1] A. Cohen, W. Dahmen, and G. Welper, Adaptivity and variational stabilization for
convection-diffusion equations, Bericht 323, Institut für Geometrie und Praktische Mathe-
matik, RWTH Aachen, 2011.

[2] W. Dahmen, C. Huang, C. Schwab, and G. Welper, Adaptive petrov Galerkin meth-
ods for first order transport equations, Bericht 321, Institut für Geometrie und Praktische
Mathematik, RWTH Aachen, 2011.

[3] L. Demkowicz and J. Gopalakrishnan, A new paradigm for discretizing difficult prob-
lems: Discontinuous Petrov Galerkin method with optimal test functions. Expressions (pub-
lication of International Association for Computational Mechanics), November 2010.

[4] , Analysis of the DPG method for the Poisson problem, SIAM J. Numer. Anal., (2011).

[5] , A class of discontinuous Petrov-Galerkin methods. Part II: Optimal test functions,
Numer. Methods Partial Differential Eq., (2011), pp. 70–105. See also ICES Report 9-16.

[6] L. Demkowicz, J. Gopalakrishnan, I. Muga, and D. Pardo, A pollution free DPG
method for multidimensional Helmholtz equation, ICES Report, The University of Texas at
Austin, 2011. In preparation.

35



[7] L. Demkowicz, J. Gopalakrishnan, I. Muga, and J. Zitelli, Wavenumber explicit
analysis for a DPG method for the multidimensional Helmholtz equation, ICES Report
11-24, The University of Texas at Austin, 2011. Submitted to CMAME.

[8] L. Demkowicz, J. Gopalakrishnan, and A. Niemi, A class of discontinuous Petrov-
Galerkin methods. Part III: Adaptivity, Appl. Numer. Math., (2011). Accepted.

[9] L. Demkowicz and N. Heuer, Robust DPG methods for 1d convection-dominated diffu-
sion problems, ICES Report, The University of Texas at Austin, 2011. In preparation.

[10] K. Eriksson and C. Johnson, Adaptive streamline diffusion finite elements methods for
stationary convection-diffusion problems, Math. Comp., 60 (1993), pp. 167–188.

[11] A. Niemi, N. Collier, and V. Calo, Automatically stabilized discontinuous Petrov-
Galerkin methods for stationary transport problems: Quasi-optimal test space norm, (2011).
In preparation.

[12] , Discontinuous Petrov-Galerkin method based on the optimal test space norm for one-
dimensional transport problems, Journal of Computational Science, (2011). Submitted.

[13] J. Zitelli, I. Muga, L. Demkowicz, J. Gopalakrishnan, D. Pardo, and V. Calo,
A class of discontinuous Petrov-Galerkin methods. Part IV: Wave propagation problems, J.
Comp. Phys., 230 (2011), pp. 2406–2432. See also ICES Report 10-17.

36


