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Abstract— An autonomous robotic system (observer) is sup-
posed to discover the location of a signal source, based on
measurements from an onboard sensor, and place it under its
line-of-sight in an efficient manner. The environment contains
impenetrable obstacles that should be avoided along the robot’s
path. We present an adaptive algorithm for determining the
measurement locations and, ultimately, the source location.
Specifically, we implement the extension of the reciprocity-
based source discovery algorithm [7], to noisy signal data.
A Hamilton-Jacobi value function [34] controls the observer’s
motion, while taking the obstacles and the observer’s heading
and turning radius into account. An economical car-based
platform [27] is used to validate our algorithm and demonstrate
its efficiency.

I. INTRODUCTION

We consider an application that uses remote sensing and
sensor deployment to discover a threat target. The target
is a source that emits a remotely measurable signal (bio-
chemical concentration, heat, sound, etc.). The goal is to
design a robust algorithm that determines how the robot
should navigate through the environment, and where along
its path it should take measurements so that the objective
of discovering a signal source and its surveillance can be
achieved efficiently.

In this paper we present the experimental results based
on the strategy discussed in [7]. We furthermore introduce
the probability based imaging function to take into account
the significant amount of noise in the measurements of the
signal. As the result of our search strategy, a sequence of
signal measurement locations is produced. To navigate the
robot to the next observing position we propose a motion
planner based Hamilton-Jacobi (HJ) equation [34].

The outline of the paper is as follows. In section II
we present some of the existing techniques to solve the
inverse problems in source discovery along with conventional
algorithms for steering the autonomous vehicles in compli-
cated environments. Then, in section III we describe the
reciprocity-based source discovery algorithm, first introduced
in [7], and its extension to noisy signal data. Section IV
discusses the application of HJ formulation [34] to path
planning. In section V we introduce the testbed and the robot-
vehicle used for navigation as well as the phototransistor
reflective object sensor used to measure the signal. Finally,
in section VI we propose two algorithms for source discovery
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and compare the results of their implementation on the
testbed.

II. RELATED WORK

When omitting the navigation considerations, source dis-
covery can be roughly classified as an inverse source prob-
lem. Ling et al. [28] explore a situation in which they
recover the exact locations of multiple sources in a Poisson
equation, given an initial guess for the locations and Dirichlet
data collected on the boundary of the domain. For inverse
problems related to the heat equation with sources see [2]
and [3]. Other related topics can be found in [8], [18], [29],
[10], and [1]. The research settings discussed in this paper
differ greatly from many typical inverse problems which
assume simple domains and dense arrays of sensors at fixed
locations. Instead, we consider complicated domains with
non-convex obstacles, noisy signal data, the possibility of
placing the sensors freely in the domain, and the necessary
coupling with some motion planning.

Dynamic source discovery using local sensing is consid-
ered in [30]. Here, a group of sensor-equipped agents move
in a swarm and use collaborative sensing to efficiently search
for and locate targets in some bounded simply connected
domain.

When the obstacles are unknown, the environment needs
to be mapped out as the robot moves, so that attempts to
take measurements inside the obstacles are avoided and the
robot’s path does not intersect obstacles. The previous work
of [20], [22], [21], and [23] on mapping the obstacles in un-
known domains using visibility is convenient in this regard.
In [7], the authors extend the domain mapping algorithms of
[20] and [21] for point source discovery in this kind of setting
using an approach based on reciprocity of the linear partial
differential operators as well as the maximum principle for
the associated elliptic problems. In this paper, we consider
a simpler scenario when the obstacles are known. However,
with the addition of the range sensor (to detect and map
the obstacles), it would be possible to extend the algorithm
to regions with unknown obstacles. Furthermore, multiple
sources may be considered, provided that they are well
separated. This is the subject of our forthcoming publication.

A significant component of our experiment is navigating
a car-based autonomous robot to a prescribed location while
avoiding the obstacles. The car’s limited steering angle
must be taken into consideration when designing the motion
control. A comprehensive presentation of motion planning
techniques can be found in the book by Latombe [24].
Motion planning is a fundamental problem in robotics. In



the most general form, motion planning consists of finding
a robot’s path from a start position to a goal position, while
avoiding obstacles and satisfying some constraints [24]. In
[14], [15], [9], and [26] the authors provide a broad review
of problems specific to the research in robotics.

A book by Laumond [25] focuses on motion planning
for cars in cluttered environments. Barraquand and Latombe
[6] developed a Lagrangian framework for the bang-bang
steering principle, which allows only six actions for the car:
move all the way to the left, to the right, or straight ahead,
and the same actions with reverse velocity. The found path is
optimal for the user’s cost function and step size. Each cost
function would produce a single path connecting the start
and the target positions.

A large class of optimal path planning problems can be
formulated as problems involving HJ equations [5], [11]
and solved efficiently [36], [33], and [35]. We implement
a control based on HJ equation [34] that produces a value
function corresponding to a given target location. The value
function contains the time-cost of traveling from any point
in the domain outside the obstacles and any orientation of
the car toward the target along the optimal path. This is
the key difference of the suggested HJ formulation from the
Lagrangian approach [6].

III. SOURCE DISCOVERY

The reciprocity-based source discovery algorithm from [7]
is described below. Consider a bounded domain D ⊂ R2,
which contains impenetrable obstacles Ω ( D. Denote the
region available for navigation by DΩ := D \ Ω. Assume
the signal from the point source propagates according to the
Dirichlet problem for the Poisson equation:{

−∆u(x) = cδ(x− S), in DΩ

u(x) = 0, on ∂DΩ
, (1)

where on the right-hand side there is the delta function cen-
tered at the (unknown) source location S ∈ DΩ, magnified
by c > 0. We assume that the strength of the source c is
known and omit it from now on. One can view this partial
differential equation (PDE) as giving a description of the
steady state of a diffusion problem. We have chosen Dirichlet
boundary conditions in this example, but our methods can be
adapted to other common boundary conditions, such as Neu-
mann boundary conditions. The mathematical formulation of
general inverse source problems of this type is discussed in
[7].

A first, rather simple approach would be, starting at a point
z0 ∈ DΩ, use gradient ascent to determine a sequence of
sample locations that would guide the observer toward the
source at S.

ẋ(t) = ∇u (x(t)) , with x(0) = z0. (2)

However, there are several drawbacks to this method.
First, it only works in cases where the Green’s function
has a specific structure, such as in the case of Laplace
operator (1). The gradient-based approach will not work
if we deal with slightly more general equations of the

type: ∇ · (a(x)∇u) = f , where a(x), for example, is
periodic. Second, even for the Laplace operator, one can
come up with a pathological configuration for the obstacles
where the gradient vanishes at points other then the source.
Furthermore, such an approach is highly inefficient in terms
of the number of signal measurements required to discover
the source. We present the results of an experiment based
on gradient ascent in section VI, as a comparison to our
proposed algorithm.

We continue with the algorithm implemented in this paper.
At an observing location z1 ∈ DΩ, we can measure the
signal intensity I1 = u(z1). Then, we look at the solution to
the adjoint problem with the delta function centered at the
observing position z1:{

−∆v1(x) = δ(x− z1), in DΩ

v1 = 0, on ∂DΩ
. (3)

Now, for y 6= z1, we have

v1(y) =
∫
DΩ

δ(x− y)v1dx =
∫
DΩ

v1∆udx,
u(z1) =

∫
DΩ

δ(x− z1)udx =
∫
DΩ

u∆v1dx,
(4)

and, by the Green’s identity, v1(y) = u(z1) = I1. Therefore,
the source must lie on the I1 level set of v1:

y ∈ {x ∈ DΩ : v1(x) = I1}. (5)

The intuitive idea behind the choice of (3) is that the signal
strength measured by the observer remains the same even if
we interchange the position of the observer and the source.
Such reciprocity is embedded in the integration-by-parts (4).

Assume at the next location z2 ∈ DΩ, the observer takes
another measurement of signal intensity I2 = u(z2). The
function v2 can be computed and the set of possible source
locations may be narrowed down to

y ∈ {v1 = I1} ∩ {v2 = I2}. (6)

This procedure can be repeated until the source location is
uniquely identified at the intersection of all corresponding
level sets.

The proposed strategy can handle obstacles of a rather
large class, including very complicated non-convex shapes
as in Fig. 1. The only constraint comes from the size of
the underlying mesh used to obtain the solution to PDE (3),
since the grid has to resolve the features of the obstacles.
The discretization of the domain results in a simple system
of linear equations. We refer the reader to [13] and [32] for
a discussion and efficient methods for solving PDEs.

In order to be practical in typical applications the algo-
rithm needs to be robust to noise in the data. We propose the
extension of the above approach to handle the noise in signal
measurements. Experimental results in section VI illustrate
the performance of our method on the data obtained with the
sensor described in section V.

Define the probability based imaging function correspond-
ing to an observing location zk by

pk(x) := exp
(
− (vk(x)− Ik)2

σ2

)
, (7)



where vk is the solution of (3) corresponding to zk, Ik :=
u(zk) is the intensity of the signal at zk, and σ2 is the
variance of the noise in the measurement. Thus, pk attains its
maximum of 1 inside the region of possible source locations
{x ∈ DΩ : vk(x) = Ik} and has a Gaussian drop-off,
correlated with the variance of the noise σ2, away from this
region.

The cumulative probability imaging function correspond-
ing to a set of distinct observing locations {z1, . . . , zM} can
be defined as

PM (x) :=
1
M

M∑
k=1

pk(x). (8)

After suitable normalization, one can see that the probability
of the point source locating at the maximum of this function
increases with the number of observations. We say that the
source has been discovered when the area of the region
that possibly contains the source,

∫
DΩ

χ{PM (x)≥ε}dx, is less
then the desired tolerance Aε. Here, χ is the characteristic
function of a set, and 0 < ε < 1 is a threshold parameter,
defining the region of possible source locations.

IV. THE HAMILTON-JACOBI MOTION CONTROL

We wish to model the problem of optimally steering the
vehicle with a fixed turning radius ρ > 0 from a starting
point (xs, ys) ∈ DΩ with orientation θs ∈ [0, 2π) to a
target (xt, yt) ∈ DΩ. In this section we derive a HJ equation
to model the value function for this problem that can be
solved efficiently using a finite differences discretization on
a rectangular grid. For a more detailed description see [34].

A. Formal Derivation of the HJ Equation

We will assume that the vehicle travels at a constant
speed 1. Let Aρ,(xs,ys),θs denote the set of admissible
paths from (xs, ys, θs), that is, paths that obey the given
conditions of vehicular motion. Mathematically, this is the
set of parametrized paths γ = (γ1, γ2) : [0,∞) → DΩ such
that for all t > 0

|γ̇(t)| = 1, car speed is 1,
|θ̇(t)| ≤ ρ−1, maximum turning radius is ρ,
γ(0) = (xs, ys), initial position,
θ(0) = θs, initial direction of motion,

where θ(t) = tan−1(γ̇2(t)/γ̇1(t)) is the vehicle’s direction
of motion. Equivalently,

γ̇(t) = (cos (θ(t)), sin(θ(t))) . (9)

Define the value function ϕ : DΩ × [0, 2π)→ R+ ∪ {0}:

ϕ(x, y, θ) = inf{t : γ ∈ Aρ,(x,y),θ, γ(t) = (xs, ys)}. (10)

Note that ϕ(xt, yt, θ) = 0 for all θ ∈ [0, 2π).
From the value function, we can derive a corresponding

dynamic programming principle [4]:

ϕ(x, y, θ) = inf
γ∈Aρ,(x,y),θ

{ϕ(γ(t+ ∆t), θ(t+ ∆t)) + ∆t}.
(11)

Rearranging the terms, dividing by ∆t, and taking the limit
∆t→ 0, we have,

−1 = inf{(ϕx, ϕy, ϕθ) · (γ̇1, γ̇2, θ̇) : |γ̇| = 1, |θ̇| ≤ ρ−1},
(12)

where variable subscripts denote partial derivatives. Using
(9) and the bang-bang principle θ̇ = ±ρ−1, we arrive at the
HJ equation

−1 = cos(θ)ϕx + sin(θ)ϕy − ρ−1|ϕθ|, (13)

with the boundary condition

ϕ(xt, yt, θ) = 0, for all θ ∈ [0, 2π). (14)

To solve the above boundary value problem, we propose
an upwind, monotone finite differences scheme on a three-
dimensional uniform Cartesian grid. We refer the reader to
[34], [31], [12], and [35] for more details on the chosen
discretization of HJ equations.

B. Optimal Paths

The optimal paths coincide with the characteristic equa-
tions of (13). Thus, an optimal path satisfies the system of
ordinary differential equations consisting of (9) and

θ̇(s) = ρ−1sign{ϕθ}. (15)

To extract the unique path that passes through the starting
point (xs, ys, θs) we solve:{

γ̇(s) = − (cos(θ(s)), sin(θ(s))) ,
θ̇(s) = −ρ−1sign{ϕθ},

(16)

with initial condition

(γ(0), θ(0)) = ((xs, ys), θs). (17)

Note that the value function contains the information to
compute optimal paths from any orientation and any point
in DΩ to the target (xt, yt). This is a key difference of the
HJ formulation from the Lagrangian approach in [9].

Numerically, the optimal paths can be computed by dis-
cretizing the initial value problem (16)-(17). We construct
the path using a forward Euler discretization with a suitable
chosen arc-length step until the path reaches (xt, yt) within
some given tolerance. The values of ϕ and θ away from grid
nodes are approximated by cubic interpolation of the nearby
grid node values.

V. TESTBED AND SENSOR

The results in this paper were obtained using the second
generation [27] of an economical micro-car testbed devel-
oped in [17]. The purpose of the testbed is to design a
cost effective platform to study cooperative control and path
planning strategies. The system includes a centralized data
processing computer, an arena with the terrain and signal
information, a micro-vehicle, and an overhead camera to
track the vehicle on the floor.

The dimensions of the testbed floor are 140 × 140 cm.
To represent the intensity of the signal at various locations,
the floor is colored with the scales of gray according to the



solution of (1), with the lightest scale corresponding to the
strongest signal as in Fig. 1. The obstacles are represented
by the light gray contours.
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Fig. 1. Test arena with obstacles. Gray scale intensity corresponds to signal
strength u, the solution of (1).

The micro-vehicle is composed of a car chassis, three
layers of circuit boards, and an identification tag, encoding
the vehicle’s position and heading, on the top. The car is
depicted in Fig. 2. It has dimensions 7 × 3.8 × 4.6 cm and
weighs 65 g with batteries. Equipped with a micro-processor,
a wireless transceiver, and a phototransistor reflective object
sensor, the vehicle is able to make simple motion decisions,
broadcast information, and detect and measure the light
reflectivity on the floor beneath it, which is then translated
into signal intensity through calibration.

Fig. 2. Micro-vehicle equipped with a phototransistor reflective object
sensor, pointing down.

We work with the sensor manufactured by Fairchild,
model QRB1134. The sensor is mounted facing down, so
that very little light comes between the sensor and the
ground. This way we can insure the measurement of true
light reflectivity of the gray scales beneath. Here we describe
the process of sensor data calibration. The sensor outputs
the readings through the wireless radio transceiver at a rate
30 Hz. Sensor readings are produced by Analog Digital
Converter (ADC), which outputs values proportional to volt-
age output (V×204.8). Fig. 3 represents sensor ADC output
corresponding to gray scales ranging from 0 to 255. One can
see that the curve flattens out after the gray scale reaches 185,
that is, the sensor does not differentiate between gray scales
brighter than 185. The estimated standard deviation of the
noise is σ = 12, with the corresponding variance of σ2.

0 50 100 150 200 250
0

200

400

600

800

1000

Gray scale

A
D

C
 o

u
tp

u
t 
(V
!
 2

0
4
.8

)

Fig. 3. Sensor ADC output corresponding to gray scales ranging from 0
(black) to 255 (white). The vertical line marks the working sensor range at
the gray scale of 185.

VI. ALGORITHMS, EXPERIMENTAL RESULTS, AND
DISCUSSION

In this section we are going to describe and compare the
two algorithms for source detection: the reciprocity-based
detection algorithm for Poisson equation (1) and the modified
gradient-based algorithm. The outcomes of the experiments
are discussed below.

A. Reciprocity-based Algorithm

We begin by introducing Algorithm 1 for detecting the
source in Poisson equation (1). The results of the experiment
are depicted in Fig. 4.

Algorithm 1 Reciprocity-based source discovery
1: I := u(z): solution of (1) can be measured at any z.
2: set ε: threshold parameter.
3: set Aε: desired tolerance.
4: set d: minimal separation between the observing loca-

tions in terms of Euclidean distance.
5: k = 1: number of observations.
6: A = 0: area of the region containing the source.
7: choose z1 ∈ DΩ: first observation point.
8: while 0 ≤ A < Aε do
9: measure signal intensity Ik := u(zk).

10: solve (3) for vk(x).
11: compute Pk(x) using (7) and (8).
12: compute A =

∫
DΩ

χ{PM (x)≥ε}dx.
13: choose zk+1 ∈ {x ∈ DΩ : vk(x) > u(zk)}, which is

the nearest to zk, while dist (zk+1, {z1, . . . , zk}) ≥ d.
14: k = k + 1.
15: end while

The key idea behind the Algorithm 1, as described in
section III, is to consider a sequence of solutions to adjoint
problems (3) corresponding to different signal sampling
locations. While the source has not been discovered, we
measure the intensity of the signal Ik at an observing
location zk. Then, the adjoint problem (3) is solved and
the probability imaging function (7) is constructed around
{x ∈ DΩ : vk(x) = Ik}, the level set of the solution vk,
marked by the black contours in Figs. 4. The colors ranging



from blue to red on the background of Figs. 4 correspond to
values of the cumulative probability based imaging function
defined in (8).

The region of possible source locations, bounded by the
white curves in Figs. 4, is a neighborhood around the
maximum of the cumulative probability imaging function
(8). The size of the neighborhood depends on the variance
σ2 of the noise in the signal data. As the number of the
observations increases, the area of the region of possible
source locations shrinks down to a point, as can be seen
from steps 6 and 7 of Fig. 4. The algorithm terminates when
the area of the region containing the source is less then the
desired tolerance. The magenta diamond in steps 6 and 7
marks the maximum of the cumulative probability imaging
function (8), which is the estimated location of the source at
(74.4580, 69.2660). The true coordinates of the source are
(70.2100, 70.2100). Note, that the observer does not need to
arrive to the source to determine its location.

In step 13 of Algorithm 1, the next observing location is
selected. We choose zk+1 outside the level set {x ∈ DΩ :
vk(x) = Ik}. Heuristically, such a choice would result in
a well-resolved intersection of the level sets at the source.
Note that in steps 1 and 2 depicted in Fig. 4 the level sets
{x ∈ DΩ : vk(x) = Ik} (depicted by black curves) do not
pass through the source, which is located in the middle of
the region. This occurs due to noise in the data, as the signal
is sampled far from the source. However, as the observer
proceeds, the level sets approach the true source location
and, finally, in steps 6 and 7 they pass through the source.
The probability imaging function allows us to consider wide
regions instead of intersections of the level sets, adding
robustness to our approach. The second condition in step 13
prevents the observer from returning to any of the previously
visited cites.

To navigate the car to the next observing position, we
choose the HJ motion control described in section IV. For
each desired target location we calculate a three-dimensional
value function (13)-(14). Since the map of the environment is
known a priori, we chose to pre-compute the value functions
at approximately 100 locations on the grid, approximately
12.7 cm apart (see Fig. 4), excluding the grid nodes inside the
obstacles. This way, the value function for any target location
generated by the algorithm could be approximated using the
pre-computed values, saving computational time during the
experiment. The nearest neighbor approximation turns out
to be sufficient for our purposes, although more elaborate
interpolation techniques, e.g. [16], could be implemented
instead.

The value function allows us to efficiently compute opti-
mal paths from any point in the domain to the target point
via (16) and (17). Thus, the vehicle’s steering direction can
be quickly updated to correct the vehicle each time it slides
away from its originally optimal path. The red circles in
Figs. 4 mark the target observing locations where the signal
is measured. The intermediate blue circles mark the positions
where the optimal path was recomputed to adjust to the car’s
deviation from its original route. The distance between the

blue circles is a fixed parameter obtained experimentally.

B. Gradient-ascent-based Algorithm

Below we describe Algorithm 2 based on the solution of
(2). The key idea behind the algorithm is to navigate the car
in the direction of the increasing gradient of the signal u
(1), which is sampled along the path. The signal intensity
u, is the same as in the previous experiment. A sample path
leading to source discovery is depicted in Fig. 5.

Algorithm 2 Gradient-based source discovery
1: I := u(z): solution of (1) can be measured at any z.
2: set Imax: strongest signal value at the source.
3: set Imin: threshold for weakest allowed signal.
4: set d: minimal separation between the observing loca-

tions with weak signal, in terms of Euclidean distance.
5: k = 1: number of observations.
6: choose z1,1 ∈ DΩ: first observation point.
7: measure I1 := u(z1,1).f
8: while Ik,1 < Imax do
9: while Ik,1 < Imin do

10: choose zk+1,1 ∈ DΩ,which is the nearest to zk,
while dist (zk+1, {z1, . . . , zk}) ≥ d.

11: k = k + 1.
12: end while
13: choose zk,2 and zk,3 in a small neighborhood of zk,1.
14: compute a linear approximation of ∇ũ(zk,1).
15: k = k + 1.
16: set zk,1 along the direction of increasing ∇ũ(zk−1,1)

using the bang-bang steering principle.
17: measure signal strength Ik,1 := u(zk,1).
18: end while

We choose to measure the gradient of the signal only
when the intensity of the signal is significantly greater than
the standard deviation of the noise. Based on the data in
Fig. 3, we set the minimal allowed signal Imin = 18. While
the measured signal is less than Imin, we select the next
observing location a distance d > 0 away from all the
previous samples. Since the environment is bounded, the
observer would end up in the region with a strong enough
signal in finitely many steps. The HJ motion control from
section IV is used to steer the vehicle. In Fig. 5, the path of
the observer is depicted by the green curve connecting the
steps generated by the HJ-based motion planner. The signal
is sampled at the points marked by magenta circles.

Once the measured signal is sufficiently strong, the gra-
dient can be used to steer the observer towards the source.
We compute a linear approximation∇ũ(zk,1) of the gradient,
based on three measurements of the signal u in a small neigh-
borhood of the observation point zk,1. To accomplish this, the
car steers a little in reverse to sample the signal at zk,2 and
then a little forward and to the side, to take the third sample
at zk,3. Fig. 5 depicts the estimated gradient directions with
red arrows. We omit the corresponding sampling locations
zk,2 and zk,3 for clarity.



Step 1

x (cm)

y
 (

c
m

)

 

 

12.9 51.1 89.3 127.5

12.9

51.1

89.3

127.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Step 2

x (cm)

y
 (

c
m

)

 

 

12.9 51.1 89.3 127.5

12.9

51.1

89.3

127.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step 6

 

 

x (cm)

y
 (

c
m

)

12.9 51.1 89.3 127.5

12.9

51.1

89.3

127.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Step 7

 

 

x (cm)

y
 (

c
m

)

12.9 51.1 89.3 127.5

12.9

51.1

89.3

127.5

0

1

2

3

4

5

6

Fig. 4. Steps 1, 2, 6, and 7 of the source detection experiment based
on Algorithm 1. The colored background illustrates cumulative probability
imaging function (8). The path of the vehicle is marked with blue line
segments connecting the steps generated by HJ controls (13) and (14).
The signal is measured at red circles. The black cross marks the next
measurement location (except for the last step). The black contour marks
the level set {vk(x) = u(zk)}. The white contour bounds the region of
possible source locations. The magenta diamond in steps 6 and 7 marks the
maximum of the cumulative probability imaging function and corresponds
to source position.
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Fig. 5. Source detection based in Algorithm 2. The path of the observer
is marked by green segments connecting the steps generated by HJ motion
control. The signal is measured at magenta circles. The gradient is measured
at red circles. The red arrows point in the direction of increasing gradient.
The gray scale image on the background illustrates propagation of the signal
in the environment.

From now on, the car navigates according to the gradient
direction, using the bang-bang steering principle described
in section II. That is, from the six possible directions,
the observer chooses the one nearest to the direction of
increasing gradient. The step size is chosen small enough
as to not overshoot the source. Note that in Fig. 5 the
trajectory of the car (green) initially does not coincide with
the direction of the gradients (red arrows). This is due to the
fact that the vehicle’s orientation does not coincide with the
gradient direction. Both directions become aligned as the car
steers closer toward the source. The car stops once it reaches
the source, that is, when the signal is stronger than a desired
tolerance Imax. The estimated source location in Fig. 5 is
(75.1660, 69.5000).

C. Discussion

Note, the observer must travel to the source in order to
discover its location using Algorithm 2, whereas this is not
at all necessary when using Algorithm 1. Also, observe that
eight measurements of the signal and five measurements of
the gradient (which is a total of eighteen samplings of the
signal) are required to discover the source with Algorithm
2. In contrast, only seven measurements are sufficient with
Algorithm 1. The same starting position of the observer is
used in both experiments.

Let us further remark that Algorithm 1 may be modified
to include the gradient information of the signal, see [7] for
details. While in this paper we assume the maximum strength
of the signal is known, it is possible to recover the strength
of the signal using the approach described in [7]. The case
of multiple signals of varying strengths will be considered
in the forthcoming publication.

The addition of the range sensor would make it possible
to consider an experiment of discovering a point source in
an unknown domain with obstacles [7]. The range sensor
would be used to collect point clouds from the surfaces



of solid obstacles in the environment, as was done in [21].
The visibility algorithm from [20] and [22] would then be
combined with the source detection algorithm to explore the
environment while looking for the source. Collaboration of
multiple observers could also be implemented for faster and
more efficient source discovery and tracking. Once the signal
is discovered, a boundary tracking method, e.g., [19] could
be implemented for further tracking and surveillance of the
contaminated region.
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