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Finite element analysis of the Girkmann problem using
the modern hp-version and the classical h-version

Antti H. Niemi∗, Ivo Babuška†, Juhani Pitkäranta‡, Leszek Demkowicz§

Abstract

We perform finite element analysis of the so called Girkmann problem in structural
mechanics. The problem involves an axially symmetric spherical shell stiffened with a
foot ring and is approached (i) by using the axisymmetric formulation of linear elasticity
theory and (ii) by using a dimensionally reduced shell-ring model. In the first approach
the problem is solved with a fully automatic hp-adaptive finite element solver whereas
the classical h-version of the finite element method is used in the second approach.
We study the convergence behaviour of the different numerical models and show that
accurate stress resultants can be obtained with both models by using effective post-
processing formulas.

Keywords : Verification & validation; hp-Adaptivity; Shell elements; Post-processing

1 Introduction

In a recent article [1] a challenge was posed to make a computational analysis of a shell
problem formulated by Karl Girkmann in his classical textbook [2]. The purpose of this
challenge was to find out whether this relatively straightforward engineering problem can be
solved routinely and reliably by computers and the existing software of today. The challenge
was accepted by various engineers and scientists who addressed the problem but the answers
were surprisingly incoherent. In particular the numerical results obtained with the h-version
of the finite element method had a very large dispersion, see [3, 4] and the Appendix.

The problem of verification and validation (V&V), see [5, 6], has come to the forefront of
interest because computational science is able to solve large complex problems of engineering.
Validation is related to the question whether the exact solution of the mathematical problem
(model) describes faithfully the reality so that decisions could be based on the obtained
results. Verification is concerned with the question whether the accuracy of the approximate
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solution (for example the finite element solution) is sufficient for the purpose of computation,
cf. [7].

A common approach to the verification of numerical methods and computer software
is to perform so called benchmark computations. The idea is to put the reliability and
performance of a computational model into test by solving selected problems whose exact
solution is known to a sufficient precision. At the same time, benchmark problems should
be difficult enough so that the test is meaningful concerning practical applications of the
model. In our opinion, the Girkmann problem serves as a good benchmark problem because
the problem description is relatively straightforward, but accurate recovery of the stress
resultants has turned out to be a rather non-trivial task.

A detailed finite element analysis of the problem using the p-version has been carried
out in [4]. In the present paper a similar analysis is performed using the hp-version in self-
adaptive manner. Within this approach the analyst’s work is limited to specifying the initial
geometry while the automatic procedure generates a sequence of finite element meshes with
optimal distributions of the element sizes h and the approximation orders p with respect to
the degrees of freedom. The advantages of the hp-version of the finite element method in
context of thin-walled structures have been demonstrated earlier by Tews and Rachowicz in
[8].

Our computations show that the hp-method is successful also in the Girkmann problem
especially when the extraction procedure introduced in [9] is used to post-process the stress
resultants. The computations were performed using the standard, energy-based version of
the hp-adaptive algorithm as described in [10]. The existing software package was modified
slightly to incorporate the axisymmetric formulation of linear elasticity theory and the post-
processing formulas of the stress resultants.

Motivated by the scattered results of the h-version shell elements reported in [4], we have
also solved the problem by using a dimensionally reduced shell-ring model. Such a simplified
model was in fact applied to solve and analyze the problem in the original treatment of
Girkmann and subsequently in [11]. We rely here on a semi-analytic approach where the
kinematic assumptions are first imposed on the continuous level and the resulting dimen-
sionally reduced problem is then solved approximately by using the h-version of the finite
element method. More precisely, a classical Reissner-Mindlin type assumption is used on
the shell whereas the ring cross section is assumed to remain undeformed. These physical
assumptions are then imposed as an Ansatz within the otherwise standard principle of min-
imum potential energy. The model, first derived in [11], differs slightly from the original
one proposed by Girkmann and has turned out to be very accurate as compared with the
elasticity theory.

It should be noted that our numerical approach to the dimensionally reduced shell-ring
model does not involve approximation of the initial shell geometry in contrast to many
low-order shell element formulations of commercial finite element codes. In fact, it has
been shown in [12, 13] that crude approximation of the shell geometry may deteriorate the
accuracy of finite elements if the shell deformation involves strong boundary or interior layers.
In the Girkmann problem a dominant boundary layer appears indeed near the junction
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between the shell and the ring. It is possible that the error amplification effects associated
to the layer approximation are partly responsible of the erroneous results obtained earlier
with the h-version shell elements. Another potential source of numerical problems is the
transition from shell elements to solid elements at the junction. Either way, our study shows
that relatively accurate stress resultants can be computed by using the h-version of the
finite element method within a geometrically compatible shell-ring model. By utilizing a
priori knowledge of the boundary layer, the problem can be solved rather economically on a
piecewise uniform (Shishkin) mesh – in particular if selective under-integration is applied to
circumvent transverse shear locking.

The paper is organized as follows. The Girkmann problem statement is recalled in Section
2 and the two different mathematical models are formulated in Section 3. The finite element
approaches for both models are then described in Section 4 and the results of computation
are shown in Section 5. A summary of our results is presented in Section 6 whereas the
earlier results can be found from the Appendix.

2 The Girkmann problem statement

A spherical dome made of reinforced concrete, assumed to be homogeneous, isotropic and
linearly elastic with Young’s modulus E = 20.59 GPa and Poisson’s ratio ν = 0 is connected
to a stiffening ring at the meridional angle α = 40◦ as shown in Fig. 1. The crown radius, i.e.
the distance from the axis of rotational symmetry to the midpoint of the junction between the
spherical shell and the stiffening ring, is ρ0 = 15.00 m. The thickness of the shell is d = 0.06 m
so that the slenderness ratio is t = d/r0 = 2.57 · 10−3 where r0 = ρ0/ sinα = 23.34 m is the
radius of the midsurface of the shell. The dimensions of the stiffening ring are a = 0.60 m
and b = 0.50 m.

We follow the original problem statement where the ring is assumed to be weightless
while a gravity load of magnitude F = 32690 N/m3 acts on the shell roof. The gravity of
the dome is then equilibrated by a uniform normal pressure p = 27256 Pa acting at the base
AB of the ring. The quantities of interest are:

1. The shear force Q and the bending moment M acting at the junction between the
spherical shell and the stiffening ring.

2. The location (meridional angle) and the magnitude of the maximum bending moment
in the shell.

The Girkmann problem, as stated above, is considered as a benchmark problem for evalu-
ating verification procedures of numerical methods in structural mechanics. This standpoint
was strengthened in the problem statement of [1] by urging analysts to

1. Verify that their results are accurate to within 5 percent.

2. Describe what kind of numerical model and software were used and how the accuracy
of the data was verified.
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Figure 1: The Girkmann problem. Cross-section of the structure.
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3 Mathematical models

Our starting point is the displacement formulation of linear elasticity theory for a body
occupying a region Ω. The formulation is based on the variational principle of virtual work
equivalent to the principle of minimum potential energy: Find the displacement field u in
the energy space U(Ω) such that

A(u,v) = L(v) for all v ∈ U(Ω)

Here A(u,v) is the energy product (virtual work of internal stresses) defined in terms of the
stress tensor σ and the strain tensor ε as

A(u,v) =

∫
Ω

σ(u) : ε(v) dΩ

and L(v) is the load functional (virtual work of external stresses) defined as

L(v) =

∫
Ω

f · v dΩ +

∫
Γ

g · v dΓ

The terms f and g represent the volume load on Ω and the surface traction on the boundary
Γ = ∂Ω, respectively. The energy space U(Ω) is defined as

U(Ω) = {u | A(u,u) <∞}

and is associated with the energy norm

|||u||| =
√
A(u,u). (1)

3.1 Axisymmetric solid model

Because the domain, the material properties and the external loads are axially symmetric
in the Girkmann problem, the computational domain Ω may be defined as the cross section
of the structure (Fig. 1). The problem can then be formulated in terms of the cylindrical
coordinates ρ, ϕ, z in such way that the solution is independent of the azimuthal angle ϕ
and dΩ = ρ dρ dz. Denoting the displacement vector field by u = (uρ, uz), the non-vanishing
components of the strain tensor are

ερ =
∂uρ
∂ρ

, εϕ =
uρ
ρ
, εz =

∂uz
∂z

, ερz =
1

2

(
∂uρ
∂z

+
∂uz
∂ρ

)
and we have

σ : ε = σρερ + σzεz + σϕεϕ + 2σρzερz

Notice that the azimuthal strain εϕ accounts for the true, three-dimensional nature of the
problem in spite of the fact that we have only two independent variables ρ and z.
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Since the Poisson ratio ν is vanishing, the stress and the strain tensor are related by
the simple law σ = Eε. Moreover, square-integrability of εϕ requires the enforcement of
the symmetry condition uρ = 0 at ρ = 0. Concerning the external loads f = (fρ, fz) and
g = (gρ, gz), we set

f =

{
(0,−F ) on the shell domain ΩS ⊂ Ω

(0, 0) on the ring domain ΩR ⊂ Ω

g =

{
(0, p) on ΓAB

(0, 0) on Γ \ΓAB

in accordance with the problem statement. This completes the mathematical formulation of
the Girkmann problem as an axisymmetric problem of linear elasticity theory.

3.2 Axisymmetric shell-ring model

The above two-dimensional problem may be simplified further by restricting the energy
space U(Ω) by using appropriate kinematic assumptions. It is advantageous to use different
assumptions for the shell domain ΩS and the ring domain ΩR so that the energy product
and the load functional are split formally as

A(u,v) = AS(u,v) +AR(u,v), L(v) = LS(v) + LR(v)

with the continuity of the displacement field being enforced at the junction ΩS ∩ ΩR.
The simplification begins with parametrization of the shell domain ΩS by using the spher-

ical coordinates r, θ, ϕ (radial, polar, azimuthal). Denoting the corresponding displacement
by u = (uθ, ur), the non-vanishing components of the strain tensor take the form

εθ =
1

r

∂uθ
∂θ

+
∂ur
r
, εr =

∂ur
r
, εϕ =

1

r
(uθ cot θ + ur), εrθ =

1

2

(
∂uθ
∂r

+
1

r

∂ur
∂θ
− uθ

r

)
(2)

The displacement field is then restricted in accordance with the lowest-order shell theory as

uθ(r, θ) = u(θ) + (r − r0)ψ(θ), ur(r, θ) = w(θ), 0 ≤ θ ≤ α (3)

so that material fibres perpendicular to the shell midsurface before deformation are assumed
to remain straight and unstretched after the deformation.

The strains (2) may now be expanded as

εθ =
1

r
[βθ + (r − r0)κθ], εϕ =

1

r
[βϕ + (r − r0)κϕ], εrθ =

1

2r
ρθ

where
βθ = u′ + w, βϕ = u cot θ + w

ρθ = r0ψ + w′ − u
κθ = ψ′, κϕ = ψ cot θ
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Note that here the geometric curvature of the shell in the azimuthal direction is represented
by the strains βϕ, κϕ. Taking into account that dΩs = r2 sin θ dr dθ, the shell energy prod-
uct AS(u,v) may be integrated with respect to r and written in terms of the generalized
displacement field u = (u,w, ψ) as

AS(u,v) = Aβ(u,v) +Aρ(u,v) +Aκ(u,v)

where

Aβ(u,v) = Ed

∫ α

0

[βθ(u)βθ(v) + βϕ(u)βϕ(v)] sin θ dθ

Aρ(u,v) =
Ed

2

∫ α

0

ρθ(u)ρθ(v) sin θ dθ

Aκ(u,v) =
Ed3

12

∫ α

0

[κθ(u)κθ(v) + κϕ(u)κϕ(v)] sin θ dθ

correspond to the virtual work associated with membrane, transverse shear and bending
deformations, respectively.

The gravity load is idealized to act on the shell midsurface with the load density G = Fd
as in

LS(u) =

∫ α

0

G[sin θ u(θ)− cos θ w(θ)] r2
0 sin θ dθ

Concerning the deformation of the ring, we assume that the motion of the cross section
is that of a rigid body written in terms of the cylindrical coordinates ρ, z as

uρ(ρ, z) = U + Ψ(z − z0), uz(ρ, z) = W −Ψ(ρ− ρ0) (4)

Here U and W represents the horizontal and verical translation respectively, and Ψ repre-
sents the rotation around the point P0 = (ρ0, z0) taken to be the midpoint of the junction.
Accordingly, the only non-vanishing strain component is

εϕ =
1

ρ
(U + Ψ(z − z0)) (5)

The continuity of the displacement fields (4) and (3) at the shell-ring interface implies that
U = u(α) cosα + w(α) sinα

W = −u(α) sinα + w(α) cosα

Ψ = ψ(α)

(6)

Upon substituting (6) into (5), the ring energy product may be written in terms of the
generalized displacement field u = (u,w, ψ) as

AR(u,v) =

∫
ΩR

εϕ(u)εϕ(v) ρ dρdz (7)

and, Eqs. (6) given, the corresponding load functional reads

LR(v) =

∫ ρB

ρA

p[W −Ψ(ρ− ρ0)] ρ dρ (8)
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4 Computational models

In this section, we describe the finite element procedures used to solve the Girkmann prob-
lem. We will utilize a modern hp-adaptive mesh-refinement algorithm in context of the
axisymmetric solid model and the classical h-version in context of the axisymmetric shell-
solid model.

4.1 The modern hp-version (axisymmetric solid model)

We present here the main idea of the mesh refinement algorithm which is a slightly tweaked
version of the general two dimensional hp-adaptive algorithm described in [10]. The starting
point of the algorithm is a representation of the computational domain Ω ⊂ R2 as a union of
triangles and quadrilaterals with possibly curvilinear edges. The initial partitioning, which
is constructed using the Geometry Modeling Package (GMP), is supposed to be regular, i.e.
the intersection of any two subdomains is either empty, reduces to a single vertex or consists
of a whole edge. However, the geometry updates following mesh refinements are allowed to
lead to so called one-irregular meshes with constrained, or hanging nodes.

Mesh optimization algorithm

A given coarse hp-mesh is refined in both h and p to obtain the corresponding fine mesh.
The problem is then solved on the fine mesh and the fine mesh solution u = uh/2,p+1 is
obtained. This is used to determine the optimal mesh hpopt such that the rate of decrease
of the error, as measured in the energy norm (1), is maximized:

|||u−Πhpu|||2 − |||u−Πhpoptu|||2

Nhpopt −Nhp

= max!

Here Πhpu and Πhpoptu denote the projection-based interpolants of the fine grid solution on
the original mesh and on the optimal mesh, respectively, while Nhp and Nhpopt denote the
corresponding numbers of degrees of freedom.

The mesh modifications involving subsections of elements are referred to as h-refinements
whereas changing the orders of the elements are referred to as p-refinements. For quadrilat-
eral elements, the automatic algorithm can perform both type of refinements anisotropically,
i.e. in the direction of one reference element coordinate only. In our case of axisymmetric
formulation of elasticity, this feature is utilized by splitting the energy norm of the error
e = (eρ, ez) over a single element K as

|||e|||2K =

∫
K

σ(e) : ε(e) ρ dρ dz

= C11 + C22 + C12

where the directional error contributions C11, C22 and C12 are expressed in terms of the
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reference element coordinates ξ = (ξ1, ξ2) ∈ K̂ as

C11 =

∫
K̂

{(
∂eρ
∂ξ1

∂ξ1

∂ρ

)2

+

(
∂ez
∂ξ1

∂ξ1

∂z

)2

+
1

2

(
∂eρ
∂ξ1

∂ξ1

∂z
+
∂ez
∂ξ1

∂ξ1

∂ρ

)2
}
ρ(ξ) J dξ

C22 =

∫
K̂

{(
∂eρ
∂ξ2

∂ξ2

∂ρ

)2

+

(
∂ez
∂ξ2

∂ξ2

∂z

)2

+
1

2

(
∂eρ
∂ξ2

∂ξ2

∂z
+
∂ez
∂ξ2

∂ξ2

∂ρ

)2
}
ρ(ξ) J dξ

C12 =

∫
K̂

{
2
∂eρ
∂ξ1

∂ξ1

∂ρ

∂eρ
∂ξ2

∂ξ2

∂ρ
+ 2

∂ez
∂ξ1

∂ξ1

∂z

∂ez
∂ξ2

∂ξ2

∂z
+

(
eρ
ρ(ξ)

)2

(
∂eρ
∂ξ1

∂ξ1

∂z
+
∂ez
∂ξ1

∂ξ1

∂ρ

)(
∂eρ
∂ξ2

∂ξ2

∂z
+
∂ez
∂ξ2

∂ξ2

∂ρ

)}
ρ(ξ) J dξ

Here J denotes the Jacobian (determinant) of the transformation from the physical coordi-
nates to the master element coordinates.

After the new coarse mesh has been determined, the process is repeated until a stopping
criterion is met. As a stopping criterion we use the approximate relative error in the energy
norm which is computed by using the fine grid solution:

ε =
|||uh/2,p+1 − uhp|||
|||uh/2,p+1|||

≤ τ

Post-processing

Upon denoting
gρ = σρnρ + σρznz

gz = σρznρ + σznz

the unknown reactions at the junction are given by

Q =
1

ρ0

∫ d/2

−d/2
(gρ sinα + gz cosα) ρ ds (9)

and

M = − 1

ρ0

∫ d/2

−d/2
(gρ(z − z0)− gz(ρ− ρ0)) ρ ds (10)

Because the computational domain has re-entrant corners at the ends of the junction, the
stress fields are strongly singular at those points. This makes numerical integration difficult
and there is even no theoretical guarantee on the convergence of the stress resultants if
computed directly using the definitions. However, an extraction procedure introduced in
[9] can be utilized to overcome this difficulty (see also [4]). The details of the variational
approach are as follows.

If u is the exact displacement field and wQ is an extraction function defined on the ring
domain ΩR as

wQ = (sinα, cosα), (ρ, z) ∈ ΩR
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then application of the principle of virtual work on ΩR yields

AR(u,wQ) = LR(wQ) + ρ0Q

or

Q =
1

ρ0

(LR(wQ)−AR(u,wQ))

The choice
wM = (z − z0,−(ρ− ρ0)) , (ρ, z) ∈ ΩR

gives similarly

M =
1

ρ0

(LR(wM)−AR(u,wM))

If Qhp and Mhp denote the corresponding quantities computed using the finite element
solution uhp, i.e.

Qhp =
1

ρ0

(LR(wQ)−AR(uhp,wQ)) (11)

and

Mhp =
1

ρ0

(LR(wM)−AR(uhp,wM)) (12)

then, Cauchy-Schwarz inequality implies that

|Q−Qhp| =
1

ρ0

|AR(u− uhp,wQ)| ≤ 1

ρ0

|||u− uhp|||ΩR
|||wQ|||ΩR

and

|M −Mhp| =
1

ρ0

|AR(u− uhp,wM)| ≤ 1

ρ0

|||u− uhp|||ΩR
|||wM |||ΩR

In other words, if the finite element solution uhp is a good approximation of the exact solution
u in terms of the energy norm, then the extracted values of the quantities of interest should
also be good approximations of their exact values. In fact, extension of the extraction
functions by zero over the whole domain Ω and utilization of a duality argument shows that
actually

|Q−Qhp| ≤
1

ρ0

|||u− uhp|||Ω|||w̃Q − w̃hp
Q |||Ω, |M −Mhp| ≤

1

ρ0

|||u− uhp|||Ω|||w̃M − w̃hp
M |||Ω

Here w̃Q, w̃M are (smooth) auxiliary functions determined by the corresponding extraction
functions, see [4].

Consequently, in theory, the extraction function approach transforms convergence of the
displacement field in the energy norm to convergence of the stress resultants very effectively.
The numerical results that follow in Section 5 confirm that this is the case in practice too.
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4.2 The classical h-version (axisymmetric shell-ring model)

The formulation of the classical h-version finite element method for the axisymmetric shell-
ring model is rather straightforward: Each component of the generalized displacement field
u = (u,w, ψ) in Eq. (3) is assumed to be continuous, piecewise linear polynomial associated
to a partition

0 = θ0 < θ1 < θ2 < · · · < θN = α

In addition to uniform subdivisions we consider piecewise uniform (Shishkin) meshes. These
are based on the division of the interval [0, α] into

[0, α− γ] and [α− γ, α]

where γ = 4·λ and λ = 31/4 ·
√
d/r0 corresponds to the (angular) length scale of the boundary

layer in spherical shells, see [14]. The factor 4 is chosen based on empirical numerical
experience. In both subintervals [0, α − γ] and [α − γ, α] we use equidistant meshes of
N/2 + 1 points (N is assumed to be even).

It has been shown in [14] that the standard displacement-based variational formulation
for the shell layer modes becomes a constrained approximation problem when t/r0 << 1.
In case of spherical (elliptic) shells, the constraint which becomes gradually enforced as t/r0

diminishes is the traditional shear (Kirchoff-Love) constraint

ρθ = r0ψ + w′ − u = 0

This causes a harmful shear locking effect in the linear finite element model. As a remedy, we
have employed selective under-integration where the shear energy term Aρ(u,v) is evaluated
numerically using the elementwise midpoint rule instead of the customary two-point Gauss-
Legendre rule, cf. [12].

Finally, the stiffness of the ring and the supporting pressure affect the degrees of freedom
associated to θN = α through Eqs. (5) – (8). The associated integrals were evaluated
numerically essentially exactly.

Post-processing

The quantities of interest can be written in terms of the strains as

Q =
Ed

2r0

ρθ(α), M = −Ed
3

12r0

κθ(α)

Let w
(Q)
h = (u

(Q)
h , w

(Q)
h , ψ

(Q)
h ) and w

(M)
h = (u

(M)
h , w

(M)
h , ψ

(M)
h ) be extraction functions from

the finite element space such that

u
(Q)
h (θi) = ψ

(Q)
h (θi) = 0 & u

(M)
h (θi) = w

(M)
h (θi) = 0, i = 0, . . . , N − 1

and

w
(Q)
h (α) =

1

r0 sinα
& ψ

(M)
h (α) = − 1

r0 sinα
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The quantities of interest can then be approximated as

Qh = AS(uh,w
Q)− LS(wQ) & Mh = AS(uh,w

M)− LS(wM)

As pointed out in [4], the extraction procedure is formally identical to the computation of
stress resultants from the nodal forces (direct stiffness method).

5 Numerical results

5.1 The modern hp-version (axisymmetric solid model)

The initial mesh was constructed using the Geometric Modeling Package (GMP) and consists
of eight quadrilaterals and one triangle as shown in Figure 2; The shell is divided uniformly
into five isoparametric quadrilaterals and the remaining elements are used to mesh the ring
in symmetric fashion. The degree of all elements in the initial mesh was chosen to be three.

Mesh optimization

The final one-irregular hp-mesh generated by the automatic algorithm is shown in Figures
3 and 4. In all figures, the colour encoding of the element degree p varies from one (dark
blue) to eight (dark purple). Triangular colouring within quadrilateral elements stands for
anisotropic polynomial degree (horizontal/vertical) within that element.

The influence of the re-entrant corners at the junction on the final mesh becomes evident
in Figure 4. The automatic mesh refinement algorithm reacts to the corner singularities by
imposing heavy h-refinements towards the ends of the junction. These h-refinements prop-
agate then also to some parts of the domain where the displacement field is expected to
be rather smooth. For instance, in view of the classical kinematic hypotheses of Reissner-
Mindlin or Kirchoff-Love, the h-refinements in the normal direction of the shell seem unnec-
essary away from the junction. Anyway, the effect becomes attenuated farther away from
the junction thanks to the one-irregularity of the mesh.

Data of interest

The values of the stress resultants were first computed by substituting the finite element
solution uhp into Eqs. (9) and (10) and computing the integrals numerically. Since the
approximative stress fields are generally discontinuous over adjacent elements, the results
obtained from different sides of the junction may vary. The results reported in Table 5.1
show that this is indeed the case: The values of the shear force Q have not converged even
though the estimated error in the energy norm is 0.001%.

The situation becomes completely different if the extraction formulas (11) and (12) are
used to post-process the resultants. The results, which are shown in Table 5.1, are much
better as predicted by the theory. The data of interest is displayed here with an additional
significant digit to illustrate the rapid convergence. Based on this analysis, the final estimates
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Figure 2: The initial mesh for the hp-version (axisymmetric solid model).

Figure 3: The final hp-mesh (axisymmetric solid model).
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Figure 4: The final hp-mesh (axisymmetric solid model). Zoom at the junction.

D.O.F. Q (N/m) Q (N/m) M (Nm/m) M (Nm/m) ε (%)
(shell) (ring) (shell) (ring)

206 2122.1 244.3 146.27 18.66 4.936
340 1019.0 347.4 -31.81 7.57 0.114
628 1199.2 621.9 -38.38 -11.28 0.056
2272 1123.3 934.7 -40.63 -35.55 0.034
7424 931.2 938.5 -36.08 -36.32 0.013
10292 938.4 946.3 -36.26 -36.85 0.008
13604 932.6 944.1 -36.02 -36.81 0.003
18866 936.5 943.7 -36.78 -36.78 0.001

Table 1: Convergence of the quantities of interest by the hp-version (axisymmetric solid
model) and direct numerical integration from both sides of the junction (shell/ring).

14



D.O.F. Q (N/m) M (Nm/m) ε (%)
206 958.72 -38.444 4.936
340 943.81 -37.377 0.114
628 943.73 -37.097 0.056
2272 943.66 -36.849 0.034
7424 943.65 -36.798 0.013
10292 943.65 -36.785 0.008
13604 943.65 -36.790 0.003
18866 943.65 -36.790 0.001

Table 2: Convergence of the quantities of interest computed by the hp-version (axisymmetric
solid model) and extraction.

for the values of the shear force and bending moment are Q = 943.65 N/m and M =
−36.790 Nm/m, respectively.

The location and magnitude of the bending moment can be determined directly by numer-
ical integration because the stress field is smooth away from the junction. The distribution of
the bending moment in the shell is shown in Fig. 5. The value and location of the maximum
bending moment are estimated to be Mmax = 254.9 Nm/m and θmax = 38.14◦, respectively.

5.2 The classical h-version (axisymmetric shell-ring model)

The results for the h-version with and without selective under-integration are shown in
Tables 3 and 4. As expected the use of Shishkin-type mesh effectively halves the number of
degrees of freedom required to achieve a given accuracy whereas the influence of the reduced
integration is even more dramatic.

The results are very close to those obtained with the hp-version and, concerning the
distribution of the bending moment, a graph identical to 5 is obtained. However, a small
difference between the models can be observed near the maxima of the bending moment
as Figure 6 shows. The maximum value of the bending moment based on the h-version is
estimated as Mmax = 254.1 Nm/m still attained at θmax = 38.14◦.
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Figure 5: Distribution of the bending moment as computed by the hp-version (axisymmetric
solid model).
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Figure 6: Zoom at the maxima of the bending moment. The hp-version (axisymmetric solid
model) vs. the h-version (axisymmetric shell-solid model).
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D.O.F. Q (N/m) Q (N/m) M (Nm/m) M (Nm/m)
(Shishkin) (Uniform) (Shishkin) (Uniform)

51 1004.39 1118.58 -11.95 34.53
99 958.12 988.53 -30.89 -18.44
195 946.31 954.04 -35.74 -32.57
387 943.34 945.28 -36.96 -36.16
771 942.60 943.09 -37.26 -37.06
1539 942.41 942.54 -37.34 -37.29
3075 942.37 942.40 -37.36 -37.34
6147 942.36 942.36 -37.36 -37.36

Table 3: Convergence of the quantities of interest computed by the h-version with selective
under-integration (axisymmetric shell-ring model). Uniform vs. piecewise uniform (Shishkin)
meshes.

D.O.F. Q (N/m) Q (N/m) M (Nm/m) M (Nm/m)
(Shishkin) (Uniform) (Shishkin) (Uniform)

51 2267.34 2939.45 706.21 1011.10
99 1599.26 2085.71 374.66 623.57
195 1207.38 1491.73 143.84 314.89
387 1027.66 1152.97 23.00 108.52
771 965.91 1007.49 -20.70 8.81
1539 948.42 959.97 -33.08 -24.91
3075 943.88 946.86 -36.29 -34.19
6147 942.74 943.49 -37.09 -36.56
12291 942.45 942.64 -37.30 -37.16
24579 942.38 942.42 -37.35 -37.31

Table 4: Convergence of the quantities of interest computed by the standard h-version
(axisymmetric shell-ring model). Uniform vs. piecewise uniform (Shishkin) meshes.
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6 Summary

We have presented computational analysis of the Girkmann challenge problem using two
different finite element approaches. In the first approach, an automatic hp-adaptive finite
element solver was applied to the the exact formulation of the problem following axisym-
metric linear elasticity theory. In the second approach, the mathematical formulation of the
problem was first simplified by using kinematic assumptions and the simplified problem was
then solved numerically using the h-version of the finite element method.

We have arrived at the following results by applying the hp-version for the axisymmetric
solid model

• Shear force at the junction: Q = 943.7 Nm/m

• Bending moment at the junction: M = −36.79 Nm/m

• Maximum bending moment: Mmax = 254.9 Nm/m

• Location of the maximum bending moment: θmax = 38.14◦

while application of h-version to the axisymmetric shell-ring model yield the following results

• Shear force at the junction: Q = 942.4 Nm/m

• Bending moment at the junction: M = −37.36 Nm/m

• Maximum bending moment: Mmax = 254.1

• Location of the maximum bending moment: θmax = 38.14◦

The difference between the results computed with the exact model and with the simplified
model is less than two percent.
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Model/Element type Q M ϕmax Mmax

N Nm/m degrees Nm/m
Axisymmetric solid (extraction) 943.6 -36.81 38.15 255.10
Axisymmetric solid 940.9 -36.63 38.20 254.92
3D thin solid (q = 3) 948.4 -37.31 38.20 254.50
Axisymmetric solid 940.9 -36.80 38.15 254.80

Table 5: Summary of the challenge problem results with the p-version. The term q = 3
refers to fixed polynomial degree in the transverse direction.

Model/element type Q M ϕmax Mmax

N Nm/m degrees (Nm/m)
Axisymmetric solid (4 node elements) 953.7 -10.57 - -
Axisymmetric solid (8 node elements) 953.7 -19.67 - -
Axisymmetric shell - solid 593.8 -140.12 - -
Axisymmetric shell - solid - -78.63 - -
3D shell - solid 1140.0 -205.00 37.70 215.00
3D shell - solid 16660.0 17976.6 - -
Axisymmetric solid 963.2 -33.73 - -
3D shell - solid 1015.7 86.30 - 231.09
Axisymmetric shell - solid 949.2 -36.62 - -
3D shell - solid 951.3 -38.35 - -
Axisymmetric shell - solid 989.1 -89.11 38.00 238.63

Table 6: Summary of the challenge problem results with the h-version.

Appendix: Summary of challenge problem results

We reproduce here from [4] the results received in response to the Girkmann challenge
problem. The four results based on the p-version and the eleven results based on the h-
version are shown in Tables 5 and 6, respectively.
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